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Assume that J / is a C*-algebra with the FS property ([3] and
[16]). We prove that every projection in Mn{s/) (n > 1) or in
Lφftf) is homotopic to a projection whose diagonal entries are pro-
jections of srf and off-diagonal entries are zeros. This yields partial
answers for Questions 7 and 8 raised by M. A. Rieffel in [18]. If j / is
σ-unital but non-unital, then every projection in the multiplier algebra
M(J/) is unitarily equivalent to a diagonal projection, and homotopic
to a block-diagonal projection with respect to an approximate iden-
tity of srf consisting of an increasing sequence of projections. The
unitary orbits of self-adjoint elements of sf and M(sf) are also
considered.

0. Introduction. It is well known that a projection in Mn(C) or in
is homotopic to a diagonal projection whose diagonal entries

are either 1 or 0, where Mn(C) is the algebra consisting of n x n
scalar matrices and L ( ^ ) is the algebra consisting of bounded opera-
tors on a separable Hubert space %?. The following natural question
comes up: if C is replaced by a C*-algebra sf , is every projection in
Mn{srf) or L{β%tf) homotopic to a diagonal projection whose diagonal
entries are projections of sf and off-diagonal entries are zeros? Here
Mn(stf) is the C*-algebra of n x n matrices over J / and L ( ^ ) can
be regarded as bounded infinite matrices over J / whose adjoints exist
(see §1 for a more precise description). Certainly, diagonalizing pro-
jections of Mn{stf) for n > 1 would yield information about Ko(sf)
(here diagonalizing projections in the sense of Murray-von Neumann
is enough for this purpose).

Concerning the matrix algebra Mn(sf), R. V. Kadison proved ([13]
and [14]) that if J / is a von Neumann algebra, then every normal el-
ement in Mn{sf) is unitarily equivalent to a diagonal normal matrix
over J / . Consequently, every projection in Mn(s/) is homotopic to
a diagonal projection, since the unitary group of a von Neumann al-
gebra is connected. In general, we certainly do not expect a positive
answer for the question if J / is an arbitrary C*-algebra. K. Grove and
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G. K. Pedersen have pointed out ([11, 1.3]) that if si is the algebra
C(S2), the algebra of complex-valued continuous functions on S2,
then there exists a projection in Mι{si) which is not unitarily equiv-
alent to any diagonal projection. However, we do expect a positive
answer for a large class of C*-algebras.

The author has proved ([22]) that if si is a C*-algebra with FS, then
every projection in Mn(si) or in L{βί^) is Murray-von Neumann
equivalent to a diagonal projection. In this note, we will strengthen the
previous results to unitary equivalence or homotopy. We prove that
if j / is a C* -algebra with FS (not necessarily (7-unital), and if p is a
projection of the multiplier algebra M(si), then every projection q of
si is homotopic to a projection q' = pγ+Pi, where p\ is a projection
of psip and P2 is a projection of (1 -p)si (1 -p). As a special case, by
induction we conclude that every projection in Mn(si) is homotopic
to a diagonal projection. This yields partial answers for Questions 7
and 8 raised by M. A. Rieffel in [18]. If si is cr-unital and {en} is
a fixed sequence of mutually orthogonal projections of si such that
Σ™=1

 en = 1, we prove that every projection in M(si) is unitarily
equivalent to a diagonal projection and homotopicto a block-diagonal
projection with respect to the decomposition J2nL\ en = 1 As a
consequence, every projection in L(β&) is unitarily equivalent (and
hence homotopic) to a diagonal projection. In addition, the unitary
orbits of self-adjoint elements of si or M(si) are considered.

The class of C*-algebras with FS includes many interesting sub-
classes of C*-algebras. Obviously, AF algebras, the Calkin algebra,
von Neumann algebras and ^4W*-algebras have FS. The Bunce-
Deddens algebras have FS ([2]). All purely infinite, simple C* -algebras
have FS ([24, Part I (1.3)] and [25]); in particular, the Cuntz algebras
&n and &A , where 2 < n < oo and A is an irreducible scalar matrix,
have FS. Certain irrational rotation C*-algebras have FS ([9]). Many
corona and multiplier algebras have FS ([5], [24, Part I] and [24, Part
IV]). L. G. Brown and G. K. Pedersen have recently proved ([5]) that
a C*-algebra sf has FS if and only if Mn(s/) has FS for all n > 1
and s/ has FS if and only if si has real rank zero. In [21], [22], [23]
and [24] the author has investigated the multiplier and corona algebras
of C*-algebras with FS from various angles.

1. Notations, If si is a C*-algebra, we denote the Banach space
double dual of si by si** and the multiplier algebra of si by M{si)
where M(si) = {m e si**: xm, mx e sf VJC e si} ([1], [7], [15],
among others).
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Let %& = {{at}: at e si and Y^Zi a]a\ converges in norm}. Then
becomes a Hubert si -module with the jaf-valued inner product

(M, {*/}) = E a * b i f o r a11 M' ί*ί>€ ^
1=1

We denote by L{%&) the set of all bounded module maps with an
adjoint and by K(J&) a closed ideal of L(βfo) called the "compact
maps"; more precisely, K(βfo) is the norm closure of the set of all
"finite rank" module maps, {]C/=i θχ,,y,: χi> yi G Ή* a n c * n € N)
Here for any pair of elements x and y in ^ , θx,y is defined by
θχ9y(a) = x{y, a) e J%* for all α e %& ([15]). It was proved ([15])
that

and

as C*-algebras, where ^ is the algebra consisting of compact op-
erators on ^ . The formulation of L{%&) and K(βfc) are closely
analogous to those of L(X) and X.

If s/ is a unital C*-algebra, we will denote the unitary group of
Mn{sf) by Un(sf) and the path component of Un{stf) containing the
identity by U%{stf). In particular, we will denote uf{sf) by UQ{S/) .

If p and <? are projections in si , /? ~ ί means that /? and 9 are
equivalent in the sense of Murray-von Neumann, and p & q means
that p and q are homotopic, i.e., in the same norm path component
of projections in si . It is well known that p « q if and only if there
exists a unitary element v in Uo(si) such that Ϊ / Ϊ;* = q. We denote
the matrix units of X by {e\j).

2. Key Lemmas. The following technical lemmas are the key of this
paper:

2.1. LEMMA. Suppose that si is a C*-algebra with FS (not neces-
sarily σ-unital) and p is a projection in M(si). If q is a projection
in si, then for any z§ > 0 there exists a projection qf in si such that
both pqfp and (1 -p)q'(\ —p) have finite spectra and \\q - q'\\ < 8Q .
More precisely, the projection q' has the following form:

[fo 0 0
ί ' = 0 a0 b0

where fo and the range of ao are mutually orthogonal subprojections
of p. Consequently q' « q if εo < 1.
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Proof. Let q = (ζ* b

c) be the decomposition of q with respect to
p+{\-p) = l. It follows that a-a2 = bb\ c-c2 = b*b, ab+bc = b,
0 < a < p and 0 < c < I - p. (Actually these conditions are also
sufficient for q to be a projection.) We will start with the idea in [6]
and then go further to construct a projection q1 = (fj(. K) such that
both σ(af) and σ(c') are finite sets, and q' is close to q in norm.

Let 0 < δ < 1 be a fixed positive number and ε be another positive
number such that 3ε < δ. Since si has FS, there exists a positive
element c\ in (1 —p)s/(\ - p) with a finite spectrum such that

(1) | | c - c i | | < β .

Set e = X(s,oo)(ci — c\). If δ\ is the smaller root of t2 - t + δ = 0,
then e = χ@ ? i_<$ )(ci) which is a projection in (1 - p)sf(\ - p).

Set Co = C\e + /(i_^,i](ci). Then σ(c0) is a finite set, c0 - c\ =

e(ci - c^)^ G estfe and ||co - Ci || < δ\. It follows that

(2) ||c0 - c\\ < ε + δγ < ε + Vδ.

Set v = (eb*be)~ι/2(eb*), of course where (eb*be)~ι is taken
in esfe. Since ^(ci - c\)e > δe and hence eb*be > (δ - 3ε)e,
(eb*be)~1/2 exists. It is clear that υv* = e.

Set &o = v*(c0 - c^)1/2. Then bζb0 = co-c2.

Set α0 = v*(e - c0)^ . Then a0 - α^ = Z>ô o a n d αo^o + ̂ o^o = ̂ o -
If we first fix δ small enough, then we choose ε small enough and C\

satisfying (1) such that ||c—co||, ll^-^oll and \\{a-a2)-(a^-al)\\ are
all smaller than any preassigned positive number. However, \\a - αo||
can be equal to one. Here we give details for further reference.

It is obvious that

(3) I|A*Λ - ( d - c?)|| < 3||£Γ - C!|| < 3β.

Since ||(1 - e)b*b(l - e) - (1 - e)(cλ - c2){\ - e)\\ < 3ε and
||(1 - e)(c\ - c2)(l - e)\\ < δ, it is easily seen that

(4) \\b(l-e)\\<y/3e + δ.

Since eb*be > (δ - 3ε)e, then

(5) \\{eb*be)-ι\\<(δ-3ε)-1.

By [12, 126] and (3), we can choose ε small enough such that

(6)
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By (4) and (6) we can choose ε small enough such that

(7) \\b0 - b\\ < \\υ*(co - el)1'2 - v*{eb*be)χl2\\ + \\b{\ - e)\\

< \\[e(cχ - c\)e]112 - (eb*be)ι/2\\

Consequently,

(8) \\(a - c?) - (ao - 4)\\ = \\bb* - bobξ\

<2\\bo-b\\

It is clear from construction that q0 = (b°* c°) is a projection. By

Lemma (2.4) of [21], σ(αo)\{O, 1} = σ(l°-°co)\{O, 1}, and hence
σ(αo) is also a finite set. The idea of constructing the projection #0

is due L. G. Brown ([6]) for different purpose.
We will go further to adjust q$ to a projection qι = (£* K) so that

\\α - αf\\ is small, too. Set / = v*v . Then / is a subprojection of p
and fαo = α^f = α0. We claim that \\fαf — αoll c a n be arbitrarily
small if δ 9 ε and c\ are properly chosen. To prove this claim, we
need the following estimates.

(9) \\e(b*b)ι'2(l - e)|| = \\e[Ψ*b)χl2 - (c{ - c2)ι'2](l - e)\\

Then by [12, 126] and

[{eb*beγl2]2 = eb*be = [e{b*b)ι/2e]2 + e{b*b)ι/2(l -

for a fixed δ > 0 we can choose ε small enough (by (3)) such that

(10) Wb)1'1 - ( d - cϊ)ι'2\\<¥- and

(11) \\(eb*be)ι'2-e(b*b)ι'2e\\<δy[ϊ.

Since

f(a - ao)f = υ*ev(a - ao)v*eυ

= v*e(vav* - vaov*)ev

— υ*[ecoe - v(p - a)v*]v ,

then

(12) \\f(a - ao)f\\ < \\ecoe - ece\\ + \\ece - υ(p - a)v*\\

< ε + \\ece -v(p -a)υ*\\.
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Since (1 - ά)b = be, p(l - a)b = bp{c) for any polynomial p(t).
Approximating by polynomials, we obtain that VI —o,b = by/c, and
hence

b*{\ - a)b = c2-c3 = {b*bγl2c{b*bγ'2.

It follows that

v(p - a)v* = (eb*be)-1/2eb*(p - a)be(eb*be)~ι/2

= {eb*be)-χ'2e[b*b - b*ab]e{eb*be)-χ'2

= {eb*be)-χl2[e{b*bγl2cφ*bγl2e](eb*be)-λl2

= {eb*be)-χl\hx + h2](eb*be)-ί/2,

where

hx=e{b*bγl2ece{b*bγ'2e

= {eb*beγl2c{eb*beγ'2 + [e{b*bγ'2e - (eb*beγ'2]c{eb*beγl2

+ {eb*beγ'2c[e{b*bγl2e - {eb*beγ'2}

+ [e{b*bγl2e - {eb*beγ'2]c[e{b*bγl2e - {eb*be)x'2],

h2 = e{b*b)ϊ/2{\ - e)ce{b*bγl2e

+ e{b*bγ'2ec{\ - e)(b*b)ί/2e

+ e{b*bγl2{\ - e)c{\ - e)(b*bfl2e.

If δ is first fixed small enough, and ε and C\ can be chosen such
that 6ε < δ and

(13) \{eb*be)-χl2hχ{eb*beγxl2 -ece\\

< 2\\{eb*be)-χl2\\ \\e{b*bγ'2e - {eb*beγ'2\\ \\c\\

+ \\{eb*be)-χl2\\2\\e{b*bγl2e - {eb*beγl2\\2\\c\\

< 2 + <δ2 + 2δ,

(where using (5), (10) and (11)) and

(14) \\{eb*be)-ιl2h2{eb*be)-χl2\\

< 2\\{eb*be)-χl2\\2\\e{b*bγl2{\ - e)\\ \\c\\ \Wbγ'2\\

+ \\{eb*be)-χl2\\2\\e{b*bγl2{\-e)\\2\\c\\

δ2,^j\ <2δ ,

where we used δ — 3ε > δ/2. Consequently,

\\v(p-a)v*-ece\\ <4δ+ 2δ2, and so

by (12).
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If δ is fixed small enough and ε is chosen small enough, then \\faf-
αo|| can be arbitrarily small if C\ satisfies (1).

Moreover, by properly choosing δ > 0, ε and C\ in a similar way
we can require that \\(p - f)af\\ is less than any preassigned positive
number. This can be done as follows.

Since a - a2 = bb* and the spectral mapping theorem, it is clear
\\b\\ < 1/2. Since (1 - a)b = be, we have

-(1 - f)aυ* = (1 - /)(1 - a)be(eb*be)~x/2

= bce(eb*be)~ι/2 - be(eb*be)-χeb*bce(eb*be)-χ/2

= bce{eb*be)-χ'2 - be{eb*be)-χeb*bece{eb*be)~χl2

- be{eb*be)~xeb*b{\ - e)ce(eb*be)~x/2

= b{\-e)ce{eb*be)-χ'2

- be(eb*be)-χeb*b(l - e)ce(eb*be)~x/2.

It follows that

(15) ||(1 -f)af\\< ||(1 - f)aυ*\\

<\\b\\\\{\-e)ce\\\\(eb*be)-χl2\\

+ \\b\\ \\(eb*be)-χ\\ \\e(b*b)(l-e)\\ \\c\\ \\{eb*be)-χ'2\\

~^3ε_

Ί
δ

where we use (1), (3), (5) and the facts:

||(1 -e)ce\\ = ||(1 -e){c-c\)e\\ < | | c-c i | | , and

| | ^ *(1 - e)\\ = \\e[b*b - (c, - c2)](l -e)\\< \\b*b - (c, - c2)\\.

As a consequence of the last estimate and (8), for any 0 < λ < 1/2,
we can fix δ small enough and then choose ε small enough such that
σ({p—f)a{p—f)) c [0, A]U[1-Λ, 1]. This is because of the following
estimates:

(P ~ f)[(a - a2) - to - a2)](p - f) = (p - f){a - a2)(p - f)

= (p-f)a(p-f) - [(p -f)a(p -f)}2 - (p-f)afa(p-f),

\\(P - f)a(p -/)- [{p - f)a{p - f)]2\\

< 110 - f)[(a - a2) - (αo - a2)](p - f)\\ + ||(1 - /)α/ | | 2

<||(α-α2)-(αo-^)|| + ||(p-/)α/||2.
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Set /o = /[i/2,i]((p - f)Φ - /))• Then f0 is a projection in
ip-fW(p-f) such that /oαo = αo/o = 0 and | |/o-(p-/)α(p τ/)j| <
λ. Set a' = ao + fo, b' = bo and c' = CQ. Then g' = (ξ,. K) is a
projection in J / such that

ll/o - (P ~ f)a(p - f)\\ + 2||fto - b\\ + \\CQ - c

Combining all above estimates, we first fix λ small enough, then fix
δ small enough, and then choose ε small enough and c\ satisfying
(1) so that each term on the right-hand side of (16) is small. Then
\\q - #'|| is small. It is clear that σ(pq'p) = σ(f0 + #o) is a finite set.
The last sentence in the statement of this lemma is well known. D

2.2. LEMMA. Suppose that srf is a C*-algebra (not necessarily σ-
unίtaΐ) and p is a projection in M{srf). If q is a projection in si
such that o[pqp) φ [0, 1], then there exist two projections q\ and #2
in <%? such that q\ <p, qi<\ - P and q ~ q\+ qi>

Proof. Let q = (^ b

c) be the composition of q with respect to
p + (l-p) = 1. Then a = pqp, c = (l-p)q(l-p) and b =pq(l-p).
By [21, 2.4], σ(α)\{0, 1} = σ(l - c)\{0, 1} .

If b = 0, then q\ = a and qi — c are as desired. Assume that
b φ 0. If 1 £ σ(c), then ||c|| < 1. By the argument of [8, 1],
q is path connected to a subprojection q{ of p. We can assume
that 1 G σ(c). Since σ(c) ̂ [ 0 , 1 ] and 0 is always in σ(c), there
is a λ in (0, l)\σ(c). Then there exists a positive number ε such
that (Λ, — β, λ + β) Π σ(c) = 0 . Since b Φ 0, we can assume that
σ(c) Π (λ + ε, 1) Φ 0 (Otherwise, σ(a) Π (λ + ε, 1) ̂  0 , we consider
α instead.) We will use a variation of [8, 1] to construct a path of
projections for our purpose.

Define a family of continuous positive functions {f}te[o,i] from
[0, 1] to [0, 1] with the following properties:

(1) l i m ^ J I / - Z J o o ^ O for any ί0 in [0, 1];

(2) fι(s)=s for all j in [0, 1];

(3)

( 1, ifλ<s<l,

l inear, ifλ-e<s<λ,

0, i f O < j < A - β ;
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(4) For all t in (0, 1), ft(s) <s if s e [0, λ - ε] and ft(s) > s if
se[λ,l].

Since q is a projection, όc = (1 — α)Z>. Approximating by polyno-
mials, we obtain that bg(c) = g(l — a)b for any continuous function
g on [0, 1]. Set

ct = ft(c),

at =p-ft(p-a).

Then 6/ and ct are well defined elements in si by the properties of
ft. Although p - a is not in pj//? if /? is in M{si)\si , p — ft(p — a)
is in pj/p for ί e [0, 1]. To see this, first, ft{p - a) is well defined
for each t e [0, 1] since σ(p - α)\{0, 1} = σ(c)\{09 1}. Second, if
we denote by π the canonical map from (ps/p)+ to {psfp)+/ps/p,
where {psx?p)+ is the C*-algebra obtained by joining an identity to
psfp, then p - ft(p - a) e p^p, since π(p - ft(p - a)) = π(p) -
ft(π(p)) = 0. It is easily verified that

at - a} = btb*,

ct - cf = ft;*,.

Thus ήf(ί) = (£ί c

r ) is a projection in j / for each ί in [0,1] . By

the property (1) of {ft}, {q(t)}te[o,i] ^s contained in the same path
component of projections in si . Then q(0) « #(1) = #. Since
(λ - ε, λ) Π σ(c) = 0 , c0 = fo(c) = /μ,i](O is a projection of
(1 —p)s/(\ —p). It is obvious that

Consequently, #o is a projection of psip . Set q\ = a$ and #2 = Co ,
as desired. D

Roughly speaking, with respect to a fixed sequential increasing ap-
proximate identity of si a block-diagonal projection of M{si) whose
blocks are with the same size is homotopic to a diagonal projection.
More precisely, we have the following lemma:

2.3. LEMMA. Suppose that si is a σ-unital, non-unital C*-algebra
with FS and ΣZ\(sn +*/2 + •+*/*) = 1 > where {s^: i > 1, 1 < j <
n} are mutually orthogonal projections in si and the sum converges
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in the strict topology. If p is a projection in M{sf) with the form
Σ £ i Pi > where Pi is a projection in (sn + si2 H + sin)stf{Sii + si2 +
• - + sin) for i > 1, then p « Σ~i(P/i +P/2 + -+Pin)> where ptj is
a projection in SijS/Sij for ί > 1 and 1 < j < n.

Proof. It suffices to prove the case if n = 2. If n > 2, we simply
employ the same proof recursively n - 1 times by induction to reach
the conclusion.

We write
•a* bt

with respect to s^ +572. By Lemma (2.1), for each / > 1 we can find
a projection

(ft 0 0

Vo
in (^1+^2)^(^1+^2) such that ||/? - A | | < 1/4, and both a\ and c\
have finite spectra. Here we use the proof of Lemma (2.1) to properly
choose a positive number δ[ and a positive element du in
with a finite spectrum, then we have that

// = V*(A _\

and fi is a projection of Sχ\s/Si\ orthogonal to the range projection
of a\.

Let p' = ΣZi P'i - τ h e n \\Pf -P\\<ι/4> a n d h e n c e P*tp'.
Let σ{c'i) = {A|i, A/2, , Az/ } for each / > 1. It follows from the

construction or [21, 2.4] that cτ(ά ) = {l-λn , l-A/ 2, . . . , 1-A|7 } . We

can write c = Σ j = 1 A ί 7η 7, where {r ί ;: 1 < 7 < //} is a set of mutually
orthogonal projections in 572^/2 Let A be any number in the open
interval (\, | ) but not in \jf=ι σ(c ) . Let ε = min{A - ^ , | - A}.
For / > 1, if λij is in the open interval (A - ε, A), we replace Aί; by
A'7 = A-ε, and if A/; is in (λ, λ+ε), we replace Azy by A'7 = A+ε . If

λij is not in (A - ε, A + β), then we let λ'u = λu . Set d( = E > i ^///
for / > 1, and correspondingly set b" = v*{d( - c"2)1/2 and a" =
v*(ej - c")Vi. Then

||^ -<H<lk;-cΠ|<ε and
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It follows that
/// 0 0

PΪ = o <
V

is a projection in {βi\+Sii)$ΐ{Six+sn) such that ||/? - p " | | < 2ε+\ < 1.
Define p" = £ ~ j p». Then \\p' - p"\\ < 1, and hence p' « p". The
remaining job is to prove that p" is homotopic to a desired diagonal
projection.

Let {ft}te[o, i] be the family of continuous functions defined in the
proof of Lemma (2.2). Since σ(c' ') does not intersect with the open
interval (λ-ε, λ + ε) for / > 1, we can define

Ci(t) = ft(c'{) ,

r" — r"2

ai(t)=p-ft(p-a!l-JΪ).

Then aι{t), bj(t) and cf (ί) are well defined elements in (sn +.
(̂ /i +^2) for each t in [0,1] and / > 1 by the properties of ft.
Thus for each t in [0, 1]

is a projection in (sn + si2)^(sn + si2). It is easily seen that

and P , ( 0 ) = ( α ' < 0 )= ( α ' < 0

where α, (0) is a projection of SH^/SH and c, (0) is a projection
of Si2J*si2. Define p(ί) = E£iA*(0 for each ί in [0,1] . Then
{p(t)}te[091] is a path of projection in M(sf). It is obvious that

,(»=,» and p W - g C T c,?0))
Since the choice of {ft}te[O, i] does not depend on /, the path {p(t):
t £ [0> 1]} i s continuous in the norm topology.

Set pa = 0i (0), p, 2 = c, (0) for / > 1. Then

p ?x p1 & p" £ϊ p(0) = ̂ ( p / i + Pa), as desired. D
i = l

3. Diagonalizing projections in sf and in Mn(sf). Since we will
frequently employ the following well-known fact in this paper, we
state it as a lemma.



192 SHUANG ZHANG

3.1. LEMMA. If si is a C*-algebra, and if p and q are two mu-
tually orthogonal projections in si , then p ~ q if and only ifp^q.

Proof. Let v be a partial isometry in si such that vv* = p and
υ*υ = q. Define w = v + v* + (\ - p - q). Then w is a self-
adjoint unitary in M{si) such that w*pw = q . It is well known that
w E I/oGΌ It follows that p ^ q . •

3.2. THEOREM. Suppose that si is a C*-algebra with FS and p\,
P2> ••• >Pn {n > 1) 0f£ mutually orthogonal projections in M(sf)
such that Σ"=i Pi = 1. / / p w α projection in si, ίλen /? « Σ?=i ^ >

qι is a projection in si such that qt < pi for I < i < n.

Proof. Recursively using Lemma (2.1) and Lemma (2.2), we reach
the conclusion. D

The following theorem can be regarded as an analogue of the well-
known fact: Every projection in Mn(C) is homotopic to a diagonal
projection whose entries are either 1 or 0.

3.3. THEOREM. Assume that si is a C*-algebra with FS and n >
1. If p is a projection in Mn(sf), then p « Σ"=ι Pi ® en, where {pi}
is a set of projections in si such that

P\<P2<"' <Pn-\ <Pn-

Proof. It has been recently proved ([5]) that si <8>J? has FS if and
only if si has FS. By Theorem (3.2) we have p « Σ/Lip\®^u > where
{/?•} is a set of projections in si . The remaining work is to adjust
{/?•} . We use induction on n .

If n = 2, p « p\ ® e\ \ +p'2 ® ̂ 22 , where p[ and p'2 are projections
in si. Combining Lemma (2.1) and Lemma (2.2), we obtain that
P\ ^ Qi + #2 in J ^ , where q\ and #2 a r e two projections in si such
that q\ < pf

2 and #2 < 1 —pf

2 It follows that p « (^ +<?2)®^n +^2®
^22- Working in the hereditary C*-subalgebra of Mn(si) generated
by ( l-t f i)®eii + 1 ®^22, we have qι®en +p'1®en « (/?2 + ί2
by Lemma (3.1). It follows that ^ « q\ ® ̂ π + ( ^ + ft) ® ̂ 22
Pi = ί i and P 2 = ft+P2

Assume that p « Σ/L1/7/ ® ̂ // s 1 1 ^ that ^ ^ P3 ^ * * ^ ^«
Applying Lemma (2.1) and Lemma (2.2) to p[, and pf

n, we have
p'l ~ <ln + Qn> where <jrn and (?̂  are projections in si such that qn <
1 - p'n and ^ < P« . By the same argument as in the last paragraph
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we have that p&q'n®e\\+ Y^I^P'i®ea + (Pn + Qn)®enn Repeating
this argument to q'n and p ^ , we have that q!

n^ q'n_x+qn-\ ^ where
q'n_ι and <?„_! are two projections in j / such that qn-\ <pf

n-pf

n_ι

and ^_j < p'n_χ. It follows that p & q'n_x®en + YJ\ZlP\ ® ̂ / +

Proceeding in this way, we write p\ = Σl=\ Qi > where {#/} is a set of
mutually orthogonal projections in sf such that qt < pf

i+ι -p[ for 2 <
i < n (where p'n+ι = 1), ^ <pf

2, and /? « ii®^n+E?=2(P/+ft)®^i •
Let /?i = ^i and /?z = /?• + q% for 2 < / < n . Then ^! < p2 < < pn

and p^Σn

i=xPi®en. D

M. A. Rieίfel raised a question in [18, 7]: If J / is a unital C*-
algebra with cancellation, and if two projections p and q in Mn(sf)
represent the same class in KQ($/) , are /? and <? in the same path com-
ponent of projections in Mn{s/)Ί Since si has cancellation, [p] = [q]
in KQ(S/) if and only if p ~ ^ ([3] or [4]). Hence, RieffePs question
is equivalent to whether two Murray-von Neumann equivalent pro-
jections in Mn{sf) are in the same path component of projections
in Mn {sf). The following corollary provides a partial answer for his
question in the case that sf has FS:

3.4. COROLLARY. If sf is a unital C*-algebra with FS and can-
cellation, and if p and q are two projections in Mn(sf), then p ~ q
if and only ifp^q.

Proof. Of course we need only to show that p ~ q implies p «
q. Since Mn(sf) has FS, by Theorem (3.2) we have p « q\ + <?2 >
where qx is a subprojection of q and 2̂ is a subprojection of 1 - q .
Since J / has cancellation and p ~ 0, qi ~ q - q\. Working in
(1 - qι)Mn(sf)(l - qγ), by Lemma (3.1) we can find a unitary i; in
C/o((l -q\)Mn{srf)(\ -q\)) such that v ή ^ * = q~q\ - Set w = <?i + ^ .
Then u is a unitary in Uo(Mn(sf)) such that w î = q\U. Thus

Concerning the unitary orbit of elements in A/"Λ(J/) , we have the
following corollary:

3.5. COROLLARY. If sf is a C* -algebra with FS and x is a normal
element in Mn(sf) with finite spectrum, then there is a unitary element
u in Uf}(sf) such that uxu* = Σ ^ i E ί L i ^ / A y ] ® ^ . where {pij} is
a set of projections in sf such that pi j Lpi j in sf ® βjj if i\ Φ 12
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Proof. By operator calculus we write x = Σ?=x hPi, where {/I/} is
a set of complex numbers and {/?/} is a set of mutually orthogonal
projections in Mn(s/). By Theorem (3.2) we can find a unitary el-
ement Ux in U®(sf) such that UχPχu\ = ΣHj=χP\j ® ejj (= <?i) f° r

some projections {pi;} in stf . Working in (In - q\)Mn(s/){In - ^i)
and repeating the same argument, we can find a unitary u2 in
W / π - « i ) M i ( ^ ) ( / Λ - ί i ) ] such that ^ ( w ^ ^ ) ^ 2 - Σ"=iP2j®ejj
for some projections {pij} in J / . It follows from pχp2 — 0
that Pi7 P2/ = 0 f° r 1 < Ĵ  < I < n - Set u2 = qx + w'2 . Then w2 is a
unitary in U^(s/) and u2Uχ(pχ + p2)u\u*2 = Σ]=xΣ%χPij ® ejj —

1 <Proceeding in this way we can find unitary elements
m) in such that

UmUm-.χ - - - Uχ{pX

m

-Σ
Let w =

y = l L/=l

u2ιiχ . It is obvious that w is in U%(sf) and

It is well known that the unitary orbit of a self-adjoint matrix in
Mn(C) contains a diagonal self-adjoint matrix. If C is replaced by a
unital C*-algebra with FS, we have the following weaker analogue:

3.6. COROLLARY. If si is a C*-algebra with FS and x is a self-
adjoint element in Mn(sf) {n>\), then for any e > 0 there exist a
unitary element u in U®(sZ) and elements at in stf with finite spectra
such that

uxu* - < e.

Proof. Since Mn(s/) has FS, there is a self-adjoint element h in
Mn(sf) with finite spectrum such that \\x - h\\ < e. By the same
argument as in the proof of Corollary (3.5) we can find a unitary
element u in U^(s/) such that uhu* = Σ"=xaι ®^ύ:, where {#/} is
a set of self-adjoint elements in J / with finite spectra. Therefore,

uxu -
i=\

= \\x - h\\ < ε. π
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3.7. REMARK. Concerning the computation of ΛΓ0-grouρs of a C*-
algebra, M. A. Rieffel raised a question in [18, 8]: What is the smallest
n such that the projections in Mn(sf) generate KQ(S/)Ί Theorem
(3.3) provides a partial answer for his question for the class of C*-
algebras with FS (actually it has been given in [22] although it was
not mentioned there). In fact, if J / is a C*-algebra with FS, then the
smallest such an integer is n = 1 in other words, K0(s/) is generated
by the set of Murray-von Neumann equivalence classes of projections
in srf .

4. Diagonalizing projections in Λ/(jy).

4.1. THEOREM. Assume that srf is a σ-unital C*-algebra with FS
and {en} is a fixed increasing sequential approximate identity consist-
ing of projections. If p is a projection in M(sf), then the following
hold:

(i) There is a unitary u in M{sf) connected to the identity by
a path ofunitarieSy where the path is continuous in the strict topology,
such that upu* = Y^liPi, where pi < eι for i > 1 in other words,
each strict path component of projections in M(stf) contains a diagonal
projection with respect to {en}.

(ii) There exist a unitary υ in Uo(M(sf)) and a subsequence
{em.} of {en} such that vpv* = Y%L\p\, where ρ\ is a projection
of (emι - emii)3?(emj - em._,) for i > 1 in other words, each norm
path component of projections in M($f) contains a block-diagonal pro-
jection with respect to {en}.

Before proving this theorem, we state the following corollary, which
can be regarded as an analogue of the well known fact that a projec-
tion on a separable Hubert space is unitarily equivalent to a diagonal
projection whose diagonal entries are either 1 or 0.

4.2. COROLLARY. If stf is a σ-unital C*-algebra with FS, and if
p is a projection in L(<%^), then there is a unitary u in L{β^) such
that upu* = Y^ίiPi ®eu, where {/?/} is a sequence of projections in
ssf . Consequently, p « Y%LX Pi ® en (by [8]).

Proof of Theorem (4.1).

Case 1. If p is a projection of si .
Choose n > 1 large enough such that \\p{\ -en)p\\ is small. Then

Lemma (2.1) of [10] applies. We find a unitary u in UQ(M{S/)) such
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that upu* < en. By Theorem (3.2), p « upu* « Σ?=iPι» where
/?/ < e, - e/_i for I <i <n. Hence both (i) and (ii) hold.

Case 2. If p is a projection in
Let {qn} and {#£} be two increasing sequences of projections in

sf such that qn / p and q'n / 1 - p in the strict topology. Set
fn = Qn+ q'n- Then {^} is an increasing sequential approximate
identity of sf consisting of projections. By the argument of [10, 2.4]
we find a unitary element v in J 7 0 ( M ( J / ) ) such that

emχ < Vfnυ* < em2 < V fnV* < βm^ < ,

where {«/} and {m/} are increasing sequences. It is clear that

vpv* =
ι = l

and v(qn-qnιi)v* < v{fn- fn^ y ) ι

(where q% = 0 and f% = 0).
We first prove (i). By Theorem (3.2) we find a unitary Wi in

C/0( *ί )> w h ^ r e J ^ = [v(/Λ| - / V l ) v * K [ v ( / W i - / V l ) v * ] , such that
w/vfa^ - qn^^w* = n + rj , where r, < v/,fV* - em§ and r\ <
emt ~vfnι_^* - Set w = Σ/^iW/. Then ?i; is a unitary in M(sf)
such that w is path connected (in the strict topology) to the identity
and

wvpv*w* =
1=1 1=1

Since r, + rj+ 1 < ̂ m +i - em , we can apply Theorem (3.2) again to get
a unitary w\ in XJ^βi), where ^ = (em+ι - em)M{srf)(em^ - em)
such that

where p y is in (βj - e^\)sί{ej - £/-i) for m/ < 7 < m / + 1 .
Define w' = Σ°Zι w^. Then w' is a unitary in M{sf) such that

w' is path connected in the strict topology to the identity and
w'wvpυ*w*wf* = Y^ZiPi. Set u = ίi/wu , as (i) desired.

To prove (ii), we start with p « vpv* = Σ°Zi v(Qnι"Qnι_ι)v*, where
1̂ = v{qn-qn_χ)v* < v(fn-fnιi)v* = {vfnv*-em) + {em-vfni_v*)

for each 1 > 1 and qnQ — 0 and fnQ = 0. With respect to

v(fnt ~ fn(_x)v* = (υfnv* - em) + (em. - vfn_v*),
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we can write

By Lemma (2.3),

s.-(ai hi'"U * for i > 1.

vpυ*
(=1

where si is a projection in (vfnv*-em^$?{vfnv*-em^) and s[ is a
projection in ( ^ - v fn^v*)sί (emχ - vfn^v*). Let /?,' = s^ + s^i for
/ > 1, where SQ = 0, as desired. D

The following theorem asserts that the unitary orbit of each self-
adjoint element of M(sf) contains an "almost" diagonal form, which
is a natural analogue of the classical Weyl-von Neumann theorem.

4.3. THEOREM. Assume that si is a σ-unital C* -algebra with FS
and also M(si) has FS. If {en} is a fixed increasing approximate
identity of si consisting of projections and h is a self adjoint element
in M(sf), then there exist a unitary u in M(sf), an element a in si,
some mutually orthogonal subprojection ptj (1 < j < nϊ) of ez - ez_i
for each i > 1 and a real bounded scalar sequence {λij} such that

j = 1, and uhu* = ] Γ
7=1

a,

where a can be chosen such that \\a\\ is arbitrarily small. Moreover,
u is connected to the identity by a path ofunitaries in M{sf), where
the path is continuous in the strict topology.

4.4. COROLLARY. If si isaunital O'-algebra with FSand
has FS also, then for any self adjoint element h in L{X^) there are
a unitary u in L(3&), an element a in K(%&)9 a sequence of pro-
jections {pij} in si and a real bounded scalar sequence {λij} such
that

en = 1 and uhu* =
ι=l 7=1

i en + a,

where pij (i < j < U) are mutually orthogonal for each fixed i, and
a can be chosen with an arbitrarily small norm.

Proof of Theorem (4.3).. Since si is σ-unital and both si and
M(s/) have FS, by [21, 3.1] we can find mutually orthogonal pro-
jections Pi in si with ^iL\Pi = 1 > a r e a ^ bounded scalar sequence
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{λi} and an element b in sf with arbitrarily small norm such that
h = ΣZiλiPi + b- Let /„ = E/LiΛ τ h e n {/«} i s a n increasing
approximate identity consisting of projections. By the same argument
as in [10, 2.4] we can find a unitary υ in M(s/) such that υ ~ 1,
and

where {/*,•} and {m, } are increasing sequences. Since

M Σ

(where ^ o = 0), by the same arguments in the proof of Theorem (4.1)
we can find a unitary wt of [v(fn. - fni_ι)v*]M(ttf)[v(fnι - fn^)v*]
path connected to the identity v{fn. - fn._x)^* s u c h that

and

Let w = Y%L\wi- Then w is a unitary in M(s/) such that w
is connected to the identity by a path of unitaries, where the path is
continuous in the strict topology. Since η + r'jΊ_{ < em - em , by the
same arguments in the proof of Theorem (4.1), we obtain a unitary
Wj of (em +i - em )M{sf)(em +i —em) path connected to the identity
em - Cm such that

w'(r+r'- )w'* = V Y^D
i=mj + l j=l

where {p/;: 1 < 7 < /,-} is a set of mutually orthogonal subprojections
i n (βi — βι-1 )$/ (βi — βι-1).

Define w' = ΣHi w r Then w' is a unitary in M{sf) such that
tί;' is path connected to the identity, where the path is continuous in
the strict topology. Set u = w'wυ . Then u is path connected to the
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identity, where the path is continuous in the strict topology. It is easily
verified that uhu* has a desired form. (Notice that {λι} is equal to
{λij} as sets.) D

4.5. REMARKS, (i) The condition " M(sf) has FS" in the hypothe-
ses of Theorem (4.3) and Corollary (4.4) has been studied in [5], [21]
and [24]. Actually many multiplier algebras have the FS property.

(ii) Several applications of the results in this note have been given
in the author's subsequent papers [24, Part II, III, IV].

Acknowledgment. The author wishes to thank the referee for point-
ing out an inaccuracy in Theorem (4.1) in the primary manuscript of
this paper.
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