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A version of the coupled Yang-Mills-Dirac equations for differ-
ential forms is presented. In this version the equations are defined
and conformal in any odd dimension; they share many of the analytic
properties of the Yang-Mills-Higgs equations in these dimensions.
A point singularity problem is formulated and solved for the Yang-
Mills-Dirac equations in dimension 3. In this dimension the solu-
tions can be associated with a definite energy functional resembling
the magnetic-monopole energy.

1. The Yang-Mills-Dirac equations are a coupled system of nonlin-
ear partial differential equations in which the unknowns are sections
of twisted vector bundles. When the base space is R4 these equations
can be used to describe the interaction of an external force field (the
Yang-Mills field FA) with the field φ induced by a fermion (the Dirac
field).

In dimensions n φ 4 the equations have mathematical interest as
an example of a system which is elliptic modulo the action of a sym-
metry group. That is, let (A, φ) be a solution of the Yang-Mills-Dirac
equations and let G be a fixed transformation group. Then the pair
(g(A), g{φ)), g e G, is also a solution and we identify (A, φ) with
(g(A), g{φ)). There is a g0 £ G such that (go{A)9 gp{φ)) is a so-
lution of an elliptic system of partial differential equations, although
the system satisfied by (A, φ) may not be elliptic.

In such a model the removability of singularities is a particularly
interesting problem for two reasons. First, the Yang-Mills-Dirac equa-
tions have an interpretation as the Euler-Lagrange equations of an en-
ergy functional, so ordinarily one would consider weak solutions and
show the existence of classical solutions by a partial regularity argu-
ment. Unfortunately, the concept of a weak solution is ambiguous
in this case, since {A, φ) and (g(A)9 g(φ)) need not lie in the same
function spaces. Thus one is motivated to try to characterize the sin-
gular set by asking what kind of singularities a classical solution can
have. Second, the transformation go m&y act discontinuously on the
fiber, changing the topology of the vector bundle and thus altering the
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original singular set. If we want to use elliptic theory in order to re-
move singularities by applying transformations in G, we will therefore
want to choose among continuous elements of G in order to preserve
the singular set. The obstruction to doing this is the smoothness of
the Yang-Mills field FA , which is represented by the bundle curvature.
Precisely, the transformation g0 is guaranteed continuous if and only
if FA lies in the space IP for some p > n/2 in a region about the
singularity [11].

T. H. Parker showed [4] that solutions cannot have point singular-
ities in dimension 4 if the total energy of the coupled field is finite.
Conditions for the nonexistence of point singularities in (even) di-
mensions n > 4 were given in [3]. In dimension 2 the Dirac equation
reduces to the eigenvalue equation for a twisted Cauchy-Riemann op-
erator. Point singularities in this dimension can be removed by an
argument similar to [9], provided FA e Lι and φ e H12 at the
puncture and provided that a holonomy condition is assumed. All
these arguments require techniques developed by K. Uhlenbeck for
the pure Yang-Mills equations in dimension 4 ([10], [11]).

The close mathematical relation between solutions of the Yang-
Mills-Dirac equations and those of the Yang-Mills-Higgs equations
suggests that the point singularity problem should have interesting fea-
tures in dimension 3. In this dimension the corresponding problem for
the Yang-Mills-Higgs equations requires delicate analytic techniques
([6], [8]).

In fact the Yang-Mills-Dirac equations are of particular interest in
that, in distinction to the Yang-Mills-Higgs equations, in the former
system φ is coupled to FA in both (second-order) equations [see eqs.
(1.2)]. Thus an improvement in the smoothness of φ does not give
an immediate improvement in the smoothness of its coefficients.

In n = 2k dimensions the Yang-Mills-Dirac equations can be writ-
ten as a first-order system in (FA, φ):

I 0φ = mφ
Here D*A : Λ^(ad£) -> Λ^-^ad-E) is the formal adjoint of the exte-
rior covariant derivative DA on a vector bundle E with connection
1-form A the lie-algebra-valued 2-form FA is a local representation
of the curvature of E the spinor φ is a smooth section of V Θ E,
where V is a 2fc-dimensional complex vector space isomorphic to the
Clifford algebra C(E) of E 0A is the covariant Dirac operator on
twisted spin bundles; m is a section of a trivial real line bundle. If
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E is derived from a principal bundle with compact structure group G
and p is a unitary representation of G, then

J(ψ) = -τ(φ> ^ ρ(σa)φ)σa <g> βj,

where ( , ) denotes inner product, σa is an orthogonal basis for
the lie algebra of G, and {ej is an orthonormal frame. (See [4] for
details.)

In odd dimensions it is customary [1] to replace 0A by the oper-
ator e2k0A > where β\, . . . , e2k is a basis for C(E). This entails a
restriction on the sign of m whereas the eigenvalues of 0A are sym-
metric about the origin, the eigenvalues of e2k0A lie on a half-axis.
No restriction on the sign of m occurs if we use the vector-space iso-
morphism between C(E) and A*(E) to replace the Dirac equation in
(1.1) by a second-order equation on 1-forms; taking n = 3 we have,
denoting by DA the total covariant derivative on Λ* ® E,

0-2) i "J " Δ"'φ\* „ , . .

Here {£/} is an orthonormal basis of 1-forms; φ G Λ^adJ?); [ , ]
denotes lie bracket; * : Ap —> An~p is the Hodge involution.

The motivation for writing eqs. (1.1) in the form (1.2) comes from
the theory of conformal invariance. One wants to determine a choice
for the conformal weight w of a solution φ to eqs. (1.1) that will be
meaningful in odd dimensions.

Recall that a section ψ of a (weightless) vector bundle is said to
have conformal weight w if for any scalar eλ

\ψ(eλx)\ = e~λw\ψ(x)\.

Classically, ψ is written as a weight-?/; relative tensor: under coordi-
nate transformations x —• y,

ψiiy) =
dy

w

ψi{χ)

globally ψ is a section of the tensor product of the determinant bundle
raised to the power w/n and a weightless vector bundle.

For example, a /7-form always has conformal weight p due to the
invariance of differential forms under coordinate transformations. Let
a(x) = a,ir.i {x)dxι\ Λ Λ dxιp. Since a is a section of a vector
bundle it must satisfy a(eλx) = a(x) in order to avoid coordinate
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dependence. Thus

a{eλx) = άir.i (eλx)epλdx^ Λ Λ dxιp

= a(x) = 0|Γ../ (x) dxι* Λ Λ dxιp.

This can only occur if

(See [4] and [5] for a general treatment.)
In dimension 4 it is necessary to choose w = 3/2 so that the coupled

spinor Lagrangian

= f
JR4

(φ,φAφ)}d4x

will be invariant under conformal transformations (coordinate changes
of the form y = eλx). Since FA is a 2-form and thus has confor-
mal weight 2, and since any differential operator increases conformal
weights by 1 (by the chain rule), this Lagrangian is conformally ho-
mogeneous in any dimension if w = 3/2:

S?n(rx) = rn-*3?n{x), r>0.

For this reason the conformal weight of φ was chosen to be 3/2 in

[3].
If n = 4, then the field equations (1.1) are the variational equa-

tions for Jΐ?4(x) when m = 0. However, this variational structure
is relatively unimportant mathematically; this is due to the fact that
Jϊ?4(x) is not bounded below as a functional as a result of the negative
eigenvalues of 0A. There is, however, value in a conformally invari-
ant energy functional since it can be made small, again provided that
it is definite [cf. (2.3), below]. Thus we seek a conformally invariant
"energy" functional without requiring that it be related variationally
to solutions of (1.1) or (1. ). The obvious choice,

LtRn

with w = (n - l)/2, is rejected since it is not bounded below. How-
ever, if n = 3 there is a very simple candidate. If the total field h(x)
is defined to be

(1.3) h = \FA\ + \DAφ\ + \φ\2

(cf. [4] and [8]) with w = (n - l)/2 = 1 the conformal weight of φ,
then the energy functional

P
Lp
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is bounded below by zero, conformally homogeneous for any p, and
invariant if p = n/2.

Notice that if n = 4, then w = (n - l)/2 = 3/2. In this sense our
choice of conformal weight is a generalization of the 4-dimensional
case. Further, in odd dimensions φ scales like an (n - l)/2-form. In
particular, if n = 3 then φ scales like a 1-form (i.e., like a boson).
The second of eqs. (1.2) is just the Weitzenbόck formula for the Dirac
operator on ls-valued 1-forms (eq. (1.18) of [4]). The first-order Dirac
equation given in (1.1) is in fact a conformally invariant expression
in n dimensions precisely when w = (n - l)/2 (see p. 11 of [1] and
eq. (3.1) of [4]).

As for the first of eqs. (1.2), if φ e A(n-ιV2(adE) for n odd, then

(1.4) *($[φ9 φ]) = *φ Λφ eAι(adE).

Thus applying the Hodge operator to the first of eqs. (1.2) gives a form
of the coupled Yang-Mills equations

D\FA = J(φ)

where the "current" J{φ) is given by (1.4).
Solutions of systems (1.1) or (1.2) satisfy the following subelliptic

inequalities

f A\FA\ + C0(\FA\
2 + \φ\ \DAφ\) > 0,

1 " j iΔi^i + di^ii^i^o.
Such solutions are assumed to be invariant under the action of G-

valued maps. These maps act tensorally on FA and φ but affinely on
the connection 1-form A. If

then
g(F) = g~ιFg and g(φ) = g~ιφg,

but
g(A) = g-lAg + g~ldg, geG.

Such maps are called gauge transformations.
Denote by B the unit ball centered at the origin of coordinates in

Rn. The point singularity problem in gauge theory involves finding
conditions under which a C°° solution of the field equations in B -
{0} extends to a C°° solution in B. The extension is effected via a
continuous (topology-preserving) gauge transformation [10].

Notice that if w = (n - l)/2, a version of (1.2) exists for any odd
n, although (1.3) is not useful unless n = 3. Since we do not use
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the indefinite Lagrangian «^4, and since the eigenvalues of 0\ are
nonnegative, we do not expect singularities in eqs. (1.2) to "integrate
out" (cf. §§2 and 3 of [4]). Thus we prove:

THEOREM 1.1A. Let FA e Lnl2{B) and φ e LP(B) for some p >
n/(n - 2), where B is an n-dimensional ball about the origin of co-
ordinates in Rn, n = 2k+l, k e Z+ - {1}. Let φ e Λ^
and FA e Λ2 (end is) satisfy in B - {0} the equations

I Ό\ΌAφ + {Σ,"jei eJ Fij(φ) = m2φ.

Then (FA, φ) is equivalent via a continuous gauge transformation to
a C°° solution in B.

The proof of Theorem 1.1 A requires that Lemma 2.1 of the fol-
lowing section be applied to φ, DAφ, and FA. In the latter two
applications the hypothesis qo > 1/2 of the lemma restricts its appli-
cation to the case n > 4. Thus the following 3-dimensional theorem
requires a different proof than the higher-dimensional case:

THEOREM LIB. Let (FA, φ) be a C°° solution of eqs. (1.2) in B-
{0}. Suppose that FA e L3/2(B) and φ e LP(B) for some p > 3.
Then (FA , φ) is equivalent via a continuous gauge transformation to
a C°° solution in B.

2. We now prove the results stated in the previous section. We
denote by C positive constants the value of which may change from
line to line.

We require the following result from elliptic theory:

LEMMA 2.1 [7]. Let u(x) > 0 be C°° in B - {0} and satisfy there

Au + f(x)u>0

for f e Lnl2{B). If for 1/2 < q0 < q we have u e L2n^

then V(uq) e L2(B) and in a sufficiently small ball B, \fy e ^
u satisfies

ίη2\Vuq\2dx < C !\Vη\2u2qdx.
JB JB

Notice that the test function η in Lemma 2.1 is not required to
vanish in a neighborhood of the puncture.
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We begin by proving Theorem 1.1 A.
Apply Lemma 2.1 with u = \φ\, f = C\F\, q0 = 1/2 + e, and

q = n/2(n - 2) + e. We conclude that Vuq is in L2(B) and apply
Sobolev's inequality to obtain a better LP estimate for \φ\. Iterating
the lemma with new values for go and q we find in a finite number
of steps that φ G Lr(B) for any finite value of r.

LEMMA 2.2. Under the hypotheses of Theorem 1.1 A, DAφ e L2(B).

. Integrate DAφ by parts against DAξ, where £ = (ηη)2φ,
0 < τ / < l , 0 < l 7 < l ,*/(*) = 0 Vx : |JC| < <J. (In fact */ and 7/ can
both be chosen to be radial functions.) We obtain from the Young
and Holder inequalities

ί \DAφ\2{ηη)2dx <2ε ί \DAφ\2(ηη)2 dx
JB JB

2ε~ι [ \Vηη + ηVη\2\φ\2dx
JB

We can choose rj = ηW so that ψ] -» 1 and ||V^(ί)||L» ^ 0 as
δ -> 0 [7]. We find that in the limit

f\DAφ\2η2dx
JB

< 2/e (κf \Vη\2φ2 dx + lim

-2) ( β ) < 0°

Choosing η(x) = 1 for x € B c B completes the proof of Lemma
2.2.

Notice that the scalar ψ = \DAφ\ + 1 satisfies

(2.1) Δ ^ + C( |^ | 2 + | ^ | ) ^ > 0

in B - {0}. Apply Lemma 2.1 with u = ψ, f = C(\φ\2 + \FA\),
qo = (n - 2)/n, and q = 1. The hypotheses of the lemma are satisfied
provided n > 4. Reasoning exactly as in the case u = \φ\ we conclude
that DAφeLr(B) for any finite r.

The scalar function v = \F\ + 1 satisfies

\φ\\DAφ\)v>0
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in B - {0} . Apply Lemma 2.1 with u = v , / = C(\F\ + \φ\ \DAφ\),
q0 = [n - 2)/4, and # = n/4. Again we find that the conditions of the
lemma are met whenever n exceeds 4. We conclude that F e Lr{B)
for any finite r.

Making a continuous gauge transformation to a gauge in which A
is a weak solution of an elliptic system, we easily complete the proof
by the methods in Chapter 5 of [2].

We now prove Theorem LIB.

LEMMA 2.3. The curvature FA is in LP(B) for 3/2 < p < 3/(2-δ),
δ > 0, and (FA, φ) is a weak solution of (1.2) in all of B.

Proof. We argue as in §§3 and 4 of [8]. Defining h as in (1.3) we
observe that inequalities (1.5) and (2.1) imply that h satisfies

(2.2) Ah + Ch2>0

in B - {0} .
Decompose #-{0} into a countable union of 3-dimensional annuli

Vp = {x\p/2 < \x\ < /?}, 0 < p < 1. The conformal dilation y =
p~ιx carries Vp into the "reference" annulus V = {y\l/2 < \y\ < 1} .
Both the field equations (1.2) and the norm ||A||L3/2/5x are invariant
under this dilation.

Let yo be a point on the sphere \y\ = 3/4. Integrate Vh by parts
against Vξ, where

for λ a sufficiently small positive number. By Young's inequality,

(2.3) / IVA3/4|2 dy < Ca~2 ί h^1 dy

provided ||A||L3/2(5( , < γo. (This can always be arranged due to

the conformal invariance of the field equations and of this norm; see

Lemma 1.1 of [8].)
Using (2.2), we can apply Theorem 5.3.1 of [2] with U = /ι3/4,

w = U4/3 to conclude that

Scaling this inequality we obtain

\x\2h(x)<C\\h\\Lyi{p/2<M<p)<γ.
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We can apply Uhlenbeck's broken Hodge gauge construction [10]
using weighted norms as in [8]. Write B - {0} = \J%\ U,, where (7;

are 3-dimensional annuli centered at the origin: £/,- = {x\l/τι < \x\ <
1/τ'"1}, 1 < τ < 2 . Then

fadx = [ {A>,irA{\x\°FX))dx
u, Ju,

- ί 4
ι~ι Jsι

[
Jsι~ι Jsι

= I\ + h+ boundary terms.

But
Ix< ί \x\a\Al\^\2dx < ί \x\a\Ai\2dx+ ί \x\a\φ\4dx.

Ju1 Ju1 Ju1

Using Lemma 4.5(e') of [8] we conclude that for any a > 1

(2.4) f \xnFA(x)\2dx< ί \x\"\φ\*dx + κ ί \FA\
2dS,

J\χ\<\ J\χ\<ι J\χ\=i

where K is a positive constant. Writing (2.4) as a diίferental inequality
we find that

ί \x\a\FA(x)\2dx<CrP
J\x\<r

with β > 0 and C, β independent of a. Putting these estimates
together we obtain

| J C | 2 F ^ ( X ) < Crβ,

from which the lemma follows by integration in spherical coordinates.

By Lemma 2.1, φ is a weak solution in all of B. Lemma 2.3 implies
that the curvature term FΛ in the second of inequalities (1.5) satisfies
condition (5.13) of [2]. Using Theorem 5.3.1 of [2] we conclude that
\φ\ is bounded on compact subdomains of B.

Lemma 2.3 also allows us to make a continuous gauge transforma-
tion to a gauge in which

(2 5)

for some ε > 0. That this is possible follows from [11]. Following
[10] we call any gauge in which (2.5) holds a Hodge gauge. In the
remainder of the proof we assume that such a gauge has been fixed.
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LEMMA 2.4. The connection A is bounded in B.

Proof. Since d*A = 0 we can write

(d*d + dd*)A = J(φ) - \d*[A, Λ] - * μ , *FA]

in B - {0} as a consequence of the first of eqs. (1.2). Then in this
region the scalar u = \A\ + 1 satisfies

-An < f{x)u, where / = C(\φ\2 + \VA\ + \FA\).

Applying Sobolev's inequality to (2.5) we find that

Apply Lemma 2.1 with qQ = (3+2ε)/(6-4ε) and q = (9+6ε)/(6-4ε)
to conclude that uq is a weak H12 subsolution in B. In addition,
since / e LP(B) for some p > n/2, Morrey's condition ((5.1.3) of
[2]) is satisfied automatically (by integration in spherical coordinates
and the Holder inequality). Thus we apply Theorem 5.3.1 of [2] to
conclude that A is bounded on compact subdomains.

The proof of Theorem 1.2 is now completed as in [3] by invoking
classical theorems of Hildebrandt-Widman and Schauder for bounded
weak solutions of elliptic systems.
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