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The aim of this paper is to prove a vanishing of theorem for the
Dirac operator on a symmetric pair. In fact, we prove a stronger result:
that the Dirac operator has spectral G-symmetry.

THEOREM 1.1. Let (G, K) be a symmetric pair of rank two or
greater, of compact or noncompact type and I C G a co-compact dis-
crete subgroup. Let p be a metric on I'\G whose lift to G is G-left and
K-right invariant. Then, the Dirac operator has spectral G-symmetry:
that is, for each eigenvalue J. the eigenspace V, is G-isomorphic to the
eigenspace V_j .

COROLLARY 1.2. The equivariant n-function vanishes identically:
ng(s, &) =0.

The importance of the eta invariant and questions of spectral sym-
metry has long been recognized, see [1]. If dimG # 4k + 3, the
spectrum is symmetric for algebraic reasons. However, as the exam-
ple in [4] shows, this spectrum need not be symmetric if dimG = 3.
For an odd dimensional simply connected Lie group with bi-invariant
metric, the map x — x~! is an orientation reversing isometry and
we again get spectral symmetry. However, this map may well not
descend to quotients I'\G; for example, we know the spectrum for
SO(3) = SU(2)/{+£1} is not symmetric. Furthermore, if G is a non-
compact rank one group and I" a co-compact discrete subgroup then,
with respect to certain natural metrics on I'\G, the spectrum fails to
be symmetric, see [6]. Thus, the result does not hold in the rank one
case.

In §2 we discuss the case of a symmetric pair of compact type. This
is done in some detail. Section 3 contains the case of noncompact
type. Since this is similar to the compact type, we concentrate on
presenting the changes in the new case. We do not consider the case
of a symmetric pair of Euclidean type.
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2. Spectral symmetry for a symmetric pair of compact type. Let
(G, K) be a symmetric pair of compact type. Then the Lie algebra
of G decomposes as & = .7 ® & with bracket relations [.%Z, %] C
Z, [#%,PlCc P and [, L] Cc #. With respect to the negative
of the Killing form let E,, ..., E, be an orthonormal basis for %
and E,,;, ..., E,.s one for # so r+s =dimG is odd. Throughout
this and the following section we shall use the following convention:
Latin subscripts run from 1 to » and Greek subscripts from r+ 1 to
r+s. Let t > 0 be a real parameter and set e¢; = E;/t and e, = E, .
Let p; denote the left invariant metric such that e, ..., e,+5 1S an
orthonormal basis of &. Thus for ¢ # 1p, is G left-invariant but
only K right-invariant. The effect is to scale the metric on the fibers
and leave it unchanged on the base of the fibration K — G — G/K.
Further set w; = e9y;, ..., é,4s Where ¢ = (r+s+1)(r+s+2)/2 and
let w' denote a basic spinor corresponding to the ey, ..., e, basis.
When ¢ = 1 the subscript ¢ will be omitted. There is a canonical
isomorphism between the Clifford algebra associated to p and that
associated to p;. Under this isomorphism ¢; is the image of E;, e,
the image of E, and ' that of yw. Using this isomorphism, we
notice that (with 1 <i; <r+5)

(21) ee,"'eik'//t:Ei,"'EikW

for any set of basis vectors, where the Clifford product on the left-

hand side is relative to the p; but on the right-hand side is relative to

p = p1 . This same isomorphism is used implicitly in later expressions.
The Dirac operator is

(2.2) Po=) we)Vi + ) WV

where V' is the Levi-Civita connection corresponding to p;. We
can identify the space of sections I'(S) with Coo(I'\G) ® S using left

~

translation. Then for a basic spinor y! =1 s’
(2.3) P(f@s)=) vie)f@wes +) vie)f® weas .
+ fP(1®s")
= % Z v(E)f ® wEss + Z V(E,)f @ wE,s
+ fP(1 ®s").

"
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If we define Qg = > V(E;) QwE;, Qp =Y v(E,) ® wE, and Q; =
1/tQk + Qp then we see that

(2.4) P(f®s")=Qf®s)+ fP(1®S).

Thus it remains to calculate P;y’. First we calculate V*.

PROPOSITION 2.1. (i) Vie; = (1/t*)VE Ej,
(ll) V@ieﬁ = (2/[ - t)VE,-Eﬂ 5

(iii) VZ. ej = IVEQE' R

(iV) Vﬁ,ﬂe/; = VE,,EB .

Proof. These follow from the following formulae:

(2.5) () (Vees, et = 1{VEE;, Ex),

(i) (Vees, e =2/t ~1(VEEg, E)),

(ii) (Veej, &) =HVE E;, Ey),

(iv) (Vﬁ,ae/g , ek = Z(VEaEﬂ s Ex),
and the observation that all similar expressions with an odd number
of Greek subscripts are zero. These formulae use the notation ( , );
for the inner product given by p;. The calculations are similar to
those of [3]. In obtaining these formulae, we use the fact that ad E;

(for 1 <i<r+s) is pi-skew. For orthonormal left invariant vector
fields X, Y and Z there is the formula

(26) (Vx¥,2Z)=2(Z, X, Y] = (Y, [X, Z]) - (X, [¥ , Z]).

From this, we see Vg E; = [E;, E;], which is also useful.
From [2] x(X) = -1 YIX, E]E; - } [X, E,]JE,. We make the
following definitions:

@7) xx(X) = ~3 YIX, BE;,

xp(X) = ~3 YIX, EJE.,
Mg =) @Eixk(E:),
A=) " wExp(E),
M =" wEix(E)+)_ ®Esx(Ea).
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Clearly x(X) = xx(X)+ xp(X) and xg is the spin representation of
% extended to act on S. If the isotropy representation K — SO(%)
lifts to spin then this induces yp|%Z , see Lemma 2.1 of [5].

LEMMA 2.2. M = Mg + 34.
Proof. Observe that

(2.8) Y E[E,, EJ]=)_ElE;, E,],
Y i

since
Y EE,, E)l =Y E/(E,y, E), E)E; =Y  —E,([E;, E.], E))E
=Y -lEi, E)E; =) _ E|[E;, Ea].

The result now follows.
PROPOSITION 2.3. P! = LMyy + 3(2 +1)Ay.
Proof. We calculate:
(29) Py’ = 3 Y 105 EDEjy

1 2
(-t- - 1) wEt(VElEB)Eﬁ‘//

4
1 1
— 7 2 10E(VE Eg)Egy — 7 ) 10EW(VE Ep)Egy
11
=-3 760Ei[Ei , ESIE; ¥
1 2
—3 (7 - t) WE[E;, EglEgy

1 1
-3 > twEL[E,, EglEgy — 3 ) twE[E,, EglEgy
1 1/2

which is the result of the proposition.

Vil

COROLLARY 2.4.
Pr=1/tQx +Q0p+1/2t(1 @ Mk) + (1/t +1/2)(1 ® A).

LEMMA 2.5. The operators Qk, Qp, 1@ Mg, 1® A and hence P,
all commute with the action of % via the representation v Q x .
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Proof. This is another direct calculation. For example in the case
of Qk:

(2.10) [Qk, (¥ ® 1 + 1 ® ¥)Ei]
=Y v([E;, E}]) ® 0E;
+ Y v(E)) ® w(E;x(E;) — X(E)E))
=Y v(lEj, E))®wE; + > v(E))® wlE;, E]=0.

PROPOSITION 2.6. The operator P; preserves the decomposition T'(S)

=L*N\G)®S = @Iﬁ ® S into isotypic components under the right
regular representation v ® 1 of G.

Proof . This is immediate since
P=0/+(1/20)1 Mg+ (1/t+1/2)1® 4

and @, is a linear combination of the operators v(E).

Let Qg =—Y E? -3 E2 and Qg = — Y E? be the Casimir ele-
ments. Set Qp = Q; — Qg and let px denote half the sum of the
positive roots of K. Then define the following operators:

(2.11) (i) Rx =) v(E)®xx(E:),
(i) Rp=) v(E.)®xp(Ea),
(i) Ry =) v(E)®xp(Ei),
(iv) Rs=)_ xx(E)xr(Ei),

where yx and xp are given in (2.7). Notice that Rg is an operator
on S while the other three operate on C*°(G)® S . Direct calculation
now establishes the following result.

PROPOSITION 2.7. Using the notation {U,V}=UV +VU:

(i) {Qk,Qpr}=4Rp,
(i) {Qk,1® Mg} =—-6Rg,
(i1) {Qk,1® A} =—-2Ry,,
(iv) {Qp,1® Mk} =0,
(v) {Qp,1®A4}=-4Rp,
(vi) {Mg, A} = ~6Rg,
(Vll) %( = I/(QK) ® 1+ 2Rk,
(viii) Q%, =v(Qp)®1+2Ryy,
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(ix) 4% = xp(Qx) + 2R,
(x) MZ =9|lpkll*

Proof. To illustrate the proof, we verify part (x):
(2.12) Mg =Y wExx(E;)oExk(Ej) = Y Eixx(E)Ejxx(E;)
=3 (E:E;xx(E)xk( j) + E;Eixk(E;) Xk (Ei)
+ Ei[E;, Ejlxk(Ej))
- | T B o B E) - e B E)

- 2ZXK(E1')2}
— 4 xxk(E))
ZZEE,;(K [Ei, Ej]) -5 xx(E;
Now
Y EEjxk(Ei, Ejl) = =Y _|Es, Ej1E;xk(Es)
= 4ZXK Es = _4XK(QK)'

Thus M} = 3xx(Qk) = 9||pkl|?, since yx is the sum of irreducible
representations, each taking the same value, 3||pk|>, on Q.
The space of sections I'(S) has been decomposed into a completed

(2.13)

sum of terms of the form V;®S, A € G, under the action of the group
G. Each V; is finite-dimensional and we may decompose V; ® S
under the v ® x action of .%# into isotypic (rather than irreducible)
components:

(2.14) VeS8 =EPS,.

Now Lemma 2.5 and Proposition 2.6 tell us that P; leaves Sy invari-
ant. The next step is to show P? is constant on Sy and then that
tr P|Sp = 0. To show P?|Sy is constant we show that each of the
ten operators of Proposition 2.7 is constant on Sy . This is clearly the
same as showing Rx, Rp, Ry, and Rg are constant on Sp.

LeEmMMA 2.8. The operators Rx, Rp, Ry and Rg are constants on
Sy .

Proof. First notice that while yx and yp may not be irreducible
the Casimir takes the same value in each irreducible summand, see
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[5, Lemma 2.2]. The result, for all except Rg, now follows from the
following formulae:
(2.15)  Rg = 3(-v ® xx(Qk) + v(Qk) ® 1 + 1 ® xx(Qk)),
Rp=3(-v @ xp(Qp) + v(Qp) ® 1 + 1 ® 2p(Qp)),
Ry = 3(~v ® xp(Qk) + v(Qx) ® 1 + 1 ® 2p(Qc))-
For Rg consider the decomposition & = 7 ® & . It gives rise to

an isomorphism Cliff(¢) = Cliff(.%") ® Cliff(#?) and thence to one of
modules:

(2.16) S = Sk ® Sp.

With respect to this decomposition yx = ¥x ®1 and xp = 1® Xp so
that

(2.17) Rs = 4(—Xk ® Xp(Qk) + Ik ® 1(Qk) + 1 ® Xp(Qk))-

COROLLARY 2.9. The operator P?}|Sy is constant.

This constant depends on ¢ and 6. In principle it has been calcu-
lated but is omitted as the expression is unenlightening.

PrOPOSITION 2.10. If rank G > 1, tr P|Sy = 0.

Proof. Let U, be the subspace of Cliff(¥) spanned as a vector
space by E; E; -- ~E,-p , I} <y <--- <, (this time without using the
convention of Latin and Greek indices). Then for X € U, , we have

(2.18) trX =0 forp#0.

Since Mg = Y wE;xk(E;) = 1Y wE[E;, E;]E; and rankG > 1
(so dim¥% > 3) it is clear that Mgy € U,,;_3. Thus by equation
(2.18), since r+s > 3, trMg|S = 0. Split S into eigenspaces of
Mg:S = (S§ @ Sg) ® Sp = (S ® Sp) @ (Sx ® Sp). Since M = a?,
a = 3||pkl||, there are only two eigenspaces and tr Mg = 0 gives
dim S} = dim S . By considering weights Sx =2"V, , n=3(I-1),
so that S§ = Sg = 2"V, and Sy = S; ® S, with dimS; =
dimS, . Thus tr Mk|Sy = 0 and with respect to the decomposition

My has matrix (& ° ). If B is any operator with matrix () then
{Mg, B} = (%' _3,,). Thus if {My, B} is constant on S, then

u = -y and trB|Sy = 0. Taking B = Qkx, Qp and 4 we see
tr Qk|Sg = tr Qp|Sy = tr A|Sy = 0. Hence tr P;|Sy = 0.
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THEOREM 2.11. P, has spectral symmetry for all t > 0 if rank G
> 1.

THEOREM 2.12. The equivariant eta function of the operator P, on
NG, for rank G > 1 at t > 0 and any discrete co-compact sub-
group T vanishes as a K-character: ng(s, g) =0 where ng(s, g) =
>, sign(A)|A| = tr(g|V;) for g €K.

3. Spectral symmetry for a symmetric pair of noncompact type. Let
(G, K) be a symmetric pair of noncompact type. This case is similar
to that of the previous section. However, the details are different
and we shall be concerned, mainly, with pointing out the differences.
Decompose & = % & % and define the metric p to be the negative
of the Killing form on %, the Killing form on & and under p let
Z be orthogonal to & . As before let E, ..., E, be an orthonormal
basis for #; E,.y,..., Errs be one for & and we shall use the
convention that Latin subscripts run from 1 to r and Greek from
r+1tor+s. Set e, =E;/t, e, = E, and let p; be the metric with
e, ..., erys as orthonormal basis. Let yx, xp, Ok, Op, Mk and
A be defined by the formulae of the previous section.

Formally we can use the compact dual £* of £ to obtain the
present results from the previous section. Let % be the complexifi-
cation of & . Then there is the compact dual £* C % of ¥ and a
correspondence

B.1) X=X forXew, X—iX forXe® (i=+v-1)

between £ and £*. Denote by X* the element of £* corresponding
to XeZ so e} =e¢; and e} = ie, . There is a metric p; on £* with
orthonormal basis e}, ..., ¢, ;. Formally

(3.2) pi(x, y) = pi(ix*, iy*)
and so as elements of the Lie algebra one is led to expect
(3.3) Py' = iPLy".

In fact this is true as a direct, rather than formal, calculation shows.
PropoOsITION 3.1. Py! = I-MKy/ + 5 (— —t)Ay.

Proof. This is essentially the same as the proof of Proposition 2.3.
The main changes are as follows. Firstly the invariance of the metric
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is now given by

(34) (EB ’ [El ) EV]) = _(E}' ’ [El > Eﬂ]> s
<Ei5 [Eﬂ > EV]> = +(E)’ > [Eﬂ s El])

instead of always a negative sign. Thus
Y EE,, E,)=-) E|lE;, E,]
and so
1 1
(3.5) A=—7 Y WEE;, E4)E, = 7 > WE[E., EglEg.

The formula VyY = 1/2[X, Y] no longer holds for all X and Y.
Instead we have

(3.6) VeE;=3E, El,  ViEp=3E, El,
Ve Ej=—Ea, Ej], Vg Eg=3[E., Eg.
Then equations (2.5) in the noncompact case become
(3.7) (D) (Viej,e)=(VEE;, E),
(i) (Vies. e =1%(3+1)(VEEg, By,
{
(

II

(i) (Vies, e =HVE Ey, By,
(iv) V eﬂ,ek) :t<VEaEﬂ:Ek>-

As before the other expressions analogous to these with an odd number
of Greek indices are zero. The result of Proposition 2.1 is now:

(3.8) (i) Viej=(1/)VEE;,

)

) Vee ,,—3( +z)VEEB,
“) Vee] tVE E]’

) Véeﬁ-—VEaEﬁ.

The proof is completed by a calculation similar to that used to prove
Proposition 2.3.

The list of relations in Proposition 2.7 takes the following form
where the operators Rx, Rp, Ry and Ry are defined by the for-
mulae (2.11).
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ProproSITION 3.2.

{Qk, Qr} = —4Rp,
{Qk, 1® Mg} = —6Rg,

{Qk, 1®A4} = -2Ryy,

—
[

e b
Pk o ke ek

1)
1)
1)
(iv) {Qp,1®@ Mk} =0,
(v) {Qp,1®A4}=4Rp,
(vi) {Mg, A} = —6Rg,
(vii) Q%{ =v(Qx)®1+ 2Rk,
(viii) Q2 =v(Qp)®1—2Ry,
(ix) A%=xp(Qk)®1+2Rg,
(x) Mg =9lpkll*.

Now let I" be any co-compact discrete subgroup of G'. Then the
space of L?-sections of the spin bundle S over I'\G decomposes into

a completed sum of unitary representations of G. For 4 € G let V[
be the isotypic summand of type A so that

(3.9) 14$) = @Vl es.

The representations A with VAF # 0 occurring in this sum are, in
general, not explicitly known. Each term in this sum decomposes
further into .#-types under the action v ® y:

(3.10) iesS=@ap S

The arguments of §2 go through word for word. So there is spectral
symmetry for P, on each Sy providing rank G > 1. Consequently
we have the following theorem.

THEOREM 3.3. The equivariant eta function for the operator P, on
I'\G vanishes as a K-character for G a real semi-simple Lie group of
rank > 1 and T a co-compact discrete subgroup.
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