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SOME COEFFICIENT PROBLEMS AND APPLICATIONS

Y. J. LEUNG AND G. SCHOBER

We combine Bombieri’s method of second variation and Schiffer’s
variation by truncation to consider coefficient conjectures on log f/”,
logf/z,and logzf'/f where f is a normalized univalent analytic
function in |z| > 1. Related results apply to the geometric properties
of extremal functions for more general linear problems. Another by-
product is a simplified approach to the geometric structure of solutions
to the N th diameter problem.

1. Introduction. Let X be the class of one-to-one analytic functions
f(2)=z+ 32 obrz % in A= {z:|z| > 1}. The function

Kn(z)=z(14+ 27" =z 4 %zl”” + -

belongs to £ and maps A onto the complement on an n-star y,. For
k =2 and k =3 itis true that |b,_;| < 2/k holds for the full class
X, and for a time it was hoped that this estimate might persist for all
k . However, Bazilevich [1] disproved this conjecture for even integers
k > 4, and it is now known [3, 14] to be false for all integers k > 4.

In this article we shall consider similar conjectures for the coefhi-
cients of

) f(Z)_oo —k
log f'(z chz , —Z—_Z::dkz , and

log Zf, iez

In the full class X the coefficients of d; and e, are unbounded. For
that reason we shall consider these coefficients only for the compact
subclasses X' consisting of functions in X that never vanish and X,
consisting of functions in X with by = 0. Since d; = —e; = by,
the bounds |d,| = |e1| = |bo| £ 2 are sharp for X', and these coeffi-
cients vanish for X,;. Thus we shall restrict attention from now on to
coeflicients with subscript k£ > 2.
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72 Y. J. LEUNG AND G. SCHOBER

For n > 2, the functions K, belong to all three classes X, X', and
o . Since

—2n-D1 Ku(z) 21

, - PECErY . e e
log K, (z) = p” e , log ~ e + , and
zKi(z) =2
log K.(z) ~ z ’

one might conjecture that

(1) |ck;5%l—) forall f€X andall k > 2,
(2) ]deS% forall feXY UXpandall k >2,
(3) lex| <2, forall feX UZyandall k > 2.

Based on a result of Jenkins, we shall see in §4 that these bounds are
correct if one requires the first half of the coefficients to vanish.

Since ¢; = —by, and c¢3 = —2b,, it follows that conjecture (1) is
true without restriction for k = 2 and k = 3. However, in §4 we
shall see that it fails for all kK > 4. For f €X' it is a result of Fekete
and Szego that conjectures (2) and (3) fail already for kK = 2. In §4 we
shall show that they fail also for k > 2. For f € X; the conjectures
(2) and (3) are true for k =2 and k =3 since d, = by, ey = —-2by,
dy; = by, and e3 = —3b,. In §4 we shall show that they fail for all
k>4.

General results of a similar nature are obtained in §§2 and 3 for
functions defined in the complement of the n-star y,. Our method
of proof uses Loewner’s differential equation. Variations of the iden-
tity are constructed up to second order terms in much the same way
as Bombieri varied from the Koebe function in his work [2] on the
local Bieberbach conjecture. A similar variation was used also by the
authors [9, 10] to establish some geometric properties of solutions to
linear extremal problems for X.

Applications are given in §4 to the class £ by making a change
of variables. Although the results are phrased for n-fold symmetric
functions, i.e., functions satisfying f(z) = e~2%/" f(e2mi/n z)  they are
new for 1-fold symmetric functions, which are unrestricted. More gen-
eral linear problems are considered in §5. We show that the extremal
functions for certain linear problems possess strong geometric prop-
erties. Finally, as a further application, in §6 we describe geometric
properties of solutions to the N th diameter problem.
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2. Symmetric variations from the identity in C\y,. In this section
we shall prove a number of lemmas, which may be of some indepen-
dent interest, concerning certain coefficients of functions near to the
identity mapping in C\y,. This will be accomplished by constructing
variations up to second order using Loewner’s differential equation.
The calculations are somewhat technical. Ultimately, they involve ju-
dicious choices for the parameter function in Loewner’s equation and
asymptotic considerations. Most of the principal results in §§4 to 6
will follow directly from the lemmas of this section.

We shall denote also by K,(z) = 1(1 + z")>/" the mapping from
the punctured unit disk D\{0} onto the complement of the n-star y,.
Its inverse function

Sp(w) = 47Vl — /1 — dw—rP",

where V1 = 1, maps C\y, onto D\{0}. We shall use the Loewner

equation

of l+xz\of

A - >

a1 Z(l—lcz)az’ 120, zeD,
where x = x(¢) is a continuous complex-valued function on [0, oo)
with |k(f)] = 1. This equation has a solution f(z,¢) which is

one-to-one and analytic in z for each ¢ and is normalized so that
e 'f(z,t) = z+ O(z%) as z — 0 [11, Sect. 6.1]. Define a nonva-
nishing n-fold symmetric function F(-, ¢) in the complement of y,
by the relation F(w, t) = f(S,(w)", t)~1/* . We suppress the depen-
dence of F on n. Then F satisfies the differential equation

OF _ Sy(1+xSh) 8F

OF _ Su(1+kS;) OF N
@) 8t nS(1—-«xSHow’ w &€ C\yn, 120,

and e/"F(w,t) =w+ O(w'™") as w — co.

We choose k() = e/¢0() | where ¢ is a small real parameter and 8 is
a bounded continuous function of ¢. Then k = 1+ie6—}e26%+0(e?)
and the differential equation (4) is of the form

OF S, [1+S”
) Ff‘nsg,[

28"
s T

S7(1+ 87 oF
_p202%n n 3 Y5
20—t + 0| 5

as ¢ — 0. Now F depends also on ¢, and we may expand

(6) F(w,t,e)=¢(w,t)+eV(w,t)+eQw, t)+ 0.
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For ¢ = 0 the differential equation (5) becomes

0¢ _ Sa(1+S7) 8¢

ot~ nS,(1-SHow’
The function S, satisfies both the differential equation S, =
SZ(S7 4 1)(n=2/n /(S* — 1) and the identity

1
w = 'S,—(l +S,’:)2/n.

n
It follows that

0¢p —w d¢ t/n _
3= 7w ow o0 W, n=w.
Thus the functions e’/"F(-, t, ) are normalized variations of the
identity function in C\y,, as desired.
A comparison of the coefficients of ¢ and &2 in (5) leads to the
differential equations

av S, [1+S8rav 28" 9¢
W:m[l—sga_w (1—S,',1)2'aﬂ]
_—wdV  2ie”!"guwsS?t
T n dw  n(1-S2)

+i6

and
oQ _ Sn [1 +S,’,’Q+ i 28, oV _02S,’,’(1 +S,’;)%}
ot  nS, |1-Srow (1-8H206w (1-S81)3 ow
-—wdQ  2i0wS; 8V N e~ mglwS?
ndw n(l-SMow n(l-SI)?
for the first and second variations.
It will be convenient to use the notation

(2k)!

Pr = (k!)2

(po = 1) and remember that these binomial coefficients are positive
integers. By writing

Sp(w)* = %w" [1 - ﬁ]z

where R(w)

1 — —kn
== pw",
v1i—-4w—n =0
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the differential equations become

BV oV —t/n l—n

6t = waw 2ie ORw ™",

aQ aQ ; l—naV —t/ng2p2,,1-n
at = waw 2i0 Rw 50 +e 6“R“w

As w — oo, the difference F(w, ¢, €) — ¢(w, t) is bounded. Also
recall that F is n-fold symmetric. Therefore the expansions of V'
and Q around infinity are of the form

V(w, t)—ZV(t)w =" and Q(w, t=i Qi(tHw'=/",

Jj=l1
It follows from the system of differential equations that
nV/ = (jn—1)V; - 2ip;_,6e~"/" and
j-1

nQ=(jn—1)Q; +2i0> (kn—1)p;_j_ Vi + 47'6%7/".
k=1

If w is restricted to a large circle, then e’F(w, t, €) is uniformly
bounded. Therefore the coefficients V;(¢) and Q;(¢) vanish at ¢ = oo
Thus this system can be integrated to yield

(7) V;(0) = 2"-’;11:—‘/ e~ /'9(t)dt and
0
j=1 oo
0,0 = - X [T eigya
noJo

j-1
4(kn -1 o k—
+Z ( )Dk— 1Dj~k—-1

n2

/ / ~ks=(-k1g(5)0(t) ds dt.

In the expansion of F(w, 0, &) = w+3Y72; B;(0, &)w'~/", the coeffi-
cients are of the form B;(0, &) = ¢¥;(0)+&2Q;(0)+ O(e3) . Evidently,
Vi(0) is purely imaginary and Q;(0) is real, and so ReB;(0, ¢) =
¢2Q;(0) + O(e®). For each j > 3, we shall find a function 6 such
that Q;(0) > 0. This will show the existence of a function F(-, 0, ¢),
nearby the identity function, with Re B;(0, &) positive. This is the
purpose of Lemma 1.

If n=1 and j > 4, substitute 0(¢z) = e* for a <2 into (7), and
discard from the sum all terms except the one for which k£ = 2. Then
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we have i1 g
-4/ Dj-3

QO 255 GG -2
If o is sufficiently close to 2, it is clear that the second term domi-
nates and leads to a positive Q;(0). Similarly, if n > 2 and j > 2,
substitute 6(¢) = e*’ for a < 1 into (7), and discard from the sum
of all terms except the one for which k = 1. Then we have

—4/-1 4(n—1)p;
G2 555 W —a)( - 20)

If « is sufficiently close to 1, then the second term dominates and
leads to a positive Q;(0).

We have reached our desired conclusions, but the functions 6 that
were chosen are not bounded. However, the truncations 60y(¢) =
min{N, 6(t)} are bounded, and the dominated convergence theorem
implies that each Q;(0) is positive for some 6y . Thus we have proved
the following lemma.

LEMMA 1. Eitherif n=1 and j>4 orif n>2 and j> 2, then
there exists a nonvanishing univalent analytic function F in the com-
plement of the n-star y, with expansion F(w)=w + 3.3, Byw!~"
in a neighborhood of oo such that Re{B;} > 0.

The special case n = 1 and j > 4 of this lemma was proved in [10].
It is our purpose in this article to study certain logarithmic coefficients.

LEMMA 2. Eitherif n=1 and j>4 orif n>2 and j> 2, then
there exists a univalent analytic function F in the complement of the
n-star y, with expansions

[e o] o0
Fw)=w+) Bew'™* and logF'(w)=>_ Cew™"

k=1 k=1
in a neighborhood of oo such that Re{C;} < 0.

Proof. We shall use the functions F(w, ¢, &) constructed above as
solutions of the differential equation (5). Since ¢(w, t) = e /"w,
the expansion (6) implies that the function log F'(w, ¢, €) satisfies

—t oV
log F' _ t/n
(8) logF(w,t, €)= - + ee o

2
el [@ e (209 s o

ow 2 ow
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as ¢ — 0. Thus the coefficients of the expansion

log F'(w, t, €) ZC (¢, w™"

near infinity satisfy

Cj(0, &) = &(1 — jn)V;(0)

(1-jn)Q;(0)

}—:l—kn (1= jn+ kn)Vi(0)V;_i (0)

+ 0(&3).

As before, the coefficient of ¢ is purely imaginary, and so it is sufficient
to find a function @ so that the coefficient of &2 is negative. After
substitution, this expression becomes

R e

j-1
2(kn — 1)pg_1Pj—k-
+2 3

k=1

« [( jn—kn—1) /0 ” /0 ” e—ks=ittkig(5)6(s) ds dt
_2(jn—1) /0 ” /t ” emks=it+kig(5)6(1) ds dz] .

If n=1 and j > 4, substitute 6(¢) = e* for o < 2 into (9). Then
(9) becomes

Y71 - 1)
Jj— 2«
j-1

2k = Dpe_ipji—1 [(J—k—=1) 2(j—1)
> (k—a)J [(j—k—a)‘(j—za)]'

The sum of the terms in (10) corresponding to the indices k = 2 and
k=j-21is

(10)

k=2

—8p; 3{2G -4 +2-a)[j(G - 5)+ 8]}
2-a)(j-2-a)(J—2a) '
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If j > 5, they are the only unbounded terms in (10) as « increases
to 2, and so (10) tends to —oo. If j = 4, then the term with index
k = 2 reduces to ~16/(2 — a)?. It dominates the others and tends
to —oo as a approaches 2. In any case the expression (10) becomes
negative as « increases to 2.

Similarly, if » > 2 and j > 2, substitute 6(¢) = e¢* for o < 1 into
(9). Then (9) becomes

4-1(jn-1)
n(j - 2a)

j—1 . .
+’Z 2(kn = Dpg_1pjk-1 [jn—kn—1 2(jn—1)

ni(k —a) j—k—-a Jj—2a

(11)

k=1
The sum of the terms correspondingto k=1 and k=, —1 is

—4pj AU -2)(n -1+ (1 -a)[(J-2)Un—-1)+2(n—- 1)}
n(l1-a)(j-1-a)(j - 2a) '

If j > 3, these terms are the only unbounded ones in (11) as «
increases to 1, and so (11) tends to —oo. If j =2, the sum in (11)
reduces to —2(n —1)/n(1 —a)?. It dominates and tends to —co as «
approaches 1. In both cases the expression (11) becomes negative as
a increases to 1.

All that is needed to complete the proof is to truncate these func-
tions @, as before, since they were originally assumed to be bounded.

LEMMA 3. If n > 1 and j > 2, then there exists a nonvanishing
univalent analytic function F in the complement of the n-star y, with
expansions

Flw)=w + f:B wi=*" and log T _ ip w-kn

k w k
k=1 k=1

in a neighborhood of oo such that Re{D;} > 0.

Proof. Only a few steps change from the proof of Lemma 2. Cor-
responding to (8) we have

logw — —l t/n_/l_UV_

— t+¢ge
w n

2
+ &2 [et/n% _ _;_eZI/n (g) ] + 0(83)
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as ¢ — 0. Thus the coefficients of the expansion

longtg ZDtawf”

near infinity satisfy

D;(0, &) = £¥;(0) + ¢ | Q;(0) - ZVk(o +0().

The coefficient of & is purely imaginary, and it is sufficient to find a
function 6 so that the coefficient of &2 is positive. The coefficient of
g2 equals

(12) —47

/ e=I10(1)2 dt
0

)
+Z Dy — lpjkl

[/ / e—ks=it+kig()6(1) ds dt
+2(kn — 1) /0 /t e~ks—ft+kta(s)e(x)dsdt].

Substitute 6(¢) = e for a < 1 into (12). Then (12) becomes

—4J-1 §2pk_1pj_k_1 [ 1 2(k}'l— 1)]
n(j — 2a) nik—-a) |[j—k-a j=2a |°

The sum of the terms in (13) corresponding to indices kK = 1 and
k=j—11is

(13)

4p;j—ol(j —2) + 2(1 — a)j]

n(l-a)j-1-a)(j —2a)
If j > 3, these are the only unbounded terms in (13) as « increases to
1, and so (13) becomes positive. If j = 2, the sum in (13) reduces to
2/n(1 — a?), which dominates as o approaches 1, and so (13) again
becomes positive. One completes the proof as before.

If n > 1, the function F of Lemma 3 has the asymptotics F(w) =

w+o0(1) as w — oo. We shall need such a function also when n=1.

LEMMA 4. If j > 4, then there exists a univalent analytic function
F in the complement of the 1-star y, with expansions

00
= Z Dkw‘k
k=2

= 1-k F(w
F(w)=w+ ZBkw and log
k=2
in a neighborhood of oo such that Re{D;} > 0.
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Proof. Fix n =1 and replace F(w, ¢, €) by F(w, t, e)—-By(t, ¢).
Then the coefficients of
F(w,0,¢)—-B,(0,¢)

log
w
V(w, 0) - ¥(0)
- w
_ _ 2
e [Q(w, 0-00 1 (V(w,ogu V1(0>) ] + 0
= iDj(O, ew™/
j=2
near infinity satisfy
Jj—2
D;(0, &) = eV;(0) + &7 !Q,-(O) —-;- Ve (0)V; (0)] + 0(&)
k=2

as ¢ — 0. The sum is omitted for j =2 and j = 3. As before, it is
sufficient to find a function 6 so that the coefficient of &2 is positive.
Restrict j > 4 and choose 6(t) = e* for a < 2. Then the coefficient
of &2 becomes

—41 ro22 2Dk 1Pj—k-1 I3 4(k — V)p_1Dj—k-1
14 = + S .
(14) Z(k——oz Jj—k—a) kZ=2 (k—a)(j —2a)

If j > 5, then the only unbounded terms in (14) as o increases to 2
correspond to indices kK = 2 and k = j — 2 from the first sum and
k = 2 in the second sum. The sum of these terms is
8pj-3[2(j —4) + 3(2 - a)]
2-a)(j-2-0a)(J~2a)’
and so (14) becomes positive as a increases to 2. If j = 4, the sum
of the terms corresponding to k = 2 in (14) is 16/(2 — a)?, which
dominates as a approaches 2, and so (14) again becomes positive.
One completes the proof as before.

LEMMA 5. If n > 1 and j > 2, then there exists a nonvanishing
univalent analytic function F in the complement of the n-star y, with
expansions

o0 !
Fw)=w+) Buw'™* and log —-—= F (w) ZE wkn
k=1
in a neighborhood of oo such that Re{E;} < 0.
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Proof. Since

wF'(w, t,é)
F(w,t,e)

F(w,t,e)

log :logF'(w,z,a)—log—w—,

we may combine several steps in the proofs of Lemmas 2 and 3. It is
sufficient to find a function 6 so that the difference of (9) and (12) is
negative. This difference is

(15) 41'-11/ e=I10(1)? dt
0

i1
+ jz: 2Pk 1Pj—k-1
k=1 "

x [( jkn - j—k2n) /0 ” /0 " eks=itktg()0(1) ds di
—2j(kn — 1)/0oo /loo e~ ksittklg(5)0(1) ds dt] .

Substitute 6(¢) = e for a <1 into (15). It becomes

]_1 . j—l 2 . . _ . _ 2 . _
(16) 47 3 Pi—1Pj-k-1 [jkn = j—k°n _ 2j(kn 1) ’
Jj—2a — nk —a) j—k—-a J—2a
and the sum of the terms corresponding to k =1 and k= —1 can
be written as

—4pj-2{( = 2)+ (1 = )[J(j = 2) + 21}
(I-a)(-1-0a)(-2a)

If j > 3, these are the only unbounded terms in (16) as « increases
to 1, and so (16) tends to —oo. If j =2, the sum in (16) reduces to
—2/(1 — @)?® and again dominates, tending to —oco as a approaches
1. The proof concludes by approximating 6 as before.

LEMMA 6. If j > 4, then there exists a univalent analytic function
F in the complement of the 1-star y, with expansions

F ZEkw

in a neighborhood of oo such that Re{E;} < 0.

o
Fw)=w+) Buw'™* and log &
k=2
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Proof. Fix n =1 and replace F(w, t,¢) by F(w, t, e)—B(t, €).
Since

o wF'(w, 0, ¢€)
EFw, 0,2 - B0, ¢

F(w’ Oa 8)_B1(Os 8)

=logF'(w, 0, &) —log ”

we may combine many steps in the proofs of Lemmas 2 and 4. Choose
0(t) = e for a < 2. Then it is sufficient to find a so that the
difference of (10) and (14) is negative. This difference is

4-1j JZZ 2(jk = j = K*)Dr—1Djk-1

(17) ]-—2a (k—a)(j—k—a)

N

-1
4j(k = 1)px—1Dj—k-1

—a)(J - 2a)

k=2 (

If j > 5, then the only unbounded terms in (17) as a — 2 correspond
to k =2 and k = j—2 from the first sum and k = 2 from the second
sum. The sum of these terms is

—8pj 340U -4 - 2-)(J - 8)]
2-a)j-2-0)(~202)

and so (17) becomes negative as « increases to 2. If j = 4, the
sum of the terms in (17) corresponding to k = 2 is —32/(2 — a)?,
which dominates as a@ — 2, and so (17) again becomes negative. One
completes the proof as before.

3. Coefficient inequalities under constraints. In [4, 5] J. A. Jenkins
gave a remarkable extension of a theorem of Teichmiiller.

Special Case of Jenkins’ General Coefficient Theorem. Let & be a
univalent analytic function in the complement of the n-star y,, n > 2,
with expansion F (w) = w + 35> Bw'~* in a neighborhood of .
If B, =0 for 2<k <n/2, then Re{%,} <0.

Our Lemma 1 illustrates that his result is in a sense best possible.
Jenkins’ theorem leads to the following complement to our Lemmas
2 to 6.

Corollary to Jenkins’ General Coefficient Theorem. Let & be a
univalent analytic function in the complement of the n-star y,, n > 2,
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with expansions

Fw)=w+Yy Fw'*, log.7'(w Z?@w ,
k=1
w)zzgkw'k, and log X2 ? Zépkw

in a neighborhood of oo .
(a) If 6. =0 for k <n/2, then Re{%,} > 0.
(b) If 24, =0 for k <n/2, then Re{Z,} <0.
(c)If & =0 for k <n/2, then Re{&,} > 0.

Proof. Let v =[n/2]+ 1. Since

F'(w) = exp {i %w‘k}

k=v
=1+Zw7"+ - +Zw "+ 0w ")

as w — oo, it follows from integration that

F(w)=w+ B, — - = _w!Tr L O(w™").

In a similar fashion, we obtain
FWw)=w+B +D,w™ +-- + Zw! ™" + O(w™")
and
gf 1—-v n_ l—-n —n
9(w)=w+@1—7w - = —w "+ O(w™").

Thus (a), (b), and (c) follow from Jenkins’ theorem.

4. Application to coefficient conjectures. In this section we apply
Lemmas 2 to 6 in order to provide counterexamples to the conjectures
(1) to (3) for those indices promised in §1. The results are just as
easily obtained for functions with symmetries, but on first reading
one may specialize to the 1-fold symmetric case, which is no symmetry
assumption at all. At the end of this section we revive inequalities (1)
to (3) under constraints.

First, we shall apply Lemma 1 to the coefficient problem for X. Ex-
cept for the existence of symmetric functions, this result was obtained
in [3] and in [14] by means of second variations of a different form.
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THEOREM 1. Assume that j, k, n are positive integers such that
k>4, k= jn, and k > n. Then there exists an n-fold symmetric
function f € X such that the coefficient by_, in the expansion f(z)=
Z+Y o bmz™™ satisfies |by_,| > 2/k. In particular, for each k > 4,
there exists a function in X for which |b,_;| > 2/k.

Proof. With j, k, n as in the hypothesis, we choose F from the
conclusion of Lemma 1. Then f = F o K; is n-fold symmetric and
has coefficient b,_; = B; + 2/k where ReB; > 0. This completes
the proof. Since j = k > 4 and n = 1 is always an admissible
choice of integers, a 1-fold symmetric function always exists, but 1-
fold symmetry is no symmetry restriction at all.

THEOREM 2. Assume that j, k, n are positive integers such that
k>4, k= jn, and k > n. Then there exists an n-fold symmetric
Sfunction f € I such that the coefficient c;. in the expansion log f'(z) =

ey Cmz~™ satisfies |cx| > (2(k — 1))/k. In particular, for each
k > 4, there exists a function in X for which |c;| > 2(k - 1)/k.

Proof. With j, k, n as in the hypothesis, we choose F from the
conclusion of Lemma 2. Then f = F o K; is n-fold symmetric and
log f’ = log(F’ o K) + log K, has coefficient ¢, = C; — (2(k — 1)/k)
where Re C; < 0. This completes the proof.

THEOREM 3. Assume that j, k, n are positive integers such that
k>2, k= jn, and k > n. Then there exists an n-fold symmet-
ric function f € X' such that the coefficient d) in the expansion
log f(z)/z = Y5y Amz™™ satisfies |di| > 2/k. In particular, for
each k > 2, there exists a function in X' for which \di| > 2/k.

In addition, for each k > 4, there exists a function [ € Xy for which
|dil > 2/k.

Proof. With j, k, n as in the hypothesis, we choose F from the
conclusion of Lemma 3. Then f = FoKj is nonvanishing and n-fold
symmetric, and the function

f

z

FOKk K

log = = log X +log7k
k

has coefficient dy = D;j+2/k where ReD; > 0. To construct f € X,
we replace Lemma 3 by Lemma 4. This completes the proof.
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THEOREM 4. Assume that j, k, n are positive integers such that
k >2, k = jn, and k > n. Then there exists an n-fold sym-
metric function f € X' such that the coefficient d) in the expansion
logzf'(z)/f(z) = Y joe1emz™™ satisfies |e,| > 2. In particular, for
each k > 2, there exists a function in X' for which |e;| > 2.

In addition, for each k > 4, there exists a function f € Xy for which
|€k| > 2.

Proof. Choose F from the conclusion of Lemma 5. Then f =
F o K} is nonvanishing and n-fold symmetric, and the function
' K (F' o Ky) zK}
log f log FO—IQC + log —E
has coefficient ¢, = E; —2 where ReE; < 0. To construct f € X,
replace Lemma 5 by Lemma 6. This completes the proof.

We conclude this section by verifying inequalities (1) to (3) under
constraints.

THEOREM 5. Let [ belong to the class £ and have expansions

log f'(z E @ =idkz_k, and
Zf, iekz

in a neighborhood of co. Assume that n > 2.
(@) If ¢, =0 for k <n/2, then |c,| <2(n—-1)/n.
(b) If di, =0 for k <n/2, then |d,| <2/n.
(c)If e, =0 for k <n/2, then |e,| < 2.

Proof. Apply the corollary to Jenkins’ general coefficient theorem
found in §3 to the composition & = fo K, !. We obtain

Re{c,,}z—L”n‘—l), Re{d,,}g%, and Re{e,} > —2.

The inequalities as stated follow by rotation.

5. General linear problems. Let L denote a continuous linear func-
tional on the space of analytic functions in A with the topology of
locally uniform convergence. Assume that L is not constant on X
and that L(1) = 0. Then there exists a function f in X for which
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Re{L} is a maximum. One of the most important tools for solving
such extremal problems is Schiffer’s boundary variation and funda-
mental lemma [11]. It implies that the omitted set I' = C\f(A) of
an extremal function f consists of finitely many analytic arcs that lie
on trajectories of the quadratic differential L(1/(f — w))dw?. Tra-
jectories of a quadratic differential Q(w)dw? are arcs w = w(t) on
which Q(w(8))[w'(2)]?> > 0, together with their endpoints. As a func-
tion of w, the expression L(1/(f —w)) has an analytic extension to
a neighborhood of I'. The analytic arcs of the omitted set I" must
be connected, and the points of nonanalyticity can arise only from
zeros of L(1/(f — w)). Very recently, the authors proved that any
zeros of L(1/(f —w)) on I' must be simple zeros. This has the re-
markable geometric consequence that the omitted set I" can fork in
at most three equi-angular directions. See [10] for details and further
information.

The coefficient functional is an example of a continuous linear
functional. So, for example, if the function K, were to provide
the maximum of Re{b,_;} over the class X, then the n-star y,
would have to lie on trajectories of the quadratic differential
L(1/(K, — w))dw?, where the functional L picks out the (n —1)st
coefficient of 1/(K,(z) — w) as a function of z near infinity. Since
L(1/(K, —w)) = w""2, this quadratic differential is w”"~?dw?, and
its trajectories from the origin consist of # equally spaced rays. In
fact, y, does lie on these trajectories for all n. Thus K, satisfies
Schiffer’s differential equation for the (n—1) st coefficient problem for
every n, but is a true extremal function only for » =2 and n = 3.
Unfortunately, Schiffer’s boundary variation does not distinguish the
true extremals from “false pretenders”. Other tools are needed, as in
the proof of Lemma 1. It shows in some sense that Re{b,_;} has a
saddle point at K, for n > 4.

The purpose of this section is to carry out a similar program for
linear problems on the expressions log /', log f/z,and logzf'/f. If
L is a continuous linear functional, then by compactness the expres-
sions Re{L(log f")} for f € X, Re{L(logf/z) for ¥ or f € Xy},
and Re{L(logzf"/f)} all assume a maximum. The following theo-
rems describe properties of extremal functions for these problems. Of
course, the coefficient problems of §4 are of this type.

THEOREM 6. Let L be a continuous linear functional, and assume
that Re{L(log f")} is not constant as f varies over X. If f is an
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extremal function for the problem
max Re{L(log /")},
SEX

then the omitted set T" of [ consists of finitely many analytic arcs
lying on trajectories of the quadratic differential —L(1/(f —w)?)dw?.
Furthermore, L(1/(f —w)?) can have only simple zeros on T ; hence
I" can fork in at most three equi-angular directions.

Proof. Let f be an extremal function for the problem

max Re{L(log f")}.

We subject f to boundary variations (cf. [11]) of the form

(18) [ =f+ap*/(f—w)+o(p?),
withweT, |a|=1, and p >0,

which operate within the family £. Under these variations the change
of the functional is of the form

Re{L(log /*')} = Re{L(log /")}
+Re{ap’L(=1/(f —w)*)} + o(p?)

as p — 0. Since the functional L can be represented by a measure
compactly supported in A, the expression L(1/(f—w)?), defined ini-
tially for w € I', extends to an analytic function in a neighborhood of
I". It cannot vanish identically for then Re{L(log f')} would be con-
stant on X. Now it follows from Schiffer’s fundamental lemma [11]
that I' consists of analytic arcs lying on trajectories of the quadratic
differential —~L(1/(f —w)?)dw?. Since L(1/(f—w)?) can have only
finitely many zeros on I'", the omitted set I" can consist of only finitely
many analytic arcs joined at these zeros. Next, we show that these ze-
ros can only be simple ones.

After a translation, we may assume that w = 0 is a zero on I' of
order k for the function L(1/(f —w)?). Thatis, L(f~/) = 0 for
j=2,3,....,k+1 and L(f~%2) # 0. Furthermore, after rotating
the functional and the function, we may assume also that L(fk~2) <
0 and that one of the omitted arcs emanates from the origin in the
positive horizontal direction. Delete all the arcs of I" except for that
connected part emanating from the origin in the positive horizontal
direction that lies inside the disk |w| < J, for sufficient small positive
0 . Designate this subarc by I's, and let F;5 be the conformal map
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from A onto the complement of I'; with an expansion of the form
Fs5(z) = pz + O(1) around infinity and p > 0. Then F; and the
original f are related by a Schwarz function w: A — A satisfying Fjo0
w=f and w'(c0) =1/p. As § — 0, we have p — 0. The function
fs = (1/p)F5 belongs to £ and maps A onto the complement of an
arc ¢s which is obtained from dilating I'; by the factor 1/p. Since
I's is an analytic arc emanating from w = 0 in the positive horizontal
direction, the dilation ¢5; approaches the I-star ¢ = [0, 4] as 6 — 0.

Let F be analytic and univalent in the complement of ¢; and have
expansions of the form F(w) =w+3 72, B;(d)w'™/ and log F'(w) =
25 C /(6)w™/ around infinity. Now pF o f(; o w belongs to X and
SO Re{L(log[(pF o fsow)']} <Re{L(logf")}. Since

log[(pF o f5 o w)']1 = log F'(f5 o w) +log[(p f5 0 ®)']
= log f* + log F’ (%f) ,

it follows that Re{L(logF ’(% )} < 0. In other words, we have

Re{}"%2, Cj(d)p’/L(f~7)} < 0 when 4 is sufficiently small. From
the assumption on the order of the zero at w = 0, the terms of this
series with index j < k + 1 are zero. Therefore, we have

Re{Cry2(0)} L2 + 0(p*) < 0

where L(f~*~!) is negative. Dividing by p¥*? and letting § — 0
leads us to the conclusion that Re Cj,, > 0 for any univalent func-
tion in the complement of the l-star ¢y = [0, 4] with expansions
F(w)=w+ 352, Bjw'™/ and log F'(w) = 3-52, C;w™/ in a neigh-
borhood of oo. However, in Lemma 2 we obtained such functions
with Re{Cj,,} < 0 for every k > 2. To avoid a contradiction, the
order k of the zero must be 1. This completes the proof.

ReMARK. If the functional L picks out the negative of the nth
coefficient, then L(1/(K, —w)?) = —(n — 1)w"~2, and the quadratic
differential of Theorem 6 becomes (n — 1)w” 2dw?. That is, the
function K, satisfies Schiffer’s differential equation for the problem
max sy Re{—c,}, but is is extremal only for n =2 and n = 3. In
fact, the proof of Theorem 2 shows in a sense that K, is a saddle
point for this functional whenever n > 4.

THEOREM 7. Let L be a continuous linear functional, and assume
that Re{L(log(f/z))} is not constant as f varies over X'. If f is
an extremal function for the problem max .y Re{L(log(f/z))}, then
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the omitted set T" of f consists of finitely many analytic arcs lying on
trajectories of the quadratic differential L(1/(f—w))dw?/w . Further-
more, the origin is a simple pole of the quadratic differential, hence T’
has a tip at the origin.

Proof. Let f be an extremal function. Subject f to boundary
variations of the form

[ =f+ap*/(f —w)+ap*/w + o(p?),
withw €T, |a|=1, and p >0,

which operate within X'. The change of the functional is given by

el (£)) - e ()

+Re {asz (ﬁ) } + 0(p?)

as p — 0. This leads as before to the conclusion that the omitted set
I' consists of finitely many analytic arcs lying on trajectories of the
quadratic differential L(1/(f - w))dw?/w .

To show that the apparent pole of the quadratic differential
L(1/(f —w))dw?/w at the origin is not removable, assume for the
purpose of contradiction that L(1/(f —w)) has a zero of some order
k > 1 at the origin. It follows that L(f~/) =0 for 1 < j < k and
that L(f~%-1) # 0. By rotating the function and functional, we may
assume also that L(f~%~!) > 0 and that one of the arcs of I em-
anates from the origin in the positive horizontal direction. Construct
the functions w and f; and arc c¢s as in the previous proof. Let F
be a nonvanishing univalent analytic function in the complement of
¢s and have expansions of the form

) . F(w 0 .
P =w+ 2B and log%=§:11>j<é)w 2
Jj= =

around infinity. As before, the function pF o f;0w belongs to X' and

o 2255%)) e ).

F(31)
i

Since

f

V4

log___pFofow

= log = + log
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it follows that Re{}>-%2;,; D;(6)p/L(f~/)} < 0 when 4 is sufficiently
small. Dividing by p**!, letting 6 — 0, and using L(f~%!) > 0
leads us to the conclusion that ReD;.; < 0 for any nonvanishing
univalent function in the complement of the 1-star with expansions

— apl—J — ap—d
F(w)—w—i—Zij and log ” —ZDj'w
Jj=1 j=1
in a neighborhood of oco. However, this contradicts Lemma 3 and
completes the proof.

THEOREM 8. Let L be a continuous linear functional, and assume
that Re{L(log(zf"/f))} is not constant as f varies over X'. If f
is an extremal function for the problem max .5 Re{L(log(zf"/f))},
then the omitted set T of f consists of finitely many analytic arcs lying
on trajectories of the quadratic differential —L(f/(f — w)?) dw?/w.
Furthermore, the origin is a simple pole of the quadratic differential,
hence T' has a tip at the origin.

Proof. One uses the same variations as in the previous proof and at
the end substitutes Lemma 5 for Lemma 3. We omit the details.

THEOREM 9. Let L be a continuous linear functional, and assume
that Re{L(log(f/z)} is not constant as f varies over Zy. If f is
an extremal function for the problem max rex, Re{L(log(f/z)}, then
the omitted set I of [ consists of finitely many analytic arcs lying on
trajectories of the quadratic differential L(1/(f —w)f)dw?.

Proof. Under boundary variations of the form (18), which operate
also within the family X,, the change in the functional is given by

tfo () - e ()

+ Re {asz (m) } +0(p?)

as p — 0. As before, this leads to the conclusion that the omitted set
I' consists of finitely many analytic arcs lying on trajectories of the
quadratic differential L(1/(f — w)f) dw?.

THEOREM 10. Let L be a continuous linear functional, and assume
that Re{L(log(zf"/f))} is not constant as f varies over Xy. If f
is an extremal function for the problem max ey Re{L(log(zf"/f))}.
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then the omitted set I of f consists of finitely many analytic arcs lying
on trajectories of the quadratic differential L((w—2f)/(f—w)?f) dw?.

Proof. Under variations of the form (18), the change in the func-
tional is given by

)}l o)
+Re {asz (ﬁ%) } +0(p?)

as p — 0. The conclusion follows as before.

REMARKS. In Theorems 7 to 10 we did not show that the zeros of
the quadratic differential on I" are simple. We do not know whether
they are.

For the special case of coefficient problems in Theorems 7 to 10,
the functions K, satisfy the corresponding Schiffer differential equa-
tion, but are not extremal as indicated in Theorems 3 and 4. That
is, in some sense the functions K, are again saddle points for these
problems.

6. The N th diameter problem. Denote by E the continuum omit-
ted by a function f € £. The Nth diameter of E is defined as
dy(E) = max[[],; |w; — w;[]"/IVN=D] where the maximum is taken
over all sets of N points w;, ..., wy in E. Points w;, ..., wy in
E that yield the maximum are called Fekete points of E. Of course,
d,(E) is the Euclidean diameter of E. Various properties of the di-
ameter dy can be found in texts on function theory. For example,
as N — oo it is known that dy(E) decreases monotonically to the
capacity of E, which equals one in the present case. Recently, we [7,
8] discussed the geometric character of the extremal set that solves the
N th diameter problem:

N th Diameter Problem. For each N > 2, find the maximum of
dn(E) among all the continua E omitted by functions in X.

This problem was considered by Schiffer in 1938 [12]. By the
method of boundary variations, he showed that an extremal configura-
tion I' consists of a finite number of analytic arcs lying on trajectories
of the quadratic differential

(19) Q(w)dwzz—z(w_wl
i#] '

2
w —wy 4




92 Y. J. LEUNG AND G. SCHOBER

where the points w;, ..., wy are the Fekete points of I". The Fekete
points appear to be simple poles of the quadratic differential. How-
ever, it is conceivable that they are removable singularities. It was
proved in [8] that, indeed, they are simple poles. As a consequence,
the Fekete points are all tips of an extremal continuum I'.

How does I' connect the Fekete points? The analytic arcs of T"
can join only at zeros of the quadratic differential (19). In [8] we
conjectured that these zeros are all simple zeros. Geometrically, this
means that I' can fork in at most three equiangular directions. In [8]
we also eliminated the possibility of zeros of order k > 2 whenever
k =3 or k+2 is nonprime. Later, the first author [7] eliminated the
possibility of the remaining zeros of order k > 2. Thus this simple
zero conjecture is true. In this section we shall apply the results of §2
to unify and simplify the proof.

THEOREM 11. Let

Q(w)dw?=-3"

i#]

be the quadratic differential corresponding to an extremal configuration

I" for the N th diameter problem. Each Fekete point w; is a simple

pole of Q(w)dw? and an endpoint of T'. The zeros of Q(w)dw? all

lie on T': they are all simple zeros; there are N — 2 of them; and T’
forks at each zero in three equiangular directions.

1 2
@ —wntw —w)

In particular, an extremal continuum I" consists of N analytic arcs
beginning at the N Fekete points and joining three at a time at the
N — 2 zeros of Q(w)dw?. Thus we have a qualitative picture of the
extremal continuum. In general, however, an analytic solution of the
problem remains very difficult since we do not know the location of
either the zeros or the poles.

For further background and information we refer the reader to [6,
7, 8].

Proof of Theorem 11. Assume that the quadratic differential has a
zero of order k at a point wy € I'. After a translation and rotation
we may assume that wy = 0 and that some arc of I' emanates from
the origin in the positive horizontal direction. Just as in the second
paragraph of the proof of Theorem 6, delete from I" all arcs except for
that connected subarc I's emanating from the origin in the positive
horizontal direction that lies inside the disk |w| < . If the mapping
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radius of C\I'y is p, then dilate I'y by the factor 1/p to obtain
an arc ¢s; with exterior mapping radius one. As J — 0, the arc ¢;
approaches the 1-star ¢y = [0, 4].

Let F be nonvanishing, analytic, and univalent in the complement
of ¢s; and have expansions of the form

F(w)='w+iBj(5)w"j, logF’(w)ziCj(é)w"j and
=1 j

’ oo
log wF ZEJ (Hw™
Jj=1

around infinity. Now pF(w/p) is univalent in C\I's, hence in C\I".
It preserves the mapping radius of C\I' and serves as a variation
of I'.

Assume now that the Fekete points w;, ..., wy are all nonzero.
If p is sufficiently small, then the points pF(w;/p), ..., pF(wn/p)
are not assumed by pF(w/p) on C\I'. Therefore we have

(200 > log|pF(w;/p) — pF(w;/p)l < log|w; — wj|

i#] - i#
because of the extremal character of I'. If we define the Grunsky
coefficients G;; of F by the expansion

F(w) - kad
log————— Giiw o
w— l;l i

near infinity, then C, =37, ., G;; and (20) becomes

N N
(21) 0= Re{zlogF’(wj/p)— 3" log ”F(wt/p)—pF(wj/p)}_

w. — w.
j=1 i,j=1 y J

Re {Z C,(0)p" uy — Z Gij(a)pi+jﬂiﬂj}

v=2 i, j=1

Re{z > C(6)p” (s —#iﬂj)}

v=2i+j=v

where u, = Z?’:] 1/wy . By Lemma 4.1 of [8], the factors u, —u;u; =
py—piul =0 for i+j=v <k+1 and gy o—fiptj = tra— 12 #0.
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Thus the terms in the last expression of (21) are zero for 2 < v < k+1.
After dividing by p¥*2? and letting & — 0, we conclude that

(22) 0 < Re {Cira(0)(tuisr — %)}

We have assumed that some arc of I" emanates from the origin in the
positive horizontal direction. It follows then from the expansion

Q(w)dw? = (%wk + ) dw?

= (U + Dpterz = Dk + ) duw?

that uj,, — ,u’f*z is positive. As a consequence, (22) implies that

Re{Cj,2(0)} > 0. That is, for all functions F analytic and univa-
lent in the complement of the 1-star ¢;, with normalization F(w) =
w + O(1) near oo, the coefficient C;,, in the expansion log F'(w) =
3%, Cjw™/ satisfies Re{Cy,} > 0. For k > 2 this is in contradic-
tion to Lemma 2, and so we conclude that the zero must have been
simple. That is, a zero at a non-Fekete point of I" must be simple.

Next, assume that one of the Fekete points, say w,;, is at the ori-
gin and that the quadratic differential has a removable singularity
there. Thus, assume that the Q(w) has a zero of order kK > 0 at
the origin ( k = 0 means that the origin is removable, but not a zero).
Then an analysis very similar to the previous paragraph and utiliz-
ing Lemma 5.1 of [8] leads to the conclusion that all nonvanishing
univalent analytic functions F in the complement of the 1-star, with
normalization F(w) = w + O(1) near oo, have the property that the
coefficient E;,, in the expansion logwF'(w)/F(w) = ‘J?';lij‘f
satisfies Re{E;,,} > 0. For k > O this contradicts Lemma 5. Thus
each Fekete point is a simple pole of the quadratic differential, hence
an endpoint of I".

Now the rational function Q(w) has precisely N simple poles and
limy, 0o w2Q(w) = —=N(N — 1). Therefore Q(w) has N — 2 zeros,
counting multiplicities. Each zero on I' is simple, and I" can fork in
at most three ways at such zeros. A finite induction argument implies
that there must be at least N — 2 such zeros on I' to permit I' to
have N tips. That is, all N — 2 zeros must lie on I"; they must be
simple; and I" must fork in all three equiangular directions possible
at these zeros. This completes the proof.
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