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In this paper, we extend Brown and Peterson’s algebraic calcu-
lations, using methods of homotopy theory, to the consideration of
manifolds with structure and to characteristic classes arising from
generalized cohomology theories.

0. Introduction. In [BP], E. Brown and F. Peterson made the first
calculation of relations among the Stiefel-Whitney classes of the stable
normal bundles of manifolds. Specifically, they computed

I, = \Kervj, C H*(BO; 2/2),
M

where vy, : M" — BO classifies the stable normal bundle of M", and
the intersection is taken over all compact differentiable manifolds of
dimension n. These calculations have, via the Brown-Gitler spectra
[BG], proven to be of considerable value. Although they arose in
the context of the Immersion Conjecture for compact differentiable
manifolds and were instrumental in its solution [C1], these spectra
were also used by M. Mahowald [Ma], and subsequently at odd primes
by R. Cohen [C2], to produce infinite families in the homotopy groups
of spheres. G. Carlsson used the Spanier-Whitehead duals of these
spectra to prove the Segal Conjecture for elementary abelian 2-groups
[Ca], and H. Miller then used the algebra thus developed by Carlsson
in his proof of the Sullivan Conjecture [Mi].

These theories should be related to the bordism theories coming
from our chosen class of manifolds. We wish to calculate

I,= () Kerd* C E*(B),
(M",p)

where B is the classifying space associated to a certain class of man-
ifolds, denoted by pairs (M",7); ¥: M" — B is a lifting of vy
(B comes equipped with a map to BO); and E* is the cohomology
theory. We will place the following conditions on E*, where 7B is
the Thom-spectrum associated to B.

239



240 ALEXANDER E. KOONCE

2.1. (a) TB has an E-orientation, and

(b) Given a class u € E9(M"), there exists a class v € E""9(M")
such that (u-v, [M"]) #0.

In Section 2 we define a map

where E,_, isthe (n—g)th space in the Q-spectrum E representing
E*, and for a group G, G* = Hom(G, ngE). We show that if J, =
®d(1,) C E*(TB), where ® is the Thom isomorphism, then we have
the following:

2.6. THEOREM. If E* satisfies 2.1, then J,NE4(TB) = Kery,.
Dualizing to homology, we obtain our main result:

2.7. THEOREM. Under assumptions 2.1, the following diagram com-
mutes:

An(TBA En_gs) ~» (E9(TB))*
Ta,,). I,
TB,(E) X E,(TB)

Here, 1,_,4 is the stabilization map, x is induced by the switch-map
TBAE — EANTB, and 7,4 is evaluation. In those cases where 7, is
an isomorphism, therefore, we have reduced our original calculation
to that of the stabilization map and yx. At the end of Section 2,
we show that these results reduce to those of Brown and Peterson, by
setting B = BO and E* = H*(-Z/2).

In the final sections of this paper, we apply this program to the case
B = BU, where U is the infinite unitary group (thus, the manifolds
under consideration are stably almost-complex). We use the Morava
K-theories as our generalized (co)homology theories, since they are
complex-oriented and satisfy the strong duality conditions which we
need. The paper ends with a calculation of the image of the stabi-
lization map, which we now summarize briefly. The Thom-spectrum
MU, localized at the odd prime p, is made up of similar spectra
BP. Let m > 1, and let K(m) be the corresponding Morava X-
theory at the prime p. We show that BP,K(m) is generated as a 7,
BP-module by elements 'U,’,,fj , where J = (j;, j2,...) 1S a nonnega-
tive finite sequence with each j, < p™. The image of the suspension
map may be described as follows: given o € BP.K(m), let d(a) be
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the minimum ¢ such that there is an o, € 7n,.(BP A K(m),4) with
(19)«(ag) = . Finally, let |J| =3 j; (< 00).

4.9. THEOREM. d(v],&7) =2|J| - 2r(p™ - 1).

This paper consists primarily of work done on my Ph.D. thesis at
Stanford University under the supervision of Ralph L. Cohen. It is
with great pleasure that I thank Professor Cohen for his guidance,
support and inspiration. In addition, I gratefully acknowledge the
assistance of W. Stephen Wilson in realizing the results of Section 4
from his paper [W].

1. Preliminaries. Throughout this paper we shall be concerned with
manifolds with structure in the sense of Stong [St]. In this section
we recall briefly the definition and basic properties of such objects.
Henceforth all manifolds are assumed to be compact and differen-
tiable.

Suppose one is given a sequence of spaces By, fibrations f;: By —
BO(k), and maps gi: By — By, such that the diagram

8k
By, - Bt

|
BO(k) & BO(K +1)
commutes, j, being induced by the usual inclusion O(k) — O(k+1).
Let b= 1_1_r_)n B and as usual BO = lim BO(k).

1.1. DEFINITION. A (B, f)-manifold is a pair (M", ), where
M?" is an n-dimensional manifold and ©: M" — B is a lifting of the
stable normal bundle classifying map of M".

For example, if we let B,; = By, = BU(k), the classifying space
for the unitary group, let f5,: BU(k) — BO(2k) be induced by the
standard map U(k) — O(2k), and define fo;.1 = jax © fox , then we
are considering stably almost-complex manifolds.

For a space X, we define as usual Q,(B, f; X) to be the set of
equivalence classes of triples (M", i, h), where (M", D) isa (B, f)-
manifold and A4: M — X is a map, under the relation of cobordism.
Note that for our above example, Q,(B; f; pt.) = QY the complex
cobordism groups.

Now let TBj; be the Thom space of the bundle f}(yx), for
the universal bundle over BO (k). The spaces 7B, form a spectrum,
which we denote 7B. Then one has the Thom-Pontrjagin theorem
for (B, f)-manifolds.
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1.2. THEOREM. Q,(B; X)=n,(TBAX,). O

Themap T: Q,(B, f; X) — n,(TBAX,) is constructed as follows:
there is a stable map A*: Tvy — Tvy AM, , induced by the diagonal
map A: M — M x M. Let r: S" — Tv,, be the stable map given
by the Thom-Pontrjagin construction. Then T([M", 7, h]) is the
composition

S Tvar & Toae A M, A" TBA X,

In the remainder of this section we recall some facts about general-
ized cohomology theories and duality in manifolds that will be useful
to us. The reference here is [A2].

For what follows we shall let E = {E,;} be the Q-spectrum rep-
resenting our homology theory E. and cohomology theory E*. We
shall assume unless stated otherwise that E is a ring spectrum with
multiplication u, so that our theories E* and E. come equipped
with the cup, cap and Kronecker products.

We recall that an E - orientation (or Thom class) for a k-plane
bundle ¢ over a space X with Thom space T: is an element uz €
E*(T¢) which restricts to a generator E,(S*) (as an E*(S°)-module)
on each fiber. If (M", ©) isa (B, f)-manifold, then for k sufficiently
large the normal bundle vX to any immersion of M" in R"** has
a TB-orientation. If each v%, has an E-orientation for k sufficiently
large, then one obtains a stable Thom class uz € E9(Tv,,), which we
call an F -orientation for A" . In particular, every (B, f)-manifold
has a TB-orientation. If M" has an E-orientation, then we have a
Thom isomorphism ®,: E9(M") — E9(Tvys), given by cup-product
with ug: EM") — EP(Tuyy).

Poincaré duality holds for manifolds A" with an E-orientation in
the usual way: there exists a class [M"] € E,(M") such that the map
~[M"]: EM") 5 E,_,(M") is an isomorphism for all p. As usual,
we call such a class a fundamental class for A" .

We recall that Tvy, and M} are S-duals, with the duality isomor-
phism s: E9(Tvpr) — E,—q(M}) given by: s(v) is the composition |

r

S"55 Ty &5 Topg A M7 S S9E A M.

Then Poincaré duality, the Thom isomorphism and S-duality are all
related by the following result.
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1.3. LEMMA [A2]. Suppose Tvy has a Thom class ug. Then the
following diagram commutes up to sign:

(]
EI(M") E4(Tvy) .
~M") N\ s

E,_;(M")

1.4. COROLLARY. s(ug) € E,(M") is a fundamental class for
M". ]

In other words, we may take as a representative of [M"] the fol-
lowing composition:
. Al
S" 0 Tua = Tvpg A M ES EA M.
2. The generalized Brown-Peterson process. As we stated earlier,
our goal is to compute the ideal

I,= () Kers* C E*(B),
(M", D)
where the intersection is over all (B, f)-manifolds (M", 7), for a
judicious choice of E*.
We fix our choice (B, f) of structure for our manifolds, and de-
mand the following two conditions of our cohomology theory E*:

2.1. (a) TB has an E-orientation, and

(b) Given a class u € E9(M"), there exists a class v € E""9(M")
such that (u-v, [M"]) #0.

Condition 2.1(a) means that for each k, the bundle f(yc) over
By has an E-orientation U, such that the composition EX(TB)
— E*(XTBy_,) — E*"Y(TBy._,) carries U, to Ui_;.

Two further remarks are in order here. First, 2.1(a) implies that
each (B, f)-manifold (M", ) has an E-orientation: from the pre-
ceding comment we see that there is a stable class U € E(TB), called
the stable Thom class for TB; cup-product with U yields a stable
Thom isomorphism

®: E9(B) — EY(TB).

The composition vy, 2 78.% E then yields a stable Thom class for
Tvys over the (B, f)-manifold (M", ). Second, 2.1(b) is stronger
than Poincaré duality as described in Section 1; indeed, if, for ex-
ample E* = H*(-;Z), then 2.1(b) needn’t hold if u is a torsion
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class. Poincaré duality alone is insufficient to prove Lemma 2.2 be-
low, which is a key step in our reduction of the calculation. One needs
other methods, for example, to find the ideal of relations for B = BSO
and E* = H*(-; Z) (see [Sh]).

Let G be an abelian group. In what follows we shall let G* =
Hom(G, nyE), where E is understood from context.

Let {E,;} be the Q-spectrum representing E*, and define a map
@q: E9(B) — Qu(B, f; En—q)* by the rule

9q()([M", U, h]) = (7% (v) - 1 (1n—q) , [M"]) ,

where 1,4, € E"9(E,_,) is the fundamental class. We shall see in a
moment that ¢, is well-defined.

2.2. LeEMMA. If E* satisfies conditions 2.1, then I, N E4(B) =
Kerg,.

Proof. Let v € E9(B). Then

vel, iff o*(v)=0 forall (M", D)
iff (7*(v) -y, [M"])=0 for all (M", D)
and all y € E""9(M")
iff (0*(v) - h*(1h—g) , [M™]) for all (M™, )
andall h: M" - E,_,
iff v € Kerg,. m]

We now define a second map, y,: E9(B) — n,(TBAE,_,+)*, by
the following: for v € E(B), a € an(TBAE,_,+), ¥4(v)(a) is the
composition

a (D(U)/\ln_q
S"— TB/\En_q+ — " YIEANG"YE — X'E.

2.3. ProPoOSITION. The following diagram commutes:

2
EYB) — Qu(B, f;Epq)*

v, \ Tr
n(TBA E,_g+)*

where T: Qu(B, f; En—q) — nn(TBAE,_,+) is the Thom-Pontrjagin
map defined in Section 1.

Note as a corollary that ¢, is well-defined.
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First we need the following

2.4. LEMMA. Let uys be the Thom class Tvy — TB — E as above.
Let v € E9(M"), and let j, € E,(S™) be induced by the unit 1 € nyE .
Then

(v, [M"]) = (r*(ua - V), Jn)
where r: S" — Tuvy is as before.

Proof. By definition (v, [M™"]) is the composition

sn W EA MY EASIE L SIE.

By Corollary 1.4, this is the same as

S5 Toag & T AM? 5 E A M2 Y EASIE A S9E.

But the above composition Tvy — E is equal to ug - v, by defini-
tion. The result follows immediately. O
Proof of Proposition 2.3. Let
vEEYB), [M",D,hl€Qu(B, f; Enrg+)-
Then if we let a € n,(TBA E,_44+) be the composition

r

S" 5 Tuge &5 Toag A M2 TS TBAE,— g
we have that ((T*oy,(v))(IM", 7, h]) = (a*(P(V) - tn—q), jn), Where
®(v) - 1,4 is given by the composition
d)AL,_, o
TBAE,_ 4+ » "XIEAZ'YE—ZX'E.
By Lemma 2.4,
pq([M", U, h]) = (0*(v) - h*(1n-q) , [M"])
= (r*((usp - 0*(0)) - h*(tn—g)) > Jn)-
Now ®(v) is the composition

TBE TBA B, Y EASE Y SIE.

Hence o*(®(v) - th—q) = r*(To*(U - v) - h*(1n—q). Thus in order to
complete the proof of Proposition 2.3 it remains to show that

Tﬁ*(U . U) =Up 17*(’0) € Eq(TI/M).
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. . . T U N o
Since uy, is the composition 7Tvy, »> TB»~ E, uyr-0*(v) is given
by
A* n TOND Unv ar 1 vq
Tvy — Ty AM? — TBAB, — EANXIE — XIE
and 7*(U -v) is given by

Tuy 55 TBA TBA B, Y EASIE 5 A S9E.

So we need only show that the following commutes:

Tvy % 1B A TBAB,

T T
A” N7
Tvy, — Tvy AM? — TBAB,
But the fist line is induced by
M"— B— BXxB,
and the second line by
XD

M"A M x Mt 2 B x B.

Since these two compositions are equal, the proposition follows. O
2.5. CorOLLARY. I, NEY(B)=Kery,. ]

Making use of the Thom isomorphism, we now study instead J, =
®(1,) Cc E*(TB). Define a map, which by abuse of notation we still
call y,, from E,(TB) to n,(TBAE,_,-)* by the rule: y,;(v)(a) is
the composition

§" % TBAE, o~ 9E AXUE 4 SUE,
We have the following immediate consequence:
2.6. CorOLLARY. J, NEY(TB) =Kery,. O
Using the fact that n,(TB A En_q+) = TB,,(En_q+) , we have a map,
Wy : TBn(E,_,+ — EY(TB)".
We last have a map #,: E;(TB) — E4(TB)* given by

Mg (x)(v) = (v, X)
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for x € E4,(TB), v € E4(TB). Then the main result of this general-
ized Brown-Peterson process is the following, which is proven simply
by checking the two composites on a homotopy level:

2.7. THEOREM. The following diagram commutes:

TB,(E,_,) >  E4(TB)
Ta, ). 11,

TB,(£"~9E) = TBy(E) > E,(TB)
where y is induced by the switch-map TBANE — EANTB. 0

2.8. COROLLARY. If n, is an isomorphism and E = TB, then
JoNEIE =Ker((tn—g) 0 x*),

where y: E.E — E.E is the canonical anti-automorphism associated
to the Hopf algebra E.E . O

In particular, for TB = MO, i.e., for unoriented cobordism, the
above calculation reduces to that of Brown and Peterson. In fact, since
MO splits as a wedge of Eilenberg-Mac Lane spectra KZ/2, if we re-
strict our attention to the KZ/2 summand containing the Thom class,
one may easily verify that (Tvy)*: H*(KZ/2) — H*(Tvys) (with Z/2
coefficients) is given by (Tvp)*(a) = a-upr, where a € A, the Steen-
rod algebra, and uy, € H(Tvyy) is the Thom class. Then if

Ja(0) = (| Ker(Tvy)*,
Mn
using the fact that a € Ker(1,)*: 4 — H*(K(Z/2, p)) if and only if
the element a has excess e(a) > p, we obtain the following result of
Brown and Peterson’s [BP]:

2.9. COROLLARY. J,(0) = {a € A|dim(x(a)) +e(x(a)) >n}. O

3. MU, BP, and the Morava K-Theories. In the remainder of
this paper we restrict ourselves to the study of stably almost-complex
manifolds, where B,; = By, = BU(k), and the resulting Thom
spectrum is MU. Now MU localized at a prime p splits into a
wedge of suspensions of BP summands. Unfortunately, neither MU
nor BP satisfies condition 2.1(b) in general. Thus we are led to use
E = K(m), the Morava K-theories, as our generalized (co)homology
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theories. In this section we collect some facts about K(m) and related

spectra.
Fix a prime p. For the BP spectrum associated to p we have

n.,BP = Z(p)[’Ul , V2, ...1, dim(v;) = 2(pi -1,

where Z, represents the integers localized at p. The Morava K-
theories are BP-module spectra related to BP by maps K,,: BP —
K(m). We collect their basic properties in the following (see, for
example, [RW2]):

3.1. ProrOSITION. (a) For p # 2, K(m) is a commutative ring
spectrum.

(b) m.K(m)=(Z/p)[vm, vy'].

() K(m)(XxY)= K(m)(X)®_g(m)K(m)«(Y) forspaces X, Y .

(d) As a map of coefficient rings,

(Km)«(Um) =vm, and (Kpn)(vg)=0, q+#m.

() K(m).(X)=(K(m)*(X))* for X a space or a spectrum.
(f) Let K(m) be the qth space in the Q-spectrum for K(m).
Then there are homotopy equivalences for each q , K(m) 2" 1)
— K(m) . O
——ig

Note that 3.1(e) follows from the Universal Coefficient Theorem
spectral sequence (see [Al]), since 7. K(m) is a “graded field” and
hence K(m).(X) is free over n,.K(m).

Next we introduce some intermediate theories lying between BP,
and K(m). which will be of use to us. Let E be a ring spectrum, and
let x € n,E. Then multiplication on the left by x induces a map
x:X"E — E. Let I(m) C n.BP be the ideal defined by

I1(0)=0, I(1)=(p), Im)=(p,v1,...,Vpu-1) form>1.

3.2. ProrosITION [JW1]. There exist spectra P(m), m = 0,1,
2, ..., such that

(a) P(0)=BP,

(b) m.P(m)=BP/I(m) = Zp)[Um, Umsr,...] for m21;

(c) P(m) is aleft BP-module spectrum,

(d) P(m+1) is related to P(m) by a stable cofibration

320"-DP(m) +3 P(m) <3 P(m +1);
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(€) (gm)«: mP(m)— . P(m+ 1) is given on generators by

(&m)«(vy) =0 ifi<m,
=v; Iifi>m.

(f) for p > 2, P(m) is a commutative ring spectrum. o

Thus P(m + 1) may be obtained from P(m) by “killing” the el-
ement v, via the cofibration of 3.2(d). Proceeding in this manner,
we may start from P(m) and kill the generators v,,,1, Uiz, ... Of
n.P(m) to obtain in the limit the BP-module spectrum k(m). We
have then that n.k(m) = (Z/p)[vm]. If welet T, = {1, vp, v2, ...}
be the multiplicative set of nonnegative powers of the element v,, €
n.k(m), then we may obtain K(m). by localizing the homology the-
ory k(m). with respect to T}, via the techniques described in [JW2].

Finally, we note that the maps

MU — BP— P(1) — --- - P(m) - k(m) — K(m)

give MU an orientation with respect to the cohomology theories BP*,
P(m)*, k(m)*, and K(m)*.

4. Calculation of relations for stably almost-complex manifolds. We
now return to the generalized Brown-Peterson process and apply it to
the case By, = By, = BU as before. By 3.1(e) and the remark
at the end of the last section, the cohomology theory K(m)* satis-
fies conditions 2.1(a’) and 2.1(b) for stably almost-complex mani-
folds. By Corollary 2.6, we need to determine the kernel of the map
Yq: K(m)4(MU) - MU,(K(m) ), )* Dually, we need to determine

the cokernel (and hence the 1mage) of the map

Wy MU,,K(m)n_q+ — K(m);MU.
Here we are making use of 3.1(e). By Theorem 2.7, then, since 7, is
an isomorphism, we need to calcuiate the image of

t_). .
MU,K(m), . Y MURE" K (m) = MUK (m) % K (m),MU.

Since MU localized at p is made up of BP-summands, it suffices,
modulo y, to calculate the image of the stabilization map

BP.K(m) 5% BP.K(m).
_s

We make use of the following, where E(x;, ..., X;) is the exterior
algebra on the generators x;, ..., x;.
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4.1. LEMMA. K(m).P(m) = K(m).BPQ E(19, ..., Tm—1) as mod-
ules over n.K(m), where dim(t;) =2p/ — 1.

Proof. The Atiyah-Hirzebruch spectral sequence for k(m).BP col-
lapses, yielding

k(m).BP = H,BP ® n.k(m) = (Z/p)[vm; c1, €2, -..]

as Z/p-algebras, where dim(c;) = 2(p/ — 1).
If we apply k(m).() to the cofibration of 3.2(d), we obtain an exact
sequence for g < m:

. = k(m)sP(q) = k(m)s4,P(q) = k(m)s1,P(q + 1)
— k(m)s_1P(g) — -

where r =2(p?-1).

But multiplication by v, is zero in k(m).( ). Hence k(m).P(q)
injects in k(m).P(q + 1). Furthermore, when s = 1 we obtain a
new element 7, € k(m),4_ P(q + 1) which is external, as one eas-
ily checks inductively by using our knowledge of k(m).BP (recall
that P(0) = BP). Thus for g < m, k(m).P(q+ 1) = k(m).P(q) ®
E(ty) = k(m).BP ® E(19, ..., 74). Localizing now with respect to
{1, vy, v2, ...} gives the desired result. O

4.2. COROLLARY. The map BP.K(m) — P(m).K(m) is injective.0

With 4.2 in mind, we shall make use of the following commutative
diagram:

—q
(4.3) ! |
P(m).K(m) > P(m).K(m),

and calculate the image of (1;). on P(m).-homology.

4.4. REMARK. Because of problems with the multiplication in the
spectra P(m), k(m), and K(m) at the prime 2 [R], we restrict our
attention to p odd from now on.

Wilson has calculated P(m).K(m) for each g, by considering
P(m).K(m) = {P(m).K(m) } asa Hopf ring. The general reference
for Hopf rings is [RW1]; here we recall only that there are structure



GENERALIZED RELATIONS 251

maps
% P(m)*K(m)k ® P(m)*K(m)k — P(m). (m)k (for each k), and

o: P(m)*K(m)k ® P(m)*K(m)n — P(m). (m)l (for all n, k)

satisfying certain properties (associativity, d1str1butivity, having a
unit, etc.) The map * is induced by the loop-space multiplication on
K(m) o and o is induced by the multiplication

u: P(m)AP(m)— P(m) and my ,: K(m), AK(m) — K(m)bM.

Using these two maps, the Hopf ring P(m).K(m) is generated
by elements e; € P(m), K(m )1, agy € P(m)zp,K(m)1 for i < m,
and b;) € P(m) p,K(m) which we now describe. For ¢ < 2p™ —
1, P(m)K(m), = Hy(K(@/p, 1);2/p) since K(m) =~ K(Z/p,1)
through dimension 2(p™—1), and P(m) ~ KZ/p in stable dimensions
less than 2(p™ —1). H(K(z/p, 1); Z/p) and H,,(K(Z/p, 1); Z/p)
are isomorphic to Z/p; use this isomorphism on the canonical gen-
erators to define e¢; and a;. P(m).CP* is free over n.P(m) on
generators fB; € P(m),;CP® . Using these elements and the K(M)-
orientation for CP>®, represented by a map CP® — K (m)2 , one
defines b; € P(m),, K(m), .

For I = (iy, i1, ..., im—1) and J = (Jo, j2, ... ) nonnegative finite
sequences with i, =0 or 1 and j; < p™, define
1J o o olm—1 ©Jo  ©°Ji
ab =aq) o-oam-) obg obg o

Then Wilson’s theorem states that, as a n,P(m)-algebra, P(m).K(m)
"
is described in terms of the above elements as follows. For jj <
p™ —1, each a’b’ oe, is an exterior generator; and depending on [
and J each a/b’ is either a polynomial or a truncated polynomial
generator, all using the * product. Here, P(m).K(m) is considered
as graded over Z/2(p™ — 1) instead of over Z, by use of 3.1(f). The
homotopy equivalence of 3.1(f) is given by the “periodicity operator”
[vm] € noK(m)_Z(p,,,_l) as
K(m) =~ SO A K(m) o

where r =2(p™ - 1).

[vi"—li\l K(m)_ AN K(m) K(m) ,

q+2r q

4.5. ProrosiTioN (Wilson [W]). The following relations hold in
P(m).K(m) , where A: BP — P(m) is the induced map from 3.2

(a) ejo—is the homology suspension map.

(b) e oe = b(o) .
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(©) a@oag =—-agoau-
(d) A(vm)er = [Um]o bfé’) “loe.
m k—1
(€) [umloblf) = igA(vh,;)b—ymod +, k> 0. 0

Our goal is to determine the image of the stabilization map
P(m),K(m) — P(m).,K(m). First we calculate the stable object
P(m).K(m). Let Ry = 2.P(m)[vz'1 = (Z/D)[Um, Vi, Vmst s ---1,
and let E(x) and P(x) denote, respectively, the exterior and polyno-
mial algebras on the generator x .

4.6. THEOREM. As m.P(m)-modules,
P(m).K(m) = ER (%o, %1, .- Tm-1) ® Pr_(£1,¢2,--.)

modulo the relations

k

Pt —12 P!

ék =Upy vm+iék+ia
i=0

where dim(%;) = 2p' — 1 and dim(¢&;) = 2(p* - 1).

Proof. The stabilization map P(m).K(m) — P(m).K(m) is given,
from 4.5(a), by o-multiplication with e; infinitely often. Stabilization
kills *-products and e; stabilizesto 1 € P(m)yK(m), so we need only
concern ourselves with elements of the form [v,] calb’ , where r € Z
and 7 and J are as before, with the additional property that j, =0
(by 4.5(b)). By 4.5(d), all of these elements survive to P(m).K(m).

In particular, let #; and ¢; be the stable images of a;) and b
respectively, for 0 < i <m—1 and j > 0. One may easily verify
that for a € P(m).K(m) , B €P(m).,K(m)_,

rs(ao B) = 1(a)is(B)

in P(m),K(m). Using this result we have that %;7; = —%;%, (from
(4.5(c)), and a’b’ stabilizes to /&7, defined analogously.
By 4.5(d) we have that [v,] € P(m)oK(m) stabilizes to the

) 2--2p™
same element as the image .

Um € Typm_yyP(m) — P(m)ym_y K (m).

(That is to say, multiplication by v, is the same on the left and on
the right in P(m).K(m).) Hence the coefficient ring for P(m).K(m)
becomes 7m.P(m)[v;,!]= R, .
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Finally, since stabilization is a 7,P(m)-module map, 4.5(¢e) stabi-
lizes to the relation

k k
K k—i k k—1
= D _ 51 /4
'Umtfi - Z vﬁ’lﬂ'ék—i , oOr ék =Unm § :Um+i¢k+i'
i=0 i=0
This finishes the proof of 4.6. 0

From 4.6 we can tell how far each element of P(m).K(m) desus-
pends. Given a € P(m).K(m), let d(a) be the minimum ¢ such
that there is an o, € P(m).K(m) with (15)«(a;) = a. Define #¢&/

in analogy with a’/b’ (except that there is no &j).

4.7. COROLLARY. d(v’ HETY = |I| +2|J) = 2r(p™ — 1), where

|1 = Zzs and |J|= Z}, < 00).

5s=0

Proof. Since al € P(M).K(m )| J and b’/ € P(m).K(m )[J| , we need
note only that d(v),) = —2r(p™ —1). 0
We now return our attention to BP.K(m) and BP.K(m), by mak-

ing use of 4.3. First we prove the following:

4.8. LEMMA. (a) % ¢ ImA. C P(m).K(m).
(b) b €Imi, C P(m).K(m), .

Proof. (a) Since A.(xy) = A.(x)A«(y) (see, for example, [Wii]), we
have that if A.(a) = %;, then o? = 0. But by the proof of 4.1,
BP.k(m) has no exterior elements, and the same holds, after localiza-
tion, for BP.K(m). Hence no such a exists.

(b) We have that BP,CP>® is free over m,BP on generators f; €
BP,;CP* . By the commutativity of

6
BP.CP® = BP.K(m),
|2, 14,

P(m).cP® =5 P(m).K(m),

where 6: CP°° — K (m) is the orientation, since A.(f;) = ,B, and
(60A).(B:) = by; , there is an element b; € BP),K(m) ) with A, ( ) =
by - 0

By the commutativity of A. with the stabilization map, we con-
clude that there is an element &; € BP),_)K(m) with 2.(5;) = &i.
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By defining the function 4 in analogy with 4.7, the following is a
consequence of 4.7 and 4.8:

4.9.

CoROLLARY. d(v,E7) =2|J|-2r(p™ —1). 0

Using the fact that stabilization about is a n,BP-module map, by
4.8 this completes the description of Imi,: BP.K(m) — BP.K(m).
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