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In this paper we investigate certain states on the Cuntz algebra
0O, , and the von Neumann algebras obtained from their GNS repre-
sentations.

Introduction. In this paper we investigate certain states on the Cuntz
algebra 0, , and the von Neumann algebras obtained from their GNS
representations. The problem we begin with is that of finding different
types of factor states on O, which extend the trace on Choi’s algebra,
viewed as a subalgebra of O, . The existence in general of such factor
state extensions was established independently by Longo and Popa
(see [1]).

The construction of specific examples, and classifying them as to
type, has been done by several mathematicians. These examples arise
by composing the expectation of O, onto the CAR algebra with a fac-
tor state on the CAR algebra. Work of Evans and Lance showed that
by starting with the trace on the CAR algebra, a type III;/, factor state
extension is obtained (see [1]). In [9], pure state extensions are con-
structed by a combinatorial argument. In [2], it is shown that uncount-
ably many inequivalent pure state extensions are so obtained, and that
they arise from certain pure states on the CAR algebra. Moreover, it is
shown that if the Powers III; states on the CAR algebra are extended
to O,, they result in factor states of type III, if A"*14+1” =1, some n
in Z;, or III;, if logA and log(4+ 1) are algebraically independent.
In [11}, a different collection of product states on the CAR algebra
is shown to give rise to factor state extensions of type III, for all
0<Ai<1.

The techniques in [2] and [11] rely on the quasi-invariance, under
the shift automorphism of [6], of an appropriate state or weight on
the stabilized CAR algebra. In §1 of the present paper it is shown
that arbitrary (infinite) Krieger factors can be obtained from factor
state extensions on ,. The technique is the opposite of the above:
namely, we use weights all of whose translates by powers of the shift
are disjoint.
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362 JOHN S. SPIELBERG

The remainder of the paper is a more detailed study of the states on
(O, which factor through product states on the diagonal of the CAR
algebra. In §2 we use results of [11] to give a characterization of quasi-
equivalence of product states on the CAR algebra somewhat different
from that of [10] and [3]. We use these results in §3 to classify the
corresponding states on (» up to quasi-equivalence. In §4 we apply
these results to give a purely dynamical proof of the result of [2] on
the existence of pure state extensions. In §5 we briefly indicate how
the results of [11], computing invariants for the factors obtained from
certain diagonal product states on (,, can be generalized to all such
states.

Finally, we wish to thank Masamichi Takesaki for making the cru-
cial suggestion which led to the results of §1.

Preliminaries. We recall some definitions and results from [11]. For
n>0,let 4, = ®j?';_n Mz(j) , where Mz(j) = M,(C), for all j. Let
in: Ay — A, be defined by i,(x) = eﬁ”‘l) ® x, where for b € M,
we write bU) for the same element viewed as an element of M.
Let A UnA,, For k <!l,and b, by,y, ..., by € My(C), we write
®’ —k ) for the element

(8] (2v)+(&")

in A, for suitably large n. Let B,, = ®J__n 2(’) , B=U, Bn
Define o € Aut(A4) by letting a(®j ; Ny = ®j 1,for xX=Q;x
in B, and extending to 4 by linearity and continulty Let e, = 1( ”)
Then as in [6], we have A X, Z = % ® O», and ey(A4 X4 Z)ey = 02.
Note also that A4, is the CAR algebra, and 4 = .7 ® Ay. We will use
the notation
(iOa j0)®"'®(ins Jn)

for the element @} _ Oe(k)- in Ag. By a weight sequence we mean a
sequence {¢;};>; in [0, 1] Given {#;};>; , define A; € M,(C) for
Jj €EZ by
A__{diag(tj,l——tj), j>Jo,

J 1, J < Jo-
Define f, € (4,)% by f,,(®] = I[1;5_, Tr(A)x;) for ®jxj(.’) in
A, N B, where Tr is the non—normahzed trace on M,(C). We de-
fine a weight f on A4 by f(x) = sup fu(e,xe,), x € A, . (The fact
that f is additive on A, follows from [11], Lemma 1.4.) Then f
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is densely defined and lower semi-continuous. If ¢; € (0, 1) for each
j, then f is faithful. Let f be the canonical extension of f to a
weight on A x,Z,and fo = f |(eo(A X4 Z)ep) . Then the restriction of
fo to Choi’s algebra within O, is tracial, and hence is a multiple of
the unique tracial state on Choi’s algebra. The functionals on O, so
constructed all factor through the conditional expectation Fy: O, —
Ag of [6]. In fact, as noted in [2], these functionals factor fur-
ther, through the conditional expectation Ey of 4y onto its diagonal
(= span{Q); xj(/) €BNAy: xj =ey; or ey foreach j}). It is shown
in [2] that any state on (» which factors through the diagonal of A
extends the trace on Choi’s algebra. We will make use of this fact.
We remark that it also follows from our results mentioned above, as
the pure states on the diagonal arise from weight sequences for which
t; =0 or 1 for each j. We will refer to weights on a C*-algebra as
disjoint, quasi-equivalent, or unitarily equivalent, if their GNS repre-
sentations are so related. Given a weight f on a C*-algebra A, we
will let 7, denote the representation of 4 given by the GNS con-
struction applied to f, we will let H; denote the Hilbert space of
this representation, and 7,: 4 — H, the canonical map of 4 onto a
dense subspace of H,. If X is a topological space we will let C(X)
denote the space of continuous complex-valued functions on X . If 4
is another topological space, we will let C(X, 4) denote the space of
continuous functions from X into 4. We will let C.(X, 4A) denote
the space of functions in C(X, 4) having compact support. If 7 isa
closed linear operator on a Hilbert space, we will let polar(7) denote
the partial isometry in the polar decomposition of 7 having the same
kernel as 7': T = polar(T) - |T|.

1. Krieger factor states on 0.

LEMMA 1.1. Let M be an infinite Krieger factor. Then there is a
state fo on Ay such that my(Ao)" is isomorphic to M, and such that,

letting f = TrQfy on A, we have that f o d* is disjoint from f for
all k #0.

Proof. Choose a sequence of integers 0 = ny < ny < ny < ---, with
limy_, o (ng1 — ng) = o00. Let
IL={ny:k=0,1,2,.-.-},
Io={ny_1:k=1,2,3,---},
L =N\ (lhul).
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For jeI,Ul, let u; be the measure on {1, 2} given by

._{513 jEIla
= 0y, Jjeb.

By the diagonal of M, we mean span{e;;, e;;}. This is isomorphic
to the space of continuous functions on the two-point space {1, 2},
where we may let e;; represent the characteristic function of the
clopen set {i}, for i=1,2. Let 4' be a measure on [[;¢; {1, 2}0)

such that 7, oE, (® je, (’))” is isomorphic to M ([12]), where we
let measures on a space X also denote functionals on C(X). Let u
be the measure on [[32,{1, 2}\/) given by u = (ITjer,ur, 1) < #' . Let
Jo=uoEy. Then = 1 (Ap)" is isomorphic to M, since the portions
of u over I, and I, yield type I factors, and M is an infinite factor.
Let f =Tr®fy. Then B is contained in the definition domain of f.
For jeI, let x; = (®’ L@ ®e( D Let y € B. Then for all large
enough j, x; commutes w1th y. We have then, for all large enough
Js
Iz s () np ) =y DI = £ (v (x5 - 1))
=700 f((x; = 1)*e0) =0.

Since n7(B) is dense in Hy, it follows that z/(x;) tends g-strongly
to the identity. Now let k # 0. Then I; + k has only finitely many
elements outside of I,. Thus for all large enough j,

”nan xj) ng (v “ = ||n, || f( (xj)e0)=0,

Thus 7so ak (xj) tends o-strongly to zero. It follows that n, and
T fook Are disjoint [7, 5.2.4]. O

LEMMA 1.2. Let A be a C*-algebra, let o € Aut(A), and let f
be a lower semi-continuous weight on A such that f and fo ok are
disjoint for k £ 0. Let f be the canonical extension of f to A X, Z
Then m (A %o Z)" is unitarily equivalent to ms(A)" ® L(I*(2)), acting
on H;® 1%(2).

Proof. Let H=H;®1*(z) = [*(z, Hy),let n: A— L(H) be given
by n(x) =) ez oo "(x)®dy, and let U = 1® Uy, where U is the
(rightward) shift on /2(Z). Then (x, U) is a covariant representation
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of (A, a, Z). We claim first that for x € C.(Z, 4) C AX,Z, the map
7 p(x) = Y n (x(n))U" is unitarily implemented. To see this we will
need to identify a suitable dense subspace of H . Let

L= {x€A: f(x*x) <oo},

L;= {xeAva:f(x*x)<oo}.
Let E: A xo Z — A be the canonical conditional expectation, so that
f = foE.If {&}i0,2x) 1s the dual action, then E is given by:

2n
E((x)= %/0 a;(x) dt

For x € A x, Z, the elements

1 2n .
5 / 67 (x) e~ di
0

z; =

belong to C.(Z, A), and zj(k) = d;;x;, where the last equation de-
fines the elements {x;} in 4. The {x;} uniquely determine x. By
Lemma 2.2, Chapter 1, of [8],

1 2n
X = lim —/ Gr (X) K (1) dt,

n—oo 27

where {k,(¢)} is any summability kernel. Choosing {k,} to be Fejer’s

kernel,
n .
hv%=§2(1-nT1)“”=

j==n

and letting
1 2n )
00 () = 3z [ 8 (0 k(1)

a short computation yields g,(x) € C.(Z, 4), and

1— 17l i<
a,,<x><j>={.( )% ""“"’
03 ']I>n.

Another short computation yields
0 <E((x —0n(x))" (x —0n(x)))

= E(x*x) - i (1 —~ (nl_{_ll)z) o™l (x1x;).

j==n
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Hence
n
~ * |J| *
f(XX)ZjE_n(l (n+1 foa™/ (xjx}-), n=0,1,2,....

It follows that x € L; = x; € a~J(Ls) forall j. From the above and
the lower semi-continuity of f, it follows that

fxtx) = lim 3 (1 - (nl—]i-l1> )f““ b
j=—-n
Hence letting
Lo = {xeCc(Z,A):X(J')Eaj (Lf)} ;

it follows that 7 f~(L0) is dense in H 7
Now define Wj: nJ;(LO) — H by

Wonz(x)) () = ny (@™ (x (1)) -
(Wony 1) Gy = ( )

One easily verifies that W is isometric, and that

Wor; (x) 17 (v) = (Zﬂ(x )U”)Wonf()

for x € C.(z,A), y € Ly. Thus W, extends by continuity to a
unitary operator implementing the desired equivalence.

Now we note that by the disjointness hypothesized for the {7z, o
ok: k €z}, it follows (see [7, 5.3]) that

n(A)" =np(A4)" @I1°(z).

Hence
(R (A)U{UY" =7,(4)" DL (12 (Z)) . O

THEOREM 1.3. For every infinite Krieger factor M, there is a state
p on O, with n,()" isomorphic to M, and such that p extends
the (unique) tracial state on Choi’s algebra. O

Proof. Let M be an infinite Krieger factor. Choose a state f; on
Ao as in Lemma 1.1. Since M is infinite, 7,(A4)" is isomorphic
to M, where f is as in the statement of Lemma 1.1. Since f is
lower semi-continuous, and M infinite, Lemma 1.2 implies that

(A Xa z)" is isomorphic to M. Let p = fy = f|0,, as in the
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section on preliminaries. Let P be the projection onto n; n+Q),

and let Q = 7 f(eo). Then 7,(0,)” is unitarily equlvalent to
PQOn f~(A xXqo Z)"QP . The latter is a factor and is infinite since O,
is infinite. Therefore 7,(0,)" is isomorphic to M . As noted in the
section on preliminaries, the restriction of p to Choi’s algebra is tra-
cial. Since f; is a state, so is p. Thus p extends the tracial state on
Choi’s algebra. O

2. Equivalence of states on the CAR algebra. We will now con-
sider unitary equivalence and quasi-equivalence of the states of O,
obtained from different weight sequences. First we need to study the
corresponding weights on 4. We use the results of [11] to get a slightly
different characterization than that of [10] and [3].

Let {¢;};>; and {r;};>; be weight sequencesin (0, 1), and let f
and g be the corresponding weights on 4. In [11] it was shown that
Yt —r)*t; (1 —1;)7! < oo implies the unitary equivalence of 7,
and m,. We wish to reformulate this convergence condition so as to

obtain an equivalence relation.
DEeFINITIONs.  Let {#;};>; and {r;};>; be weight sequences in
(0, 1), and let f and g be the corresponding weights.
1. We write {¢;}%{r;}, or equivalently f%Zg, if
e 0]
STti-r)’ 5t (1-1)"" <o,
2. We write {t;} ~ {r;}, or equivalently f ~ g, if there is a
partition {I;, I, I3} of N (unrelated to the partition constructed in
Lemma 1.1) such that

(i) X5 tj<oo,and 35 rj <oo,
(i1) E,Z(l —tj) < o0, and Z,Z(l —rj) < oo,
(i) X, (zj—r, )2 —1(1 —t; )—1 < o0, and
The fact that ~ is an equivalence relation on the weight sequences

n (0, 1) follows from Theorem 2.4 below. We remark here that ~
is clearly reflexive and symmetric.

LemMma 2.1. Let {t;} and {r,} be weight sequences in (0, 1) with
{t;}%#{rj}. Then {t;} ~{r;}.

Proof. Choose p > 1. Let
Li={j:tr; 2py, L={i:(1-t)(1-r)"" >p},
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and
I3 ZN\(II ul).

oo>z P —1;)"!
- 12(1—%>2zj(1—t,~)“‘

-1
(1-p71?)Y 4 (1~1)
Il
>(1-p 2> 1
ll
Hence 3, t; <oo. Butthen 33, r; <p~' 37, t; < oo.

(ii): Similar to (i).
(iii):

LEmMA 2.2. Let {t;} and {r;} be weight sequences in (0, 1) with
{tj} ~{r;}. Then there is a weight sequence {s;} in (0, 1) such that
{t;}%{s;} and {r;}%{s;}.

Proof. Let
min (7}, ¢;) , jel,
s; =< max(r,, tj), jen,
tj, j € 1.
Then

Z (s, = tf)ztfl (1- tj)_l
=Y (s, -1)° 1! (1—%)"1+Z(Sj~lj)2’fl (1-2,)7"

Il

<> g (1-1t)) +Zt“‘1—t and

1

1
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Z(sj "'1)2 j_l (L-r5)” :
<Zr} 1-r))” +Zr‘l (1-7r)

+Z -—rjz.‘ll )~ < oo. O

THEOREM 2.3. Let {t;};>; and {r;};>; be weight sequences in
(0,1), and let f and g be the corresponding weights on A. Let
T: ny(x) € ng(B) — ng(x) € Hy. The following are equivalent:

(1) {t;3%{r;},

(2) ng(B) C D(T*) (and hence T is preclosed),

(3) ng(B) Cc D(T*), T*T has dense range, and polar(T) is a
unitary operator (intertwining ny and mg).

Proof. (1) = (3): This implication is contained in the proof of
Lemma 3.8 of [11].

(3) = (2) : Immediate.

(2) = (1) : The computation in the proof of Lemma 3.8(i) of [11]
shows that if x isin B, then ng(x) € D(T*) implies that

1im (1,(xh), &)

exists for { € ny(B), and defines a bounded linear function of ¢.
(The elements h, € B are given by

n
ha = @) (Q;A7HY,
j=—n
where {Q;} are obtained from {r;} in the same way that {A;} are
obtained from {z;}.) It follows by the Banach-Steinhaus theorem that
{ns(xhy): n € N} is a bounded set. A computation similar to the first
computation in the proof of Lemma 3.3 of [11] shows that if x is in
B,

n

Ing eha)|* = f (i) T [+ (=) et (1-1)7"].

j=k+1

Hence the infinite product [][1 + (¢; — r;)?¢;'(1 — £;)~'] converges.
Equivalently, {t;}%{r;}. O
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THEOREM 2.4. Let {t;};>; and {r;};>; be weight sequences in
(0,1), and let f and g be the corresponding weights on A. Let
T: ny(x) € ns(B) — ng(x) € Hy. The following are equivalent.

(1) mns and mg are unitarily equivalent,

(2) {t;} ~{r},

(3) T is preclosed,

(4) T ispreclosed, and polar(T) is a unitary operator (intertwining
ny and mg).

Proof. (2) = (4) : By Lemma 2.2 there is a weight sequence in
(0, 1) with corresponding weight y such that f%#y and gZ%y. Let

Sring(x)€ng(B)—ny(x), and
Sg: Mg (x) € ng (B) — ny (x).

Note that T = S;!S;. By Theorem 2.3, 1,(B) C D(S7)ND(Sy). Let
x,ye€B. Then

(Sghy (x) s Ty (v)) = (Sgny (x) 5 mg ()
= (ny (x) , 1y ) = (my (), Symy (¥))
= (St (x) . 1y ().

This implies that Sgn,(B) C D(T™). By Theorem 2.3, again, S;7,(B)
= R(S;S;) isdense in Hg. Thus T is preclosed. Since ~ is symmet-
ric, T! is also preclosed. This implies that 7 is one-to-one. Since
T has dense range, it follows that polar(7T) is unitary.

(4) = (3) : Immediate.

(3) = (1) : Since T has dense range, W = polar(T) is a co-
isometry. From T7m(x)|ns(B) = mg(x)T, it follows routinely that
ny|W*WH/ is unitarily equivalent to n,. Since n, and 7, are fac-
tor representations, 7, and 7mg are quasi-equivalent. Since f and g
are faithful and of product type, #, and n, are unitarily equivalent.

(1) = (2) : It is shown in [3] that 7, is unitarily equivalent to 7,
if and only if

3o (1= ()" = [ =) (1= 1)) < o0

(In [3] it is actually shown that this condition is equivalent to quasi-
equivalence. Since we are working here with faithful product weights,
this is the same as unitary equivalence.)
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By rationalizing the numerator one obtains
I —(ab)'? ~[(1 ~a) (1 - b))'/2
=C-! (a +b—2ab-2[ab(1-a)(l - b)]‘/2> :
where 1 < C <2 for 0 <a, b <1. Rationalizing again, one obtains

1 - (ab)l/Z _ [(1 _ a) (1 _ b)]l/Z
=C'(a-b) ((a —b)’ + [(@-a)? + (b b2)1/2]2>

-1

Let
K, {]:rj—r12<tj t}z} R
K; = {]er—rj >tj—tf},
K3 = {j:rj=tj} s
Ky= {j:ri=1-1t;}
We have
2
0 > E (rzj”tj)
K (ri—t)" +41;,(1-1))
_ 1
= — —
K 1+4((-1)g (1-1)7")
Equivalently, ,
- 1
(ri—t))° 7' (1-1)7 <o
Kl
Similarly,
Z (r; tj)zrj‘1 (1-r)) <o
KZ
Clearly, )
- 1
(ri=t)°r; '1-r)" <o
K3
Finally,

(1-2t)?
g ; (1= 2t,)7 + 2t (1 1))

4

> S (1-2)°.

4

8



372 JOHN S. SPIELBERG
Hence, Y i (¢ - 1/2)? < 00, Yk, (ri - 1/2)? < 00, and so

Z(rj - tj)zr;1(1 - rj)'l < 00.
K4

It is now clear from Lemma 2.1 that {¢;} ~ {r;}. o

REMARKS. The relation ~ makes sense for arbitrary weight se-
quences, where we impose the following additional restriction on ~
in Definition 2: ¢; = 0 or r; = 0 = j ¢ I;. In this generality,
the condition of [3] used in (1) = (2) above is equivalent to quasi-
equivalence of the weights. It is easy to see that our proof of the
equivalence of ~ and the condition of [3] holds for arbitrary weight
sequences.

CoROLLARY 2.5. Let {t;} and {r;} be arbitrary weight sequences,
and let [ and g be the corresponding weights. The following are
equivalent:

(1) ny and mg are quasi-equivalent,

(2) {t;}~A{rj}. o

3. Equivalence of states on O,.

DeFINITION. Let {¢;};>; and {r;};>; be weight sequences. We
say that {¢;} and {r;} have equivalent tails if there is an integer n
such that {tf}ijo ~ {rj_,,}jzj‘+,, .

LemMma 3.1. Let {r;};>; be a weight sequence. Let g and h be
the weights corresponding to {r;};>j and {rj-n}j>j +n, respectively.
Then h=goa”".

Proof. Let | > |j,| +|n|. For x € (B))+, and k > [ + |n|, a
straightforward calculation shows that

i (exxex) = 8 (exa” (x)ex).
Since 4, and g, are bounded for each k, it follows that for x €
(4))+,and k > 1+ |n|,

hy (exxex) = gk (epa” (x)ex).
Now let x € A, . We have for [ > |j;| + |n| and k >+ |n|:
h(exe) = sup hy (exe;xeje) = SUD &k (exa” (erxey) ex)

= Sl;p 8k (exei_na” (x)ey_nex)

= g(e_pa" (x)e_,) < goa”(x).
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It follows that A(x) < goa”(x). An analogous calculation shows that
goa(x) < h(x). o

REMARKks. Let J = C.(Z,B) C A X, Z. Let f be a weight on
A arising from a weight sequence. Since #7(B) is dense in Hy, and
ns(B) C Ly, it follows from the proof of Lemma 1.2 that nf~(J ) is

dense in H;. The map W;: H; — I*(z, Hy) defined by
Wenj(x) (k) = npoa™ (x (k) , xel,
extends to a unitary operator, and

Win s (x) Wf =Y m(x (k) U*
k

(see the proof of Lemma 1.2). We will let o also denote the automor-
phism of A4 x, Z defined by (a(x))(k) = a(x(k)), for x € J.

LeMMA 3.2. Let {t;} and {r;} be weight sequences in (0, 1), and
let f and g be the corresponding weights. Let T: n i(y) En J;(J )
ng(a™(v)). Suppose that {t;} and {r;} have equivalent tails. Then T
is preclosed and polar(T) is a unitary operator (intertwining n 7 and
g o Ozn) .

Proof. Let Ty: ns(b) € ne(B) — ng(a”(b)). By Lemma 3.1 and
Theorem 2.4, T, is preclosed and polar(7;) is unitary. Let ¢ €
Ce(zZ, D(Ty)) and let y € J. Then

(Wee, Tny(0) = (&, Weng (" ()
=5 <g (k) , ngoa™k(y (k))>
k
= (&), Tonpoa ™ (v (k)
k

= (T3 D&, Wy ()
= (W (T e nE ;)
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where we let 7 ® 1 have domain
Ce(z,D(T}) C 1>z, Hy) = H, ®1?(Z).
Hence W;C.(Z, D(Ty)) C D(T*), and
T*Wg|Ce(z, D(T)) = Wi (Tg ® 1).

Since polar(7p) is unitary, we know that T, ¢ has dense domain and
dense range. Thus 7 is preclosed and T i§_ one-to-one. Since T
already has dense range, it follows that polar(7) is unitary. O

THEOREM 3.3. Let {t;}j>; and {r;};>; be weight sequences in
(0, 1), let f and g be the corresponding weights on A, and let fo
and 8y be the restrictions of f and g, respectively, to ey(A X, Z)eg .

(1) If {t;} and {r;} have equivalent tails, then fo and g, are
quasi-equivalent.

(2) If {t;} and {r;} do not have equivalent tails, then fo and &
are disjoint.

Proof. (1): Let {t;}j>; ~ {rj-n}j>j+n- By symmetry we may as-
sume that n > 0. By altering {r;} up to ~, we may assume that
J1 = 0. By Lemma 3.2 we have that 7': nf(y) € nf~(J) = ng(a(y))
is preclosed, and that polar(7) is unitary. Let 7 = V|T| be the polar
decomposition of T, and let D = ¢y(A x,Z)ey . Note that a(D) C D,

and that Hf = nf( n:D), and H; = ng(D). It now follows that

Vag(x) = ng(a ()VIH, x € 'D. Let ¥V = VIH: Hy — Hy,.
Then 1, is an isometry. We then have

77 (x) = Vg g, (o (X)) Vo
= (75, (S1)" %) g, (x) (g, (S1)" Vo) -

Note that

R(¥p) = ng, (S7D (S7)") < g, (S7D)
= R (7, (S1)).
Hence 7; (S7)"Vo is an isometry. It follows that = 7 is unitarily
equivalent to the subrepresentation of g, obtained by restricting to

range (ngo ((Sl) ) ) = g, (D (Sf)”) =7z, (D) ng, ((S;‘)")
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We claim that the central support of this subrepresentation is 1. To
see this we will show that

75, (D) 7z, (DY 15, ((S1)") = Hy,

In order to demonstrate this we will need certain elements of
ng (D). Let G, be the set of words of length n in the elements
S1 and S,. Note that

(*) 2 ww* = 1.

weG,

For w, z € G, let
Tw,z: g, (x) € g, (D) — ng, (xwz").
Let x = Sp ---5p,S;

!

Sg,- Then x*x = (40, 40) ® --- ® (41 q1) -

Then
22" ® (Gnt1> dns1) ® - ® (g1, @) »
x4 X if/>nandw =258, ---S, ,
zwrx*xwz* = ) o n
zz*, ifl<nandw = Sqo"'S%SiM S,
0, otherwise.
Hence
go(zz") .
- go (x*x)
20 (@0, @) ® @@, g
8o (zw*x*xwz*) = go(zz*) .
- go (x*x) ,
80 ((90, 90)® - ® (a1, q1)) 8o (x"x)
0,

where the three lines in the bracket correspond to the three cases de-
fined in the previous bracket. Note that for / < n,

n
20 ((d0, 90)® -+ ® (g1, 4)) = [[ min(rm, 1 = 1) € Cy.
m=0
Thus
o (zw*x*xwz*) < g (22%) (Ca) ™" &0 (x*X).

Let y also be a product in the elements Sy, Sy, S}, S5. If x #y,
a simple calculation shows that gy(y*x) = 0. (This relies heavily on
the fact that g factors through the diagonal of A4j.) It now follows
easily that

o (zw x"xwz*) < go (22*) (Ca) ™" &0 (x"X) ,
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for x in the *-algebra generated by S; and S;, and hence by conti-
nuity, for all x in D. This implies that T,, , extends to a bounded
linear operator (also denoted Tv,.) in 7z (D) .

By (%), we have that

Y g, (W) Tr g, ((S)") = ng, (1).

weG,

Since 7 (1) is cyclic for 7z (D), the claim follows.
This implies that = 7 and 7wz are quasi-equivalent.
0

(2): Suppose that {¢;} and {r;} do not have equivalent tails. Then
f » goa” for all integers n. It follows from Theorem 2.3, and the
fact that these are faithful factor weights on A4, that f is disjoint
from goa” for all n. We now need two lemmas.

LEMMA 3.4. Let A be a C*-algebra, let a € Aut(A4), let [, g
be lower semi-continuous weights on A x, Z, and let f, & be the
canonical extensions of f, g to weights on Ax,Z. The following are
equivalent:

(a) f is disjoint from g,

(b) f is disjoint from goca" for all integers n.

Proof. (a) = (b): If (b) is false then there is an integer n, and a non-
zero operator T in L(H,, Hg), such that Tz (x) = ng(a”(x))T for
x € A. We will use the notations and results of the proof of Lemma
1.2. Let T=T®U;" on Hy®I*(Z). Then for x € 4,

Tftf()() =T (anoa—k (X)®5k)

kez
=Y Trsoa™ (x)® Us"s
kez
= anoa X)T®0_,Uy" = g(x)f
kez

It is clear that 7 commutes with U = 1 ® Uy. Therefore T inter-
twines 7; and 7g .

(b) = (a): If (b) holds, then %, =, nroa™" and &g = P, Agoa™"
are disjoint. Then there is a bounded sequence {x;} in A such that
7t r(x;) tends strongly to 1, and #g(x;) tends strongly to 0. Since
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(s, U) is unitarily equivalent to z 7 (by Lemma 1.2), and similarly
for g, it follows that n f~(xj) tends strongly to 1, and n3(x;) tends
strongly to 0. Hence f and g are disjoint. o

LEMMA 3.5. Let C be a C*-algebra, let e € C be a projection, and
let D=eCe. Let m and p be representations of C, and let ny and
po be the restrictions of m and p to D, acting on eH, and eH,,
respectively. If m and p are disjoint, then ny and po are disjoint.

Proof. There is a bounded sequence {x;} in C such that n(x;)
tends strongly to 1, and p(x;) tends strongly to 0. Then {ex;e} is
a bounded sequence in D, and my(exje) tends strongly to 1, and
po(ex;e) tends strongly to 0. o

End of proof of Theorem 3.3. By Lemma 3.4, f and # are disjoint.
Then by Lemma 3.5, fp and gy are disjoint. O

THEOREM 3.6. Let {t;};>0 and {rj}j>0 be weight sequences in
[0, 1]. Let f and g be the corresponding weights on A, and let f
and g, be the restrictions of f and g, respectively, to ey(A Xq Z)ey .

(1) If {t;} and {rj} have equivalent tails, then fo and gy are
quasi-equivalent.

(2) If {¢t;} and {r;} do not have equivalent tails, then fo and %
are disjoint.

Proof. (1) By Corollary 2.5, we may modify {¢;} and {r;} up to
equivalence so as to obtain weight sequences in (0, 1). In doing so
we modify f and g up to quasi-equivalence. It is easily seen that
f, & and fy, & are all modified up to quasi-equivalence. Part (1)
now follows from Theorem 3.3(1).

(2) By Corollary 2.5, f and goa” are disjoint for all n. Part (2)
now follows from Lemmas 3.4 and 3.5. O

4. Pure states on O,: a theorem of Archbold, Lazar, Tsui, and
Wright. We now apply the results of the previous sections to give an
alternative proof of a result of Archbold, Lazar, Tsui, and Wright ([2],
Proposition 2.10). We will consider weight sequences {¢;};>; Wwith
t; =0 or 1 for all j. It is clear that two such weight sequences are
equivalent under ~ if and only if they are eventually equal, and have
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equivalent tails if and only if they have equal tails. (We say that {z;}
and {r;} have equal tails if t; =r;_, for some n and all sufficiently
large j.) Given such a weight sequence {¢;}, with corresponding
weight f, we construct a pure state on 4, denoted f’, as follows.
Let

A = { Aj, = Jos

e, J<Jo-

We construct a positive functional on |J 4, by means of {A’} instead
of {A;}. Then the resulting functional is continuous. We let f’
denote its extension to A, which is always a pure state. We remark
that since

f4o=fl40=fo,
and i
f'leo(A XoZ)eg=foE|ey(Ax.Z)eg= fooFy,

the functionals on (O, obtained from f and f’ are equal. We re-
mark also that ~ is equivalent to quasi-equivalence for the primed
functionals, as in §2.

LEMMA 4.1. Let {t;};>0 and {r;};>o be weight sequences with t;,
ri=0or 1 forall j. Let f, g be the corresponding weights on A,
and let fy, 2o be the resulting states on O,. Then

(1) fy is pure if and only if {t i} is not eventually repeating.

(2) fo and g are unitarily equivalent if {t;} and {r;} have equal
tails, and are disjoint otherwise.

Froof. It is clear that {¢;} ~ {t;_,} for some non-zero # if and only
if {t;} is eventually repeating. Suppose that {{;} is not eventually
repeating. Then Corollary 2.5 implies that f” and f"oa” are disjoint
for n # 0. Now by Lemma 1.2 we conclude that f ' is a pure state
of A x,Z, and hence that f; = f'leo(A Xq Z)ey is a pure state of O,.
The proof of the other implication in (1) will follow from the proof
of (2).

We know by Theorem 3.6 that fo and g, are quasi-equivalent or
disjoint, depending on whether {{;} and {r;} have or do not have
equal tails. From what we have already shown it follows that if {¢;}
and {r;} are not eventually repeating then fo and g, are pure, and
hence quasi-equivalent if and only if unitarily equivalent. (We men-
tion that what we have done so far already proves Theorem 4.2 below.)
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We claim now that if {#;} is eventually repeating, then 7 7 (AxaZ) is
non-trivial and abelian. Since 7 7 (ep) has central cover 1, it follows
that = f,(Oz)’ is non-trivial and abelian. It then follows that repeat-
ing weight sequences can never yield pure states on (», proving the
reverse implication in (1). Moreover two repeating weight sequences
with equal tails yield quasi-equivalent states on (, with multiplicity-
free GNS representations, and hence are unitarily equivalent. Thus
the lemma will follow from the claim.

So assume that {f;} eventually repeats with period »n. Then the
weight sequences {¢;} and {¢;_,} differ in only finitely many places.
It follows that there is a unitary element W} in A so that

fload" = flo Ad(W).
An easy calculation shows that the map
np (x) €np (A) = np (" (x) W)
defines a unitary operator W on H +, and that
npoa™" =Ad(W)om,.
Letting 7 = Y, 7 0o~ ® 6 acting on H, ® I(Z), we have that

n—1

n=> > AdW*) om0 ®Gkpny;.
j=0kez
Letting W = W® 1, U=1®Up, and M = n;(4 xo 2)", and

using Lemma 1.2, it is clear that WU" € M'. We will finish the
proof by showing that M’ is generated as a von Neumann algebra by
wur. By Lemma 1.2 we may work interchangeably with M or with
(m(4)u{U})".

Since n is the period of repetition in {¢;}, it is easily seen that

71'(A)"= {ZTk®5k: TkGL(Hf) s Tyyn = WTkW*}.

kez

Let operators on Hy ® [?(z) have matrix decompositions along the
basis {d;} of [>(Z). Then T = (T;;) isin n(A4)" if and only if

0, i#7,
T;; =
/ WaT,W=4, i=j=an+b, with0<b<n.
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A routine calculation now shows that S = (S;;) is in #n(4)" if and
only if
0, i#j (mod n),
Sij = G-in, = j
ApWi=nin =i = j (mod n),
where the A;; are constants. Additionally, S commutes with U if
and only if

_._{o, i#j (mod n),
YU A= jywudin i = j (mod n),

where A(p) is the (necessarily unique) value of {Ax pnik: k € Z}.
Thus S € M’ if and only if there is a function A: Z — C such that

S=3 i(p)(WU™P. O
p

THEOREM 4.2 ([2, Proposition 2.10]). There are uncountably many
inequivalent pure states of O, which extend the trace on Choi’s alge-
bra. O

5. Invariants for diagonal product states on O,. We now indicate
how the techniques of [11] can be extended to give information about
the modular spectrum and period of the factors obtained from weight
sequences.

DEFINITION. Let {¢;} be a weight sequence. If there is a non-zero
k for which {¢;} ~ {t;_x}, we define the period of {¢;} to be

per{t;} =inf{k > 0: {t;} ~ {t;_x}}.

If there is no such non-zero k, we say that the period of {#;} is
infinite.

THEOREM 5.1. Let {t;} be a weight sequence such that ) tj(1-t;) =
o, and per{t;} < co. Let f be the weight on A corresponding to
{t;}, and fo the state on O, constructed from f. Let M r=mns(A)",
and My=n i (®)". Then My is a type 11 factor, and

S (M) > S (My) ,
T(Mo) - T(Mf).

(S and T are modular spectrum and modular period, respectively.
These invariants were defined in [5). See also [11].)
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Proof. By the results of §§2 and 3 we may assume that 0 < ¢; < 1
for all j. Let n = per{t;}. Then there is a unitary operator W on
H; such that

nroa” =Ad(W)ony.

Let m: 4 — L(H; ® C") be given by

n—1

n(x)=)Y 7moal ®6;,
=0

where {J;: 0 < j < n} is an orthonormal basis for C", and let W be
the unitary operator on H; ® C" whose matrix relative to {d;} is

0 1

1
w 0

Then noa = Ad(W) om. Therefore a extends to an automorphism
of n(A4)". Let ¢ be the faithful normal semi-finite weight on A
defined in [11], (¢(x) = sup,(xns(en), nslen)), x € M), and let
®=¢p®1,. Then ® is a faithful normal semi-finite weight on 7(A4)".
Now the proofs in [11] can be adapted in a fairly straightforward
manner to prove the theorem. n|
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