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UNIFORM ASYMPTOTICS
FOR REAL REDUCTIVE LIE GROUPS

P. C. TRoMBI

Let G be a real reductive Lie group, 6 a Cartan involution of
G,and B = NvoMO1 a fixed minimal parabolic subgroup of G.
Fix H a 0O-stable Cartan subgroup of G, and assume that if H =
H+H;\ is the decomposition of H relative to 6, then H_ C A4y. Let
x € H. , then following Harish-Chandra, we introduce the functions
of type II(x). It is known that the positive chamber A,(B) can
be covered by sectors Ay(B|Q), where O varies over the maximal
parabolic subgroups of G which are standard with respect to B . Let
Q = NM be such a maximal parabolic for which the split component
of M can be conjugated by an element of G into H_ . We show that
given a function ¢(x, 1) of type II(x) there exists an asymptotic
expansion (along Q) for this function with the following properties:
first the partial sums uniformly approximate the function as 1 varies
over H_ ,and x varies over Ay(B|Q), and second, the terms in this
sum are essentially functions of type II(¥) on an approximate Levi
subgroup of M .

Introduction. For this introduction we shall let G be a real reductive
Lie group satisfying some restrictive conditions which are explained in
the next section; this class of groups contains all connected semisimple
groups with finite center. Fix a maximal compact subgroup K of G,
a Cartan involution 6 fixing K pointwise, and a finite dimensional
double unitary K-module (¥, 7). One of the central problems in the
harmonic analysis of reductive groups has been the characterization
of the Fourier transforms of the Schwartz spaces of 7-spherical func-
tions which are contained in LP(G), for p > 1. The inverse transform
in these characterizations is defined by integrating a function on the
Fourier transform side against the matrix elements of a parametrized
family of representations, and showing that these so called “wavepack-
ets” are rapidly decreasing on (. This analysis is therefore governed
by the asymptotic behavior of the matrix elements. The estimates that
one needs for these functions have to be uniform in the parameter so
that one can transfer the asymptotic behavior of the matrix elements
to their wavepackets.

For p = 2, the characterization goes back to Harish-Chandra [1],
[21, [5], [6], [7]). One of the fundamental techniques he used was
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that of approximating the matrix elements by their so called con-
stant term; specifically one considers series of unitary representations
parametrized by the duals of certain abelian subgroups embedded in
G . The 1-spherical matrix elements of these representations are func-
tions on G which depend on a parameter in the dual group. The
constant term roughly speaking is a function of the same type as the
matrix element but defined on a reductive subgroup M of G hav-
ing dimension strictly smaller than that of G, but of the same class
as G; it represents the leading term describing the oscillations of the
matrix elements at infinity on G, and the approximation is uniform
in the parameter. If one wants to extend the Harish-Chandra theory
and obtain the characterization of the Schwartz spaces corresponding
to LP(G), p > 1, the technique of the constant term is no longer ade-
quate; it becomes necessary to construct a full asymptotic expansion at
infinity. One wants a uniform asymptotic expansion for the matrix el-
ements, which is an exponential sum with the following properties; (i)
they have partial sums approximating the matrix elements very closely
(in a sense we describe more fully below) uniformly as the parameter
varies over the dual group, and (ii) the coefficients of the series are
functions of the same type as those being approximated, but defined
on the subgroup M mentioned above. In Trombi and Varadarajan [1]
such an expansion was obtained for the spherical principal series, thus
extending the Harish-Chandra constant term (Harish-Chandra [1], [2])
for the case when V' = C, and 7 is the trivial double representation.
In Trombi [1] such an expansion was obtained for general (V, 1),
but for G of real rank one. This paper is the higher-rank-extension
of this last paper. We shall explain the exact nature of our results
presently; first we shall make some conventions and introduce some
concepts and notations which we hope will facilitate the exposition.

Let B = NyM, be a fixed minimal parabolic subgroup of G such
that G = BK ; A will denote the split component of M. We adopt
the convention used throughout the paper that subgroups of G will
have Lie algebras denoted by the corresponding lower case German
letter; subspaces u of g will have duals denoted by u*, and com-
plexifications denoted by uc. If u is #-invariant, then we shall write
uy for the +1-6-eigen subspaces of u. With these conventions, let
ho be a @-stable Cartan subalgebra such that by _ = ap. Further, we
shall denote the universal enveloping algebra of gc by U(gc), and
more generally for u a subalgebra of g, we shall let U(uc) denote
the subalgebra of U(gc) generated by uc and 1. In this case we let
3(u) denote the center of U(uc).
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Now let us describe the unitary representations of concern to us.
Fix P a cuspidal parabolic subgroup of G such that

P=NpMpCcB, and G = PK.

Denote the split component of Mp by Ap so that ap C qp, and
Ap = expap is abelian. Suppose that o is a discrete series repre-
sentation of Mp,and A € (—1)!/2a} ~ Ap. Then one can induce the
representation o®e* from P to G, the tensor product being trivially
extended from Mp to P. The resulting unitary representation of G
will be referred to as a cuspidal principal series representation.

Let o, (Mp, tp) denote the finite dimensional Hilbert space of 7p-
spherical (t7p = 7|knp,) matrix elements of g . For ¢ € o (Mp, tp)
we put

Ep(x,9,4) =/ImM . t(k~ Y p(kx)e P H (k) gf

where @p denotes the extension of ¢ to a right t-spherical and left
Np-trivial function on G; recall the above equalities G = PK =
NpMpK . These functions will be referred to as Eisenstein integrals.
From their definition it is easy to see that they are 7-spherical and in-
finitely differentiable functions on G ; they are the 7-spherical matrix
elements of the cuspidal principal series of G induced from o ® e*.
These are the parametrized functions described above whose uniform
approximation is the main concern of this paper.

Our expansions for an Eisenstein integral will be obtained on certain
“sectors” of G which we now want to describe. Let 4y(B) denote the
positive chamber in Ay corresponding to B. Then we have

G = K cl 4y(B)K.

It follows that growth behaviour of 7-spherical functions on G is com-
pletely determined by their restrictions to the subset cl 4o(B) of the
vector group Ay, Ag(B) being the exponential of the positive cone
ag(B) in ag. Directions to infinity in ag(B) are parametrized by
subsets of the simple roots, (B, 4y), of the pair (B, Ap). A subset
F c X(B, Ap) determines a subcone of ag(B) which can be described
as follows; F defines a standard (with respect to B) parabolic sub-
group, Pr = Ne Mg of G. Let pp, denote half the sum of the roots
of (B, Ap) which do not vanish on ar, the split component of mg ;
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where
afF = ﬂ ker(c).
a€F
The subcone determined by F is defined by
ao(B|Pr)

= {H € ao|a(H) > ppr(H), Vo a root of (B, Ay) > afs, # 0};

u is some sufficiently small positive real number. Ay(B|Pr) =
exp ag(B|Pr) is what we shall refer to as a sector of G. If B €
X(B, Ay), and F = X(B, Ap)\{B} is a maximal proper subset of
X(B, Ap), then Pp is a maximal parabolic subgroup, and ay(B|Pr)
is essentially (modulo the split component a; of g) a compact set
crossed with a half line {tH : ¢ > 0} where

Hear, and B(H)=1.

We can choose a fixed u above so that

Ao(B) = | 40(BIQ),

QDB

the union taken over all maximal standard parabolic subgroups Q.

Fix such a maximal parabolic Q; let Q = NM, with 4 denot-
ing the split component of M, and H and B defined as above for
Q = Pr. We are interested in producing a “uniform asymptotic ex-
pansion” for an Eisenstein integral Ep(x, ¢, A) along the parabolic
QO as described above. We can now be more specific; this means that
we want an infinite exponential sum, with coefficients defined on the
sector Ayg(B|Q), whose partial sums approximate the Eisenstein in-
tegral uniformly as the group variable ranges over Ay(B|Q), and the
parameter A varies over (—1)!/2a} . Further we require that the coef-
ficients of our expansion are given by Eisenstein integrals on the Levi
factor M of Q.

Although our analysis shows that it is possible to determine an
asymptotic expansion for every maximal parabolic subgroup Q, we
can determine the leading exponents of this expansion, and make the
identification of its coefficients, only in the case that the split compo-
nent of Q is conjugate to a subgroup of the split component of P;
otherwise, (5.2) is our best result. We should point out that in the
exceptional case when Q fails the conjugacy condition with respect
to P, we have been able to obtain uniform estimates for the decay
of the Eisenstein integrals Ep(x, ¢, A) along the sector 4y(B|Q) in
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terms of the leading exponents of ¢ along B N M ; this result will
appear elsewhere.

Let us now formulate the principal results in this paper more pre-
cisely. We assume for all that is to follow that P and Q satisfy the
conjugacy condition on their split components. In this case we prove the
existence of an asymptotic expansion (“along Q”) for the functions
Ep(x, ¢, A) which uniformly approximates on A4g(B|Q) % (—1)1/2a3
If A is restricted to an open dense subset F"(x) C (—1)!/2a}, and
x =mexptH € Ay(B|Q), then this expansion has the following form

Y Ty n(m, A)e'SHrE=0 ), meM,

s n>0
where the first sum is over those elements of the little Weyl group
which have the property that s~1a C ap. We also show that given any
neZ,, there exists a partial sum of this expansion

ZZFS n(m, A)e'A=nB=r)H) = e M,

s n=0
which uniformly approximates ¢(mexptH ,A) as A varies over %" (x)
and mexptH varies over (essentially) Ay(B|Q). The error estimate
for the approximation is bounded by a constant times

[(m, A)|"dg(m)~"Ep(m)e™

where the first term of the estimate is a polynomial factor in m and
4, and other unexplained notation is as in §3. These results are stated
in a more precise form in Theorems 5.1 and 5.9. Theorem 5.9 is a
refinement of Theorem 5.1 which identifies the leading exponents of
our expansion along Q. This shows in particular that our expansion
has as its leading terms just the Harish-Chandra constant term along
Q (Harish-Chandra [3]) and hence, that our expansion is an extension
of Harish-Chandra’s constant term to a full asymptotic expansion.

The second principal result of the paper, Theorem 7.10, shows that
the coeflicients of our expansion along Q are given by linear combi-
nations of derivatives of Eisenstein integrals on the reductive group
M , the Levi factor of Q. Assuming that Q D P, A € ap, A perpen-
dicular to a*, and 4 € a*, then we have by the principle of induction
in stages that

Eo(x, Epnm(®, A), )= Ep(x, P, A+ 1),
the equality holding for all t-spherical matrix elements of . Apply-

ing Theorem 7.10 to this last equation can then be viewed as a gener-
alization of Harish-Chandra’s formula for the limit of an Eisenstein
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integral along an associated parabolic direction (cf. Harish-Chandra
[4], Theorem 18.1).

As we pointed out above, the results of this paper generalize results
of Trombi [1], which were obtained for groups of real rank one. They
are also a generalization of the first part of Trombi and Varadara-
jan [1] which considered the case where (J', 7) is the trivial bi- K
module. These earlier results were used in the investigation of the
harmonic analysis of the L?-Schwartz spaces #7(G, 1) (cf. Trombi
and Varadarajan [2]) and we envision our results playing essentially
the same role.

We shall now explain the mechanics for generating our uniform
asymptotic expansion. The techniques used in Trombi and Varadara-
jan [1] and Trombi [1] are different from those used in this paper.
In the general case treated here the iterative technique of those two
papers will not work. We follow instead a method due to Wallach [1]
but adapted to the task of getting uniform estimates.

Fix a maximal parabolic subgroup Q = NM D B let the notations
A, B, H, and pp be given the same meaning as above. We begin
by observing that the Eisenstein integrals are eigenfunctions for 3(g).
The first step in the analysis is to show how to construct from an
Eisenstein integral, a vector function whose derivatives by elements
of 3(m) are perturbations of eigen-equations. The definition of this
vector function is best understood by first making some general obser-
vations which we can then apply to the derivatives of the Eisenstein
integrals.

Let W be a Harish-Chandra module, and let Q = NM be the
parabolic opposite to Q. It is known that for any k& € Z, the quotient

wakw

is locally a-finite. In the case k = 1, Harish-Chandra determined a
basis for this a-action when the module W has infinitesimal character
with Harish-Chandra parameter A € ho.c- To describe this basis,
observe that m is a reductive subalgebra of g which contains by . Let
u be a reductive subalgebra which contains §y, and assume that a,,
the split component of u, is contained in by, _ . We shall let

Hugp, © 3(w) — S(ho,c)

denote the Harish-Chandra isomorphism of the center of the envelop-
ing algebra over uc with the W'-invariants in the symmetric algebra
over ho c; Wo denoting the Weyl group of the pair (g, ho), and Wy
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denoting the subgroup which fixes a, pointwise; this subgroup can be
identified with the Weyl group of the pair (u, o). With this notation,
we see that there exists an algebra injection

12 3(g) > 3(m)
which is essentially defined by the following equation (recall that u, /b,
and Uy are isomorphisms, and clearly S(ho)%o c S(ho)™ ),
.ug/bo(z) = Aum/bo(,u(z)) > z € 3(9)-

Harish-Chandra showed that 3(m) is a finite free-module over u(3(g))
of dimension r = Wo/W". Let vy =1, ..., v, be a basis for this
module, and recall that a C 3(m). Let 1 <i<r,and H be as above.
Then there exists unique zy.;; € 3(g) such that

Hv;i =Y u(zy . ij)v;.
J
Moreover, if we twist elements in U(m¢) by the quasicharacter dy :
M — R which appears in the estimates above, say
'C=dg'olody, { € U(mc),
then the above action can be written as

H'vi=Y 'u(zy.ij)v; — p(H)'v;,
J

and the twist is such that
Zuij— ' W(zH . ij) =&n. i € U (ge).
In particular if w € W/aW , then

H ’in = ZZH;ij 'vjw - p(H) ’v,-w
J
=ty (zm i A) "vjw — p(H) 'vy,
J

where gy (zg:i;) is considered as a polynomial on bj  and the
notation

Koo, (ZH :ij 0 A)
denotes the evaluation at A. Clearly,

! !

nw, ..., vw
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is a basis for the local a-action. If A is a regular element then the
matrix operator

B(A) = (ugpp,(zu 5 A) — p(H)dij)

has eigenvalues s;A(H)— p(H) where {s;|1 <i <r} isacomplete set
of representatives for Wy/W;".

Now suppose that ¢(x, 1) = Ep(x, ¢, A) so that for all z € 3(g)
we have

o(x; 2z, A) =g (z2: X3)o(x,4), A€apc,

where the notation “; z ” denotes that z is differentiating the x vari-
able, and X; denotes the Harish-Chandra parameter in hg o for the
homomorphism of 3(g) determined by ¢. We can then reduce this
system of equations satisfied by the function ¢ to a first order vector
equation as follows; let e;, ..., e, denote the standard basis for C”
and put

r
D(x,A) =) 9(x;'v)®e;.
izl

Now observe that for 1 < i <r we can write

i(-e(m exptH;'v;, A) = p(mexptH; H 'v;)

dt
=Y p(mexptH; (zg.ij — . ij) 'vj — p(H) 'v;)
J
= {ttgsn,(zu:ij - Xp) — p(H)d;j)p(mexptH ; 'v))
J

—@(mexptH; ¢y .ij'vj)}.
It is a simple matter now to show that & satisfies an equation of the
following type:

d®(mexptH, 1)
dt

=I'(X;)®(mexptH, L)+ ¥Y(mexptH, A).

Here
I'(X3) = 1® B(X;),

and the function ¥, which will be referred to below as the perturbation
term, is formed from the terms

dp(mexptH;Cy.ij, L) ®e;.

The next step is to obtain estimates for the function V.
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The &y .,; belong to the ideal nU(gc). If Y €n, and n € U(ge),
then
o(x;Yn, ) =p(Y*:x;n,4),
where Y* denotes the adjoint action of x on Y, and the notation
“Y*:” denotes the right G-invariant derivative determined by Y~*.
If x=mexptH € Ao(B|Q), then it can be shown that

Y*— 0, ast+— oo,

the decay being of the order of e¢~/. Combining this result with the
a priori estimates for the functions ¢ = Ep, we easily show that
IW(mexptH, A)|| is bounded by a constant times

l(m, A, )| e I+PUEDL g (m)~ 1B (m),

the estimate holding for mexp¢H essentially varying in Ay(B|Q),
and A € (—1)!/2a} . We have a similar estimate for ||®(mexptH, A)||
with exponential term
e_'p(H)t :
so we pick up extra exponential decay for [|[¥(mexptH, A)| thanks
to the right derivatives from the ideal nU(gc).
The above differential equation is equivalent to the integral equation

O(mexptH, ) = exp{tI'(X;)}D(m, 1)
+ /Ot exp{(t — w)I['(X;)}¥Y(mexpuH, A)du.

Let Ey(4) (resp. E+(4)) denote the projection which maps V ® C”
onto the eigen-subspaces of I'(.X;) which have zero (resp. positive or
negative) real part. Let ®y(m, 1) equal

Eo(4) exp{tI'(X;)}@(m, 4)
+ / Ey(A) exp{(t — )T (X;)}¥W(mexpuH , A)du.
0

The integral in this expression converges thanks to the estimate of
|W(mexpuH, A)||. Do(m, ) is essentially Harish-Chandra’s con-
stant term; more precisely if we write

.
Do(m, 2) =y Do i(m, 1) ®e

i=1
then the constant term of ¢(m, A) along Q is the function gy(m, 4)
= (DO, 1 (m s A) .
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The error estimate |[p(mexptH, A)—go(mexptH, A)| is no worse
than

|®(mexptH, ) — Dg(mexptH, A)|
which in turn is bounded by,

“EO(A)(I)(m exptH, }') - (I)O(m exptH, A')”
+ |E+(A)@(mexptH , A)|| + |[E-(A)P(mexptH, A)|.

Multiplying the above integral expression for ®(mexptH,A) by
Ey(4) one can easily estimate the first term in this last expression and
bound it by an error estimate of the type described above with n = 0.
The remaining two terms also satisfy similar estimates but they re-
quire more work. What is important to point out about the estimates
of these terms is that the exponential factor in their estimates is deter-
mined by two things: first the rate of decay of ||¥(mexptH, 4)|| and
second, the eigenvalues of I'(X;) whose real parts are negative; the
positive eigenvalues cannot contribute to the limit because of a priori
estimates satisfied by the functions ¢ = Ep.

As already mentioned above, ¢, gives the leading terms of our
expansion, that is, the terms corresponding to n = 0. The estimates
we have described above lead to the desired “uniform estimates” for
the partial sum

Z T o(m, A)et(si-PQ)(H).
N

To this point we have taken k = 1 in ¥ . We now wish to obtain the
coefficients I's , for n» > 0. To do this we must first obtain a basis
for the local a-action on W/a*W for any Harish-Chandra module
W . We do this by extending the set of elements

{'vi,...,"v}

defined above. The elements we add are obtained as follows. First
note that from the above we have

Hvi =) {zpg.ij'v; — &u.ij'v} — p(H) v
J

Also recall that &y .;; €nU(gc). Let Y €n and 5 € U(gc). Observe
that we can compute the a-action on expressions of the form Y'v;n
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as follows:
HY 'vin=[H, Y]'vin+ YH 'v;n
Y —a(H)Y. 'vin

a€A(B, 4))
a(H)20

+3 (21245 - p(H)S)Y v (mod R2U(g)),
J
where Y, €g, ={X €g|[L, X]=a(L)X,VL € ay}.
Fix a basis for @, say

{Yla Y Yn}a
with Y; belonging to some g,, y € A(B, Ap). We can then write

n
CH.ij = Z Yien (ij).
k=1

Note that

V) = 1= ”U,‘ = 1.
It should be clear from the above calculation and the last equality that
if w € W/a2W then the a-action on w is contained (assuming that
W has infinitesimal character) in the subspace spanned by the vectors

,Ulw 9 ey Ivrw s U {Yklvl’?k(ij)w}-
i,ij’l
Hence we can continue to expand the set {'vy, ..., 'v,} for any k.

In Lemma 2.1 we obtain these elements which we denote u;;. 5 with
1<i<r,1<j<dy,and M e Z". Following the above, we
form the vector functions ®(x, 1) and ¥(x, 4) using the derivatives
u;j:  and their “error terms” &;;. 5 € waU(ge). These functions
satisfy the same type of first order differential equation as before.
Suppose then we fix k sufficiently large. The eigenvalues of I'(X;) can
be linearly ordered by their real parts independent of 1 € (—1)!/2a}
(cf. §5). They are all of the form

siX;(H)—p(H)- (B, M), 1<i<r,MeZ},oM)<k,
where undefined notation is as in §2. Choose zy(4), one of these
eigenvalues such that
~k — p(H) <Rzo(}) < —n - p(H), A€ (-1)"2a}.
Let E¢(4) now denote the projection onto the eigenvalues of I'(X;)
whose real part is greater than or equal to the real part of zy(4), and
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E\(2) denote the projection onto the remaining eigenvalues of I'(X;);
E)(2) takes the place of E.(4) above. Note thatif Y =Y, ---Y; €

W, neU(ge), and x = mexptH € Ay(B|Q), then
p(x; Yn,A)=e EDEym x ),  I=(if,..., i)

Consequently we can estimate [[¥(x, A)|| as above with the exponen-

tial term now given by
e~ (k+1)+p(H))t

Define ®y(x, A) as above; the above estimate of ||¥(x, A)|| and the
fact that the eigenvalues in the image of Ey(4) have real part greater
than or equal to that of :zy(A) where Rzo(A) > —p(H) — k allows
us to easily show that the integral defining ®y exists. These same
estimates and bounds on eigenvalues also gives us “uniform estimates”
for (Lemma 5.3)

|Eo(A)®(mexptH , 1) — ®o(mexptH, A

and (Lemma 5.2)
|E\®(mexptH, A)|

of the type stated in the description of our principal results. Write the
function &, as

Z‘DO’,‘(X 5 /1) ® é;.
i=1

Then
q)O(x: j') = q)O,l(xa )“)

is the sum of the terms of our asymptotic expansion up to the exponent
zo(A) . These results are developed in §§2 through 5.

Section 6 contains some facts concerning Eisenstein integrals. The
material for this section is a slight regurgitation of several sections of
Arthur [1].

The material in §7 was directed by the analogous results in my joint
paper with V. S. Varadarajan [1]. One final remark; asymptotic ex-
pansions “along the walls of Ay(B)” for the matrix coefficients of a
single representation have existed for some time; they were developed
by Harish-Chandra around 1960, becoming available recently in his
The expansion (5.2) already appears in Wallach [1]; our contribution
is to observe that using the techniques of Wallach [1], we are able to
carry the dependence of the Eisenstein integrals on the A-parameter
along. In this way we are able to give the precise dependence of the



UNIFORM ASYMPTOTICS FOR REAL REDUCTIVE LIE GROUPS 143

coefficients and exponents of the asymptotic series on 4 and make our
error estimates uniform in both variables. For technical reasons and
with a view to possible future applications, we have carried out our
uniform asymptotic analysis not only for the Eisenstein integrals, but
more generally for any family of eigenfunctions satisfying the same
weak estimates as the Eisenstein integrals. These are the functions of
type II(x) and in doing this we have followed Harish-Chandra [6].

1. Notation and assumptions. Let G be a reductive Lie group, and
K a fixed maximal compact subgroup. Lie subgroups of G will be
designated by upper case Roman letters, while their Lie algebras will
be denoted by the corresponding lower case German letter. f mC g,
then U(gc) will denote the universal enveloping over gc = g ®r C,
and U(mc) will denote the subalgebra of U(gc) generated by 1 and
mc. We assume that G and K satisfy the following general axioms:
(1) Ad(G) C G¢, G¢ the complex adjoint group of gc; (2) if Gy
is the analytic subgroup of G corresponding to g; = [g, g], then the
center of G, is finite; (3) if G° denotes the connected component
of G, then [G: G° < o0. In this case, G and g are equipped with
a Cartan involution which fixes the elements of K and t; we shall
not distinguish between the two and simply designate it by 6. The
corresponding decomposition of g into +1 and —1 eigenspaces of
6 will be written as

g=t+s.

We have then that
G = Kexps.

If x€ G and x = kexpX with kK € K, and X € s, then we shall
write
logx = X.

If P is a parabolic subgroup of G, then it has a decomposition
P = NpMp, and P = NpApM}, where Np is the unipotent radical
of P and Mp is areductive subgroup of G which is 6 stable, and 4p
is the split component of Mp. We shall call Mp the Levi component
of P and say that a subgroup M of G is a Levi subgroup if M =
Mp for some parabolic P. Further we shall say a Levi subgroup is
minimal (resp. maximal) if the corresponding parabolic is minimal
(resp. maximal).

Suppose that M; C M are two Levi subgroups of G. We shall de-
note the set of Levi subgroups of M which contain M; by ZM(M;).
Let us also write #*(M;) for the set of parabolic subgroups of M
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which contain M;, and 2™ (M) for the set of groups in FM(M;)
for which M, is the Levi component. Each of these sets is finite. If
M = G we shall usually drop the superscript G in the above nota-
tions. If R € #M(M,) and Q € L(M), then we shall denote by
Q(R) the unique subgroup in #(M;) which is contained in Q.

We choose and fix a minimal Levi subgroup M. If M € ¥ (M,),
let Kyy = KN M. For induction we note that the properties of the
triple (G, K, My) are inherited by the triple (M, Ky;, Mp).

If P e (M), then it is known that

G = PK = Np(Mp Nexps)K = Np(M} Nexps)ApK.

If x € G, then let np(x), mp(x), kp(x), up(x), and ap(x) denote
elements of Np, Mpnexps, K, M }, Nexps, and Ap respectively
such that

X = np(X)mp(x)kp(x) = np(x)pp(x)ap(x)kp(Xx).

Let
Hp(x) = Hp, (x) = logap(x).
Suppose that P € #(M). We shall sometimes write Ap = Ay
and ap = ays. Associated to P are various real quasicharacters on

these two groups. One arises from the modular function dp of P. Its
restriction to Ap equals

op(a) = a*Pr = eZ/JP(loga)’
for a unique vector pp in a;,. We shall also put
dp(a) = aPr = ePr1084)

Let Ap = A(P, Ap) denote the roots of the pair (P, Ap), and Xp =
Z(P, Ap) denote the set of simple roots contained in Ap. If F C Ap
then we shall write Z(F) for the abelian subgroup of a} generated
by F, and Z,.(F) for the subset consisting of nonnegative integral
combinations of elements in F .

We fix a G-invariant, symmetric bilinear form ( , ) on g such that
the quadratic form

X —(X, 0(X)), Xeg,

is positive definite. Let (for any vector space V' over R let us write
Ve for Vg C)

bo,c=bs,cPao,c



UNIFORM ASYMPTOTICS FOR REAL REDUCTIVE LIE GROUPS 145

here we subscript objects associated to M by 0 rather than by M.
Then by cNg is a 6 stable Cartan subalgebra of g, and ( , ) is
nondegenerate on hy ¢ and

Hw— —(H,60(H)), HehycNg,

extends to a Hermitian norm on ko ¢. Then by restriction we obtain

a bilinear form ( , ) and a Hermitian norm | - || on both gy ¢ and
a5 c- If M € Z(My), then there are imbeddings ayr ¢ C ao,c and
ajs ¢ € a5 ¢ hence we can apply (, ) and | -|| to these subspaces.

By a singular hyperplane in aj,, for M € Z(Mp), we mean a
subspace of the form

{Aedyl4, B)=0}
for some root f of (G, Ay). If P € #(M), we shall write

a(P) = {Aea}|(B,2) >0, B €Ap},
ar(P) = {H € ay|B(H) >0, B € Ap},

and
Apy(P)={a € Ayla® > 1, B €Ap}.

Let M € £ (My) and let W (A,s) denote the Weyl group of the pair
(G, Aym). If Py, P, € F(Mp), then we shall denote by W(ap , ap)
the set of all distinct maps from ap into ap that are induced by
elements of W(Ayp).

We shall call a subspace b of aj a root subspace if it is of the form
ay, for some M € Z(Mp). If b is such a space and B € Z(M),
then put

Ay(B, Ag) = {a € A(B, Ap)|a not perpendicular to b},
and let us write Chamb(b) for the open connected subsets of the set
b' = {1 €b|(4, a) # 0 for some a € Ay(B, Ap)}.

It is known that the elements of Chamb(b) are in one to one corre-
spondence with the parabolic subgroups in % (M,) whose split com-
ponent is b.

Let B € #(My), F C Zg. Then we shall use the notation Br for
the unique parabolic subgroup containing B whose Levi component
is the centraliser in G of ap, r where

Ao, F = {H € aqp|a(H) =0Vae€ F}.
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Ifu=X,---X,€U(gc), with X, ..., X, € g, then we shall write
for f e C>®(G),
9" X X
flui x) = B5n 051 |5 o =0f(expsl 1+ €XDPSpXnX),
and
o X X
flx;u)= 35,05, s zof(xexpsl 1 expsnXy).

If L c R, then we use the notation L, for the nonnegative ele-
ments of L. If L is a finite set, we shall write |L| for the number of
elements of L.

Unless specified otherwise, the integrals over the unimodular sub-
groups of G will always be with respect to a fixed, but unnormalized,
Haar measure. There will be two exceptions. On the compact group
Ky, M € (M), we will always take the Haar measure for which
the total volume is one. The second exception concerns the groups
connected with the spaces ap,. On aj we will take the Euclidean
measure with respect to the fixed norm | -||. The exponential map
will transform this measure to a fixed Haar measure which is dual to
the measure we fixed on a;/.

2. Differential equations for eigenfunctions with regular infinitesimal
character. In this section we shall determine elements u;;.ar, &ij: m €
U(g) which will allow us to write a first order vector equation (Lemma
2.2) for a function ®(x) constructed from a 3(g)-eigenfunction ¢(x).
As the definitions of u;;. s and ¢;;. » are inductively given, we must
first establish some notation and make some choices of basis.

Let B € #(My), B = NogMy = N()A()M(; , be a fixed minimal
parabolic subgroup; henceforth all objects associated with B will be
subscripted by 0. We also fix Q € (M), Q@ D B, Q maximal,
Q = NM = NAM'. For ease of notation, we shall denote objects
associated to Q with no subscript; for example we shall write py for
one half the sum of the positive roots (with multiplicities) for ay in
b, and the similarly defined function for Q will be denoted by p. We
shall fix « € £(q, a), and H € a such that

(2.1) a(H)=1.

Let ho be a 6f-stable Cartan subalgebra such that hy C mgy, and
hor = hoNs = ag. Let ug denote the Harish-Chandra homomorphism
of 3(g) onto U(hoc)™o, where Wy = W (gc, hoc) , and the superscript
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W, denotes the set of invariants. As a C ag = hor then m D hy. De-
note the Harish-Chandra homomorphism of m (relative to by ¢) by
1 and let u;o9 be the canonical injection of 3(g) into 3(m) such that
#o(z) = pi(p10(2)) for all z € 3(g). 1 maps 3(m) into U(ho,c)™:
where W = W(m, ho,c). Wi can be identified with the subgroup
of Wy generated by the reflections sz such that g(H) = 0, H as
above. Let r = dimy () 3(m) = |Wo/W1l, and vy = 1, v2, ..., ¥
be a module basis for 3(m) over u;o(3(g)) . Define elements z;; € 3(g)
(1 <i, j<r) by the equation

r
(2.2) Hv; =Y pio(2i)v
j=1

Asin §1, let for me M!, ,and a€ 4,
(2.3) d(ma) = dg(ma) = e?lo89),
If n € U(mc) then we put
(2.4) 'm=d lonod,
as differential operators on MM .

Fix a basis {Y;, ..., Y,} for @ such that
(2.5) [H, Y]=-B:(H)Y;,

where f; € a* is a positive integral multiple of o. If M € Z} (where
Z, = {n € Z|n > 0}) we shall use the notation

(2.6) yM=yM...vM M=, ..., M)
where the product is taken in U(gc). We also use the notation

2.7) (B, M)(H) = ZMﬁ,(H

i=1

= YZ:M,-, woM)eZ> (B, M)(H) = w(M).

If V is a fixed finite dimensional complex vector space, A € b ¢
then &/ (G : V : A) will denote the complex linear space of all ¢ €
C>(G, V) such that

(2.8) zp =uo(z: Mg (z €5(9)).

Here uo(z) € U(ho,c) and we consider it as a polynomial function
on by ¢; the notation po(z : A) denotes the value of this function
on A.
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LEMMA 2.1. For each M € Z, there exists d = dy € Z,, and for

each 0 < j < d, there exists uj;.p € Ulge), &1j-m € ﬁg”l)U(gC)
(1 <1<, with k = 0(M)) such that for A€ bj ¢, if

Say t M(A) = o(Zay : A) = {(B, M)(H) + p(H)}buy
(0ay = Kronecker delta)
and p e/ (G:V :A), then

d
(2.9) Ew(m exptH; u;j. p)

r
= Zsia:M(A)¢(mexsz; uaj:M)
a=1

+ (p(methH; éij:M)
the equality holding for all m € M and t € R.

Proof. We shall proceed by induction on k = o(M). For k =0 let

vy, ..., U, be as above a module basis for 3(m) over u;o(3(g)). Set
dop =0 and
,
(2.10) uio:o="vi, &io.0= Z('ﬂlo(zzj) = Zij)Ujo: o
j=1

For H asin (2.1) we have
Hujo. 0 ="{(H — p(H))vi}

= {Zulo(zij)vj - P(H)”i}
= 'mo(zij)ujo.0 — p(H)ujp . 0

.
=Y {zijujo. o+ (mro(zij) = zij)ujo: 0} — p(H)tio: 0-

It is well known that &;5.0 € ncU(gc) and (2.9) holds for all ¢ €
Z(G:V:A).

Assume the existence of dyr, u;j.p, &j.a, forall M € Z} with
oM)=k, k>0. Let NeZ?, o(N)=k+ 1. We wish to define
the elements dy, u;;.n, &ij. n. First, for every M € Z'} such that
o(M)=k and i, j suchthat 1 <i<r, 1 <j<dy letus write

(2.11) Ejim= D, YKsg(i,j: M)
o(K)=k+1
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Letdik, ..., 04k, d = dg , be an enumeration of the distinct, nonzero
elements of the set {dgx(i, j: M)IM e€Z?, o M)=k, 1< j<dy,
1 <i<r}. We now use each of the terms d; to “build” r additional
terms as follows: put

(2.12) uij:n =Y uy. 0djn
Eijn=YN¢0. 00N

Then for H as in (2.1) we have
Huy .y =HY uj0. 008 = —(B, NY(H)uy .y + YN Huy. 0015

r
=—(B, NY(H)uj.n+ > zijuj .y + &1 n — p(H)uy . y.
j=1

(1<i<r,1<j<dy).

This last line follows from the above calculation in the k = O case.
As above we see that (2.9) holds forall p € Z(G: V : A). O

Letusfix k € Z;, and let dy =13,y <k du - We denote by T an
arbitrary complex inner product space of dimension d) . We choose
an orthonormal basis for 7, which we can index as {e;;. y|M € Z ,
oM) <k, 1<i<r, 1< j<dy}. Weshal identify linear
operators on 7, with their matrices relative to this basis. In particular
letusput with M eZ?, o M)<k, 1<i<r, 1<j<dy,

r
(2.13) Sk(A)eij;M=Zsaj:M(A)eaj:M-
a=1
Let
fi=m(v) (1<i<r).
Fix {sy,..., s} a complete set of representatives for Wy/W;. Let
A{ be a positive system of roots for A(gc, ho,c) and put
(2.14) AT =A§ NA(me, bo,c)»
oj=][a (j=0,1), @y =wo/o.
aEA;’
If A€by o, where
(2.15) O C—-{AEbO CICUO(A #O}
and if

(2.16)  eijim(A) =) falsiNeaj: m

MeZl,oM)<k,1<i<r,1<j<du),
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then
(2.17) Tx = P Ceij. (A
and

(2.18)  Sip(MNeij. m(A) = Xpr(siA)e;j . m(A)
(for all M, i, j as above)

where
(2.19) Xu(A) =AH) - (B, M)(H) - p(H).

We also define a nilpotent operator N; on T} ; to this end let us recall
in the definition of &;;. s that as u;9.0 = 1 then by (2.11) for all
NeZV, o(N) <k wecan write for 1 <i<r, 1</<dy,

d

(2.20) &in= Y, d_nli,l:Nuy.g,

o(K)=o0(N)+1 f=1
where npx = ngg(i,/: N) € {1, 0} and for each K only one nsg
(1 < f <dg) can be different from zero. Set
(2.21) njr.k(i, 1 :N)=01npk(i,[:N)
(d1; = Kronecker delta).

We now define N, by the following equation:

d, r
(222) Neejr.x=(1=0ko) 3. DY mir.xli,1:N)ey. n.
o(N)=0(K)-1 I=1 i=1

In this last equation the notation Jxp denotes the Kronecker delta
function on the set of all n-tuples of nonnegative integers. Finally,
set

(2.23) By, = Bi.(A) = Ni + Si(A).
LEMMA 2.2. Let p e/ (G:V :A), ay=exptH, me M, and set
(2.24) @ (m)= > o(m; uij. ;) ®eij:m
ij,M
Yi(m)= > o(m;&;.n)®eij:n
i,j,N
(o(N)=k,1<j<dy,1<i<Vr)
I'i (A) = 1® Bi(A) (1 = identity operator on V).
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Then @, ¥, € C°(M : V ®T;) and (with ® = &, ¥ = ¥,
I'=Ty)

(2.25) %@(ma,) =I'(A)®(ma;) + ¥(may).

Equivalently,
(2.26) ®(ma,) = Exp{tI'(A)}P(m)

+ /t Exp{(t — u)I'(A)}¥(ma,) du.
0

Moreover, if n1, 2, € U(me) then
(2.27)  ®(ny; may; np) = Exp{eT'(A)}@(n1c m; 1)

+ /Ot Exp{(t — w)T'(A)}¥(n,: may; ny)du

Proof. With the above notation we have from Lemma 2.1,

> o(mar; Huij.ar) ®eij: p
M

,
= ) ) Sia:m@(Mar; Usjiar) ®€ij:
i .M a=1
o(M)<k

dl(
+ Z Z anK(i’j:M)(p(mat;ulf:K)®eij:M

i,j,M o(K)=o(M)+1 f=1
o(M)<k

,
+ > {Zsia;Mw(maz;uaj:M)‘X’eif:M
i’ij a=]
o(M)=k

+¢(mat;fij:M)®eij:M}

r
= > D o(ma; uaj: 1) ®Sia: MEij:
ar], M izl

de. r
2 2 X mrkl M)
i,j,M o(K)=o(M)+1 f=1 =1
o(M)<k

X p(mag; ugr.x) ®eij. k
+ Z p(may; &ij-m) ®@eij: M.

i,j,M
o(M)=k



152 P. C. TROMBI

But we may rewrite the second sum occurring on the right-hand side
of the equal sign in the last equality as follows:

ko dg
> ZZ(P may; ugys. g)
o(K)=1 f=1 f=1
®Z Z Z”ﬂf ki, j:M)eij: u
i=1 o(M)=0(K)-1 j=1
k4
> Z?’(mat;upfzx)@Nkeﬁf:K-
o(K)=1 f=1 =1

Observe that as Ny(egr.p) = 0 we may start the summation over K
at o(K) = 0. It follows that

> o(mar; Hujj. ) ®eij. m
ij, M
= > p(mas; uaj: pr) ® Sklaj: M
a,j,M
+ Y o(ma;ugs.x) ® Neegyr. x
B.f.K
+ Y o(ma; & m)®eij m
ij, M
o(M)=k
Recalling (2.24) we see (2.26) follows; (2.27) follows since ¥(m) is
C>® on M. O

PROPOSITION 2.3. Let A€ by o, G =Gl(dy,C). Then if Bi(A)®
denotes the orbit of Bi(A) under similarity transformations by G we
have

Bi(A)° 3 Sk (7).

In particular, By(A) is semisimple and has eigenvalues Xys(s;A) with
1<j<r,MeZ?,and o(M)<k.

Proof. We proceed by induction on k. For £k = 0, By = Sp(A)
and the result is trivial (the semisimplicity follows from (2.16) and
(2.18)). Assume the result for k > 0. Let P, denote the minimal
polynomial of Sy, ; we wish to show that P, ; is also the minimal



UNIFORM ASYMPTOTICS FOR REAL REDUCTIVE LIE GROUPS 153

polynomial of By ;. Observe that we can identify 7} with a subspace
of T;,.; (which we again denote by 7;) defined by taking the span
of the vectors {e;;. ylo(M) <k, 1 <j<dy, 1<i<r};and that
Tiyy = Ty @ Typy (orthogonal direct sum) where Ty, is the span
of the remaining vectors e;;. ) not in T . Further we have

Sks1 + Nex )T € Ty, (Sk + NIt = (St + Niyn)l7, -

It follows that by the induction hypothesis that as P, (x) =
Pig1(x)Py(x), where Py i(x) = [](x—Xk(s;A)), the product taken
over a distinct set of representatives of the set {Xx(s;A)|o(K) =k+1,
1 <j<dg} then

Pres1(Ska1 + Ny DIT, = Prsey1 Sk + N1, P (Ske + Ny, = 0.

From their deﬁni_tions it is clear that

Niest(Tik1) € Ties Prgy1(Sk1)lT,, =0

and
(Sk+1 = Xm(S;A)DT C T, (Sk1 — Xpe(SiA) D) Typery C Tipeqs-
It follows that

P 1Sk + N 1) Tk = Pre( Skt + Niewt) Prck1 (Sk1 + Newrt) Tk
C Pe(Skcs1 + Niex 1) Tie + Pre(Sks1 + N 1) Prcke 1 (Ske1) Tk +1 = 0.

Therefore, as Ty.; = T} ® Ty, the minimal polynomial of By,
is just P, which implies that B, is semisimple, with eigenvalues
precisely those of S;;. O

Let forany neZ
Xn(A) = A(H) —n - p(H).

PropPOSITION 2.4. Let P.(A: x) be the minimal polynomial of
Bi(A) (Aehbg ¢) and let for n € wir(A) = {w(N)|N € Z} 5 0(N) <
k}

PI(A: x) =P (A x)/(x = Xu(A)).
Then

(2.28) Z(P,g(sjA: Xu(s;A))" P (sjA: x) = 1,

n’]
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here the sum is over a maximal set of pairs (n, j) such that X,(s;A) #
Xm(siA) for (n, j)# (m, i) with m,newt(4) and 1 <i,j<r.
Further, if

(2.29) En(A) = PI(A: Xu(A)"'PE(A: Be(A))
then

(2.30)  By(A)En(sjA) = En(sjA)Bi(A)
= Xn(sjA)En(sjA)  (A€bg )

Proof. (2.28) follows easily from the partial fraction decomposition
for polynomials with distinct roots applied to 1/P;(A: x) on noting
that as By (sA) = Bi(A) (s € W), then P(sA: x) = P(A: x).
(2.29) follows from the Primary Decomposition Theorem. m]

COROLLARY 2.5. A — Ey(A) is a rational map of by c into
End(Ty) and the map

A Py(A: Xn(A)En(A)

is polynomial.

3. Uniform estimates for functions of type II(y). We begin this
section by introducing a class of functions which we are able to ap-
proximate by an asymptotic expansion. This class contains the ma-
trix elements of cuspidal principal series representations, the so-called
Eisenstein integrals. The introduction of this class follows Harish-
Chandra [6]; it also is done for notational convenience; it’s definition
is a characterisation of those properties of Eisenstein integrals which
we will need for later work.

We now fix a cuspidal parabolic subgroup P = NpMp, P standard
with respect to B and we assume that W(a, ap) # 3. Let h C mp
be a O-stable Cartan subalgebra such that hg = ap (hr = hNs).
An element x € (h1)¢ (b1 = hNt) is called singular if y(Hg) = 0
for some imaginary root 8 € A(gc, hc) and regular otherwise. Put
F = (-1)!2a}, and @ = @y, = [14-0 Hp where f >0 means that
the product is taken over some system of positive roots of A(gc, hc) .
Fix a regular y € (—1)!/2h} and extend it trivially to b; similarly,
extend any element of S = a} trivially to h (note that our notation
is nonstandard and nontypical for this paper as S is not the com-
plexification of % ; however, it avoids a lot of subscripting and will
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be mostly used in this section). Let Z(x) denote the subset of F of
those elements such that @(x +4) # 0 and set F'(x) =7 NFZ).
Then #'(x) is an open dense subset of # .

As we have assumed that P is standard with respect to B, then
mp contains both § and hy. It follows that there exists y € G¢, the
complex adjoint group of gc, such that y centralizes hg = a and
bt = ho,c. Put X; = (x+4) for Ae F. Thenif A€ F(x) it is
clear that wo(X;) #0.

Let 9 = F(apc) ® # () (if W is a vector space we shall denote
the symmetric algebra over W by .#(W); we also consider elements
of #(apc) as polynomial functions on ajp., and #(F) as deriva-
tives of functions defined on the Euclidean space ), g1 ® & €
U(gc)® = U(ge) ® U(ge), and let ¢ € C®(G x .F: V). We put for
pPOUED

p(x,A;p®u)=pl)o(x,A;u),

(81®82®pQup)(x, i) =0¢(&1: Xx; &, A, p®u).
Further, we put (7(gc) =U(gc)*®2,and for D e (~J(gc), reR set

Sp.r(9) = sup |[Dy(x, HIE (x)|(x, ),
GXF

where if x = xo(x) exp Ho(x)no(x) = kexp X, with k, xo(x) € K,
Hy(x) € ap, no(x) €ng, X €5 we let

(3.1) E(x)= /K PN g |(x, )] = (1+ 0 ()1 + A

and
o(x) = || X].
If FcU(ge), |F|<oo,let

Sk, r(9)=)_ Sp.r(
DeF

A function ¢: G x F — V will be called a function of type II(x) if
the following conditions hold:

(1) peC®(GxF: V).

(2) for any A € F, the function ¢;(x) = ¢(x, A) is 7-spherical.

(3) zg1 = o(z: Xp)p; (z €3(9))-

(4) For any D € U(gc), we can choose a number r > 0 such that
SD,r(?) < 00.
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Assume now that V' is a double unitary K-module, © = (7, 7,),
(kv = 1(k)v, vt(k) = vt (k). If x € G, we can write x =
np(x)ap(x)up(x)kp(x) where kp(x) € K, up(x) € M} N exps,
ap(x) € Ap, np(x) € Np, and we put Hp(x) = logap(x). Then
if w e C®(Mp:V :1), where we use the obvious notation for the in-
finitely differentiable, ¥ -valued functions on G which are t-spherical,
we define the Eisenstein integral Ep(x, ¥, A) by the equation,

(3.2) Ep(x, y,A)= / 1(k~yp(kx)eP P Hkx) gk
K

where wp is the function on G such that
wp(nmk) = w(m)t(k) (neNp,me Mp, keK).

We shall devote the next section to a more thorough investigation of
the properties of these important functions. For the present how-
ever, we content ourselves with the following observation, indicative
of the importance of functions of type II(x). If y € Susp(Mp, 7)
(the space of 7-spherical cusp forms on Mp (cf. §3)) and {y =
P, i (C 0w (/‘mp sy denoting the Harish-Chandra homomorphism
for the pair (mp, b)) then Ep(x, y, A) is a function of type II(x).
In fact we have the following lemma. Note that A € ¢ can be written
as A=Ar+ (—1)1/211 with A, A1 €ap.

LEMMA 3.1. Fix D € U(gc). Then we can choose r > 0 and a finite
set F C U(mp_c) with the property that

I(PEP)(x, v, Al < vr(¥)E(x)|(x, A)|" exp{collArlla(x)}

where ¢y > 0 and ¢y is independent of D, x, and A and the inequality
holds for all A€ Fc, w € C®°(Mp:V :1),and x € G. Here

vr(p) =Y sup 160115,
=3

and for any reductive subgroup L C G, Z; denotes the corresponding
elementary spherical function on L (c¢f. (3.1)).

We shall need one further standard result. For this result and the
proof of Lemma 3.1 the reader is referred to Harish-Chandra [3]. Let

(3.3) Ky=KnM, and *M =Ky cl(4o(B))Ky.
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LEMMA 3.2. (1) There exist constants Cy, rg > 0 such that
d(m)E(m) < CoEy(m)(1 +a(m))o  (meTM).
(2) There exist constants Dy > 0, qo > 0 such that
e Poloeh) < Z(h) < Doe~Po8M) (1 4 g(h))%  (h € Ao(B)).

Let
(3.4) Mt ={me M| ||Adn 5|l < 1}

where ||Adn |z|| denotes the Hilbert norm of the operator Ad,, re-
stricted to . Observe that

MY ctM.

Let
y(m) = yo(m) = || Adm [5].

LEMMA 3.3. Let k€ Z,, ¢ a function of type Il(x), and notation
as in Lemma 2.1. Given ny,mn, € U(mc), uy, uy € F () there
exists Fi C U(gc), |Fil < oo, 1 2 0 such that Sr, ,(¢) < oo, and
with a, = exptH we have

" le(ni mar; méij. n, A; ur)|
i N
o(N)=k

< Srn(@(m, &, e~ E VPG () By (m),
and

S Nlo(me mags mauij . pr, As )|
i
< Sk (@)(m, 4, O)]"e P (m) =18y (m),

where |(m, A, )] = |(m, A)|(1 + |t|) and the second sum is over M €
Z", olM)<k, 1<j<dy, 1<Li<r. Theinequalities hold for all
meMt, t>0,and L€ 5.

COROLLARY 3.4. Fix k € Z,. Given ny,n € U(mg), Uy, u; €
F(Fc) there exists S; C U(me)@, |S)| < oo, 51 >0 such that

Z |Ep(m: mas; m&ij. N, @, A uy)|
i,j, N

o(N}=k

<ws, 5 (0)(m, 4, t)[re”EFV=rDg(m) =18, (m),
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and

> NEp(m: mas; muij.p, @, A5 )|
ij,M
<ws 5 (@)l(m, 4, t)[1e 2 d(m)~ By (m),
the second sum is over M € ZL, o(M) <k, 1 <j<dy, 1<i<r.
The inequalities hold for all me M*, t >0, ¢ € Zusp(Mp, 1), and
LES .

Proof of Corollary 3.4. The corollary follows easily from the lemma
and Lemmas 3.1, and 3.2.

Proof of Lemma 3.3. First note that as M C *M then by (1) of
Lemma 3.2 and the fact that 4 is a homomorphism of M we have

(3.5) E(ma;) < Co(1 + a(m))o(1 + l)rod(m)_IEM(m)e_po(H)t.

From this and property (4) of functions of type II(x) the second in-
equality of the lemma follows easily.

To prove the first inequality of the lemma let us observe for M €
7", oM)=k+1, 6 €U(gc), and u € #(F) we have the following,

lp(m e mar; Y™, D)l = llp(m(YM)"%: ma,; 8, 45w,
But M+ leaves fik*! stable, hence we may write

(3.6) YMym=>" enu(myY"V,
o(N)jik+1

where cyyr € C(M), and |cyy(m)| < y(m) and therefore cyys re-
mains bounded on M*t. As (YM)4 = ¢~ !f-M)H)YM and as m €
M™ | then we see that there exists a constant D;, depending only on
k such that

lo(nic mag; YM6, 45 u)|
<D, Y, e BMUE) o YN ma; 6, A5 u).
o(N)IZk+1

From (4) of the definition of functions of type II(x) and (3.5) one
easily shows the existence of FcU (gc), 7, = 0 such that

lo(nic mac; YMS, A5 u)||
< Sz, (@)lm, A, O)fie=E V=P G ()1 (m).
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From this one can deduce the first inequality of the lemma for 7, = 1.
If 7, # 1 one must observe that m leaves @ stable. Hence 7,YM§
can be written as a sum of terms of the type YV4' with o(N) =k+1,
and ¢’ € U(gc), from which one can deduce the inequality from the
above calculation. O

4. Spectral Analysis of I';(X;). Before applying our uniform esti-
mates, we shall need some further refinements concerning the depen-
dence of I'x(X;) on A €% . First we note that if

(4.1) EmA) ={Xm(siXp)ll <j<ry, MelZl,
&= |J &)
o(M)<k

£ = &w
k=0

then &(4) is the set of eigenvalues of B, (X;) and hence of I'j(X;).
Identify by o with C via the map A — A(H). Observe that if by =
ho,c then using the notation (bc)R =Y _,RH, where b is a Cartan
subalgebra of g, > ., denotes the sum over any system of positive
roots for A(gc, bc), we have [(hc)RP = (hg.c)®. It is known that
if s € Wy then s leaves (ho c)® invariant. Hence as H € a C ag C
(bo,c)R then there exists H,; € (—1)!/2h;, H,; € bg = ap such that

(4.2) [s7 ()P = H; + Hy;.
It follows that for all 1 €.,
(4.3) Rs; X;(H) = R(x + A)(Hyj + Hyy) = x(Hy)-

We may therefore, order the set &(A) independently of A € ¥ as
follows:

(4.4) &) ={z1(4), z2(4), ...},
where

(4.5) zi(A) #z;(4),  i#],

and

(4.6) Rz (A) > Rzp(A) > - Aesd).

Note that if & (1) = {{i(4), ..., LA}, &a(D) = {m(d), ...,
Uq(A)} then although & (4) C &,,((4) it may happen that for some
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1<j<q andsome i <p, i <j, Ru;(A) <R(A) . However, if we
fix / < p and let k increase, then we can guarantee that ({;(1) =
pi(d)=z;(4) if 1<i<l.

We can in fact say more about the numbers z;(4). Let HX be any
element of (—1)!/2h; such that

x(H*) = 1.
Define a partial order on the set of integers {1, ..., r} as follows.
Let us write | < j for 1 < i, j <r if x(Hj—Hy;;) € Z,. Let
°Q c {1, ..., r} denote the maximal elements relative to this partial

order; we also denote by Q° a subset of one through r such that if
i,j€Q°, i#j,then Hy; # Hy;, and Q° is maximal with respect
to this property. Then if j € {1,...,r} we must have j <X a for
some a € °Q. It follows that

[s;7'(H)ly™" = Hio — nojH* + yH + Hy;

where n,; € Z, and yH € ker(x|hr). We have then that for all
AEF
SJ'XA(H) = X(Hla) +1(H2j) — Haj,

equivalently
Xm(s;X3) = SaX”(H) + sjA(H) = (noj + m) — p(H).

We are now in a position to obtain a parametrization of the eigen-
values of I',(X;). For a €°Q let

(4.7) Qn={jl1 <j<r, and j X a}.

Further, let Q% denote the subset of @, defined by the condition that
for each j € Q, there exists i € Q2 such that

(4.8) i<j, Hj=Hy;,

and Q¢ is the minimal set with this property. Then if a € °Q, and
J€Q?, we let

(4.9) ok(a, j) ={n € Zlsax? (H) + 5;A(H) — n — p(H)
is an eigenvalue of I'(X})}.

Let oj€°Q, ij€Q] ,and n; €o(a;, ij),with j=1,2.If

Sa, XY (H) + 8i A(H) — ny — p(H)
=S, X’ (H) +siA(H) —ny — p(H), A€,
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then we must have a; = a, by the equality of the real parts of the last
equation and the maximality of a;, j =1, 2. By the equality of the
imaginary parts we must have as i;, i € @, with a=q;, j=1,2,
that i; = ip. It follows then that n; = n,. Now let

I () ={Ae FQOMHyi — Hy)) #0,1,j€ Q721 # j}.

Further we put
F'X) = x)nF.

Note that #"(x) is an open dense subset of & . Let A € "(x). It
follows from the above that the set

(4.10) Spec(I'( X))
= {(ax” +8;4)(H) — p(H) —n| a €°Q,
jeQq,neo(a,j)}

is exactly the set of eigenvalues of I';(X;) for all 1 € #”(x) and that
the elements of this set are all distinct.
Let

{ijlj > 1}
be the subsequence of the z,,(4) such that forall 1 €%
(4.11) (1) ERzm} A) > iRzmm(A),
(2) for every [ € Z, there exists j such that
Rz/(A) = Rzm (4),
(3) if I > m; then ‘ﬁzm](l) > Rzi(4).
Choose and fix jo > 1 such that
saxy(H)—p(H)ZiRzmo, Ya e ’Q,
where for notational convenience we put
moy = mjo.
Set
(4.12) 20(4) = Zm,(A)
= Sa, X" (H) + 5 A(H) — p(H) - no,
ap€’Q, ip € ng, no € a(ap, i),

where, ag, iy, and ng are defined by the second equality. We shall
(as is permissible by the above discussion) choose k so large that the
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following hold; let

&) ={6(), ..., LA}
Then

(4.13) 1) &i(4d) = zi(4), 1<i<mg, mp=mj,
(i) Rzo(4) = sa x”(H) — p(H) — ng
>—-p(H)-k, AES.

Let P, (A : x) denote the minimal polynomial for I'y(X;) with
A€ F"(x). From the above we know that P, (4: x) is just the product
of all factors of the type (x — ) with u € Spec(I'(X})). If a €
°Q, j€ Q% n € aga,j), put P,E‘”:")(A: x) equal to the product
of the factors (x — u) with u € Spec(I'(X;)) and u # {s.x’(H) —
SjA(H)— p(H)—n}. Let a, j, n, as above, and define meromorphic
End(V ® Ty )-valued functions on A via

En(Sax” +8;3) = P& (A: Xn(sax? +5;4)) " P (A: T(X))).

Put g(a) = Ujegr 0(e, j). If n€o(a) let

(4.14) Ey n(4) = Z En(sax” + 5j4).
j€Q’>
neo, (a,j)

Finally, set

(4.15) Eo(A) =
E\(4) =

S Eanl,

e’Q neo(a)d
(s,x"=p)(H)=n>Rz,
€

>
> > Ea,n(A).

a€’Q ne€o(a)>
(s, x"—p)(H)—n<Rz,

For any linear operator 4 on V ® T} let || 4| denote its Hilbert-
Schmidt norm.

LEMMA 4.1. (1) The functions E, n(A), and hence the functions
Eo(A), and E\(A) are defined and infinitely differentiable as maps of
& into End(V ® Ty).

(2) For all A€ % we have

Eo(A) + Ei(4) = lyer,
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and
E/(AMI(X;) = T(X;)Ei(4), 1=0, L.

(3) If uy,uy € F(F) there exists Ay = Ao(uy, uz), ap =
ag(uy , up) > 0 for which

IEo(4; un)ll + 1E1(4; ua)l| < 4o(1 + [A)% (4 € F).

4) If ue &P (%), a€’Q, jeQ°, nea(a, j) then there exists
Ag = Ag(u), ag = ag(u) such that in the above notation,

18 ){PL M (Ax Xn(SaX” + $;A) En(saX’ + SiA)}|
<A1+ A%  (AeFK)

Proof. The statement in (4) of the lemma follows directly from the
definition of Ej(sox* +5;4) given above, and Corollary 2.5. From the
above we obviously have for g(a) =J jeo? o(a, j)

Yo Y Ean(d)=lver,, A€F"(p).

a€’Q neo(a)

It follows that for all 1 € #"(x),

S 3 EXp{Ty(X,)}Ea,n(4) = Exp{fT(X,)}.

a€’Q nea(a)

Now let 49 € ¥, and suppose there exists a singular hyperplane %
of some E,(sax” +5j4), j € QS, n € o(a, j) passing thru Ag. For
each a, j, n with a € °Q, j € Q%, n € o(a, j) there exists
foj:n € F(ap) of minimal degree such that

A faj :n(A)En(Sax” + 5jA)
is analytic on % . It follows from the above that
PP (0 Xn(sax? +5j4)) =0
for some A €% if and only if
SiA(H) = sxA(H) for some k € Q, k # j.

We may therefore, choose f € #(ap), u € #(apc) and some a € °Q
for which the following holds for at least one n € g(a):

fGo;u)=0, u e F(apc) > deg(u') < deg(u),
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but
hm O(u){f(A)Eq,n(A)} #0,

and
Joj:n divides f in F(ap) foralla €°Q, j€ QF, and n € a(a, j).

As F"(x) is dense in & then Ay is a limit point of #"(x). From
the analyticity of the map A — Exp{¢I'(X;)} we have for 1 denoting
a generic point in " (y)

(4.16) 0= > > lim & (u:){f (1) Exp{fT(X;)}Ea,n(A)}
a€’Q nea(n) 0
=222 X Jima(u){f(2) exp{(sax’ (H)
o nea{a,j)
+ A(Hyj) — p(H) — n)YEn(Sax” + 554)}
= 33" exp{(sax”(H) — p(H) — n)1}Ea,n(t),

where for each o € °Q there exists g, < deg(f) and for each j, [/
with 0 </ <gq,, j € Q2 there exists Aa € F(apc) with A9 =1,

and E],l(a, n) € End(V ® T) such that

E,n(= Y, Zet“ DA (H)E; (o, n)

janea a,j) =0

=> Zetl" 21 AS (Hy))E; (a, n),

jeq@l 1=0

here we define Ej,,(a, n) to equal zero if n ¢ o(a, j). Define
Q%(Ap) to be a maximal subset of Q9 such that Ao(Hy; — Hy;) # 0
for i, j € Q% with i # j. Then we can write

qﬂ ~
Eon()= Y Y e™HIE, (a,n),
reQ’(A,) 1=0

where
E, [(a,n) =Y A%(Hy)E; ((a, n)
J
sum over j € QF 3 Ag(Hyj) = Ag(Hy,).
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We have on letting g, = Ag(H,), that

g, ~
S Y () - pH) -my Y D ehdlE, (o, n) =

a€’Q ne€a(a) re@?(iy) =0

Let ue (VeT,), veV®T,. By this last equality we have
Y- > exp{(sax’ (H) - p(H) - n)t}

a€’Q neo(a)
x Y. Ze”lmt’ . ,(a nyv) = 0.
reQ’(4,) 1=0
Let zy, ..., z; be an enumeration of the complex numbers s, x” (H)—

p(H) — Ay, . Let
%
P(t) =Y pE, (o, o)t if z; = s, x¥(H) = p(H) — Aoy
=0
Then we have, on multiplying the last equation through by e~%!’ that

> X Palneltmsm =

i=1 n€ag(a

This sum can be written as

S s
Po() + 3 Po(0)ez 0! + 3" 3 P (1)elz=20-m1 = 0,

i=1 i=1 n>1
i#k
As

zi =z, = (SaX? (H) = p(H) + Ao,) = (s XY (H) — p(H) + Ag,)
= Sa XV (H) — sy xY(H) + Aor — Ay »

then
zi—zx=0®a=d and r=rei=k.

We also have by the above that
zi—zr—n=08 s (H)—syx’(H)=n and Ay =4y .
Equivalently,

a<dandr=rea=d andr="7r.
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It follows that z;—z, —n # 0 forall i # k and n. Hence, by Lemma
A 3.2.2 of Warner [1] we have

Pio(t) = 0.

As k was arbitrary we have

N
YN Pn(t)emmm =0,

i=1 n>1

If we multiply this equality by ¢’ and re-index the sum, we obtain a
sum of the original type. Arguing inductively we see that P;,(f) = 0
for all i, n. As Py,(t) = Pi,(u,v:t) =0 forall u € (VQT),
v € V ® T, then we see that

~
~

E, (a,n)=0 Ya, r,n, and /.

Hence E, ,(t1) =0 forall € R, and all a, n. Putting t = 0 we
obtain the contradiction that

){1_}151 O)){f(A)E, »(A)} =0  Va,n.

As E, p is a rational function on F, we can write E, ,(1) =
Qo,n(A)7LE], ,(4), where O, n(4) denotes the least common denomi-
nator of the matrix coefficients of E, , relative to the basis {e;;. s} .
It follows from the above that

}Q;IQa,n("{)l =Mu,n> 0.

The lemma now follows easily from the fact that Q, ,(1)E, »(4) isa
polynomial function. 0

5. Uniform asymptotics of functions of type II(x). We can now
state an initial form of the first principal result of this paper. Let us
recall the notation of §4; the eigenvalues of I';(X;) were denoted by
$1(A), ..., &p(A). We denoted the elements of &(A) as z;(4), and
ordered the real parts of this sequence;

Rzi() > Rzp(A) > > Rzp(D) >+, Ae(=1)"/2a.

We let m; be the indices where the jumps in the real parts of the
z;(4) occur so that
Rzm, (A) > Rzj(4) 2 Rzpm,

k>1,m,<j< mk+1,/16(—1)1/2a}.
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Next we chose mg = m; so that zo(4) = z, (4), had real part smaller
than all the prospective leading terms of our expansion. Finally we
chose k so large that the first m( eigenvalues of I',(X;) had stabi-
lized; that is so that
Ci(A) = zi(4), 1<i<my,
and also so that
Rzo(d) > —p(H) -k,  re(-1)2a.
Further we recall that the z;(4) are all of the form
Xm(s:X3) = siX3(H) — (B, M)(H) - p(H), 1<i<r

where M € Z, . The term —(f, M)(H) comes from our construction
of the operators u;;.,, and ;. yr. Consequently we do not know
which M € Z, parametrize an eigenvalue. It is clear however that
the numbers :
Xn(8:X3) = i X;(H) —n — p(H)

contain all the eigenvalues as n varies over the nonnegative integers.
We shall exploit this fact in the final version (Theorem 5.9) of the
following theorem.

THEOREM 5.1. Let ¢ be a function of type 11(x). There exists ¢y €
CO(MxF:V:1) and & > 0 such that for any n1, n € U(mc) there
exists F C U(gc), r > 0 such that Sr (p) < 0o, and

(5.1) lo(n1c mag; ny, A) — @o(ni: mag; n2, A)|
< Sk, ()|(m, A)|'eP2W=-0d(m) =15, (m),

the inequality holding for all me M+, t € R*, A € . Further, there
exists P € C®(M xF"(x):V : 1) such that

mo
(5.2) po(ma;, 2) =Y Pi(m, A)es )",
=1

Jorall me M+, t >0, Ae F"(x) and P, =0 if z,(A) cannot be
written in the form X,(sex” + sjA) with s;'|a € W(a, ap), j € Q2,
and ne€a(a, j).

Proof. Let notation be as above and set for me M, A€ 5,
(5.3) D(m, A) =" @(m; uij.p,2) ®eij.ar
i\M

¥(m,A)= > o(m;&;.n,N)®e;:N.
i,J,N
o(N)=k
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It is clear from their definitions that ®, Y € C*(M x ¥ : VT).
By (2.27) we have

(5.4)  @(m:mag;n,A)
= Exp{tI'(X;)}®(n: m; np, 4)

t
+ [ Exp{( = IOt ¥n e ma: 2, 7)du
We shall complete the proof of the theorem by a sequence of lemmas.

LEMMA 5.2. There exists F» C U(gc), r» > 0 such that SE,,r,(p) <
oo and €& > 0 such that

(5.5) |E1(A)®(n1¢ may; n2, A)||
< Sk, (@)|(m, 3)|2e' P20 d (m)~ & (m)

the inequality holding for all me M+, A€ ¥ ,and t > 0.

Proof. By the continuity of (m, ¢, 1) — E{(A)®(n,: ma;; n2, 4) it
suffices to prove the inequality on an open dense set of # ; namely,
we will show it on %'(x). From (5.4) we have

\E1(A)®(n1: may; )|l
< |E1(4) Exp{tT'(X;)}®@(n1: m; n2, A)]|

+ “/0‘ E;(A) Exp{(t — w)T(X) Y (1 : may; mz, A) dul|.

By Lemma 3.3 there exists F; C U(gc), |Fi| < 00, r; >0 such that
SF,,r,(¢) < oo and

|E1(A)®(n1¢ may; n2, A)||
< ||E1(A) Exp{tT(X,) YIS, (0)|(m, A)|"1d(m) ™ Eps(m)
+ S5, (9) / 1E1 (3) Exp{(t - w)T(X,)}|
A(m, A, w)|ne~k+Du=pHug(m) =12, (m) du.

By definition of the subsequence zi (A), (4.13), and Lemma 4.1 we
see that there exists 0 < ¢y < 1, and D > 0 depending only on jj
such that

(5.6) [IE1(2) Exp{sT(X)}|| < DAo(1 + |2])%e* 7 M=%) (5 > 0).
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As e~ (1=8)%(1 4 4)" remains bounded on [0, co) then we can choose
D; > 0 such that

NE1(A)P(n1: mag; 2, A)|
<D - Agl(m, A)|%*"d(m) "' Ep(m)SE 1 (9)

t
Ne@z-e 4 p, / =1 Rz (D)e,) p (R, =e )t gy
0

< D- Ao|(m, A)|%*d(m) ™ Ep(m)SF, 1, (9)
-e(Pz(M=e)t(1 1 Dy 1).

Again by the boundedness of (1 + D;t)e~* on [0, oo) for any a > 0
we see we can choose D, > 0, & > 0 such that the above inequality
is less than or equal to

DyDAg|(m, A)|%*"1d(m) ™ Epr(m)SF , (p) - eP2D 78N,

From this it is clear that there exists F, C U(gc), r» > 0, and & > 0
as in the statement of the lemma. Qo

LEMMA 5.3. Let me M, t € R, and 1 € . Set ®y(m,t, )
equal to

(5.7) Ey(A) Exp{tI'(X;)}®(m, A)
+ /O Eo(A) Exp{(t — )T (X,)¥(may , A) du,
Then &y € C*(M xR xF:V ®T), and for every n;, n, € U(mg)

we have ®g(ni: m; n2, t, A) equals

(58)  Eo(d) [Exp{trm)m(me min, A)

+ /Ooo Exp{(t — w)I'(X;)}¥(n1¢ may,; 1y, A) du] .
Moreover, there exists F3 ¢ Ulgc), |F3| < oo, r3 > 0 such that
SF,,r,(¢) < oo and
|Eo(A)®(n1 ¢ mag; 1y, A) = Po(me m; 12, 1, A)||
is less than or equal to
(5.9) Sk, r,(@)|(A, m)|"sd(m) ™ Epg(m)ePHoB=or,
here ¢ is as in Lemma 2.12, meM*t, t>0, AesF.

We shall need the following technical result for the proof of the
lemma (for a proof of this result cf. Harish-Chandra [1], Lemma 54).
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LEMMA 5.4. Let C be a compact subset of M . There exists Ty > 0
such that mexptH € M+ forall t > Ty.

Proof of Lemma 5.3. Let C C M be compact and let 7; be as in
Lemma 5.4. Given / € Z,, u;, uy, us € (%), m, n € Ulme)
there exists F;, r; as in Lemma 3.3 such that

(5.10) ||Eo(4; u1)0(u2,)
A{T(X;) Exp{(t — u — To)T(X;)}}¥(m i mayyr,; 2, 4; us)]|
< d(maz,)"'Ep(mar)Sk, v, (9)|(mar, , A, w)|"
e DRI B (25 u1)0 (1)
AT(X;) Exp{(z — u — To)T(X3)}} |-

From (4.13) and the ordering of & (1) = {{i(4), ..., {»(4)} we have
(5.11) —RE(A) € -Rzo(A) < p(H)+k (1 <1< mg).

Taking into account Lemma 4.1 and (5.11) we see that for all A €
F'(x) , and then by continuity in A, forall A € &, there exists by > 0,
By > 0, such that

(5.12)  ||Eo(A; u1)d (u2){T(X;)! Exp{(t — u — To)[(X)}}
< moAgBo(1 + |A])% 0
(L4 |t — u = To)oe=4"TR2A (> 1 - Tp).

Hence the right-hand side of (5.10) is less than or equal to

(5.13)  (d7'Ey)(maz)SF . (9)|(mar,, A, w)|"
-mpAy - (1 + Ml)a0+bo(1 + |t —u-— T0|)boe(t—T0)DRzo(,1)—u ,

the inequality holding for A € & , and u > t—T;. This estimate shows
that the integral in the definition of @y, when the variables (m, ¢, A)
are differentiated, converges uniformly on C, and on compact subsets
of R and . ; here we must recall that ar, € Center(M). It remains
to show (5.9).

From (5.4) and (5.8) we have forall me M*, t>0, Ae¥F,

|Eo(A)®(n1¢ mas; n2, A) — Po(n1c m;n2, ¢, A)|
< / | Eo(2) Exp{(t — ) T(X)} - I1¥(m: may; 12, A du.
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Appealing to Lemma 3.3 once again, we see that the above is less than
or equal to

[ 1B Bt - wr
Sk (0)d(m) By (m)|(m, A, u)|re~ oI gy

From (5.12) with u; = u, = 1 we have constants 4j, a;, such that
the above integral is less than or equal to

moAy(L+ 2%k, (9)|(m, A)|"r - d(m) ™" Epg(m)
. /OQ(I " u)rle—(u—t)iﬁzo(i)—(k+l)u—-p(H)u du.
t
From (4.13) and the boundedness of (1 + #)"e™™ on [0, co) there
exists D3 such that the above is
< moAdpDs(1+ |A)%SE, 1, (9)d ()™ g (m)|(m, 2)]"
ol [ % o= DRz, (W) +k+o(H)) gy
t
< modyDs|(m, A)|v+%
Sk, (9)d(m) ™ Epg(m)e FHPEN (R20(2) + ke + p(H)) ™.

Recalling that %Rzy(41) depends only on j; not on A we see that there
exists D4 > 0 depending only on k and j, such that the above is

< Dy|(m, A)|"F Sk, (9)d(m) ' Epy(m)e” HrEY,

By the choice of ¢y in (5.6) and ¢, in the proof of Lemma 5.2 we see
that for ¢ as in Lemma 5.2 the above is

< Dy|(m, )|+ Sg, ,, (9)d(m) ™ Epr(m)e?5B =0, o

We shall need to extend this last result for ¢ an Eisenstein integral.
The extended result will only be used in §7 not in the remainder of the
proof of Theorem 5.1. Recall that (cf. (4.3)) for L€ F"(x),

zj(A) = sax’(H) + siA(H) — p(A) —n, a€°Q,i€Qg,neo(a,i.
Considering then z;(4) as a function on ¢, we have for A €
Rzj(4) = x(Hia) + Ar(Hz;) — p(H) — n = Rz;(A1) + Ar(H2;).

Let
Fe.s ={heF|A= g+ (=1)"?); and |Ag]| < 6}
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Note that as no singular hyperplane of the projections E, ,(4) in-
tersects . , then we may choose 6 so small that none of the sin-
gular hyperplanes intersect % s as well. It follows that there exists
m=m, , s >0 such that,
inf n(D) > m,
0 10u:(2)

where as above Q, , is a polynomial function on F such that
Q. .n(A)E4 n(A) is a polynomial function from ¢ into End(V®Ty).
It is evident from the expression for z;(4) given above that we may
choose d > 0 such that the set of eigenvalues of I'(X;) is still the
set Spec(I'(X})), and the elements of this set are distinct if A € A 5.
Further, if A € % 5, we have

%P < Rz, R+
As Rzj(A1) > Rz 1(41) 1t follows that
(5.14) le=% W] < e~ Rat)+OIHI 1<j<my, A€Fs.
Let (cf. (4.13))
0<ag=Rzo(A)+ p(H)+ k, LEF.
The above shows that ag does not depend on A € 7 .

COROLLARY 5.5. Let 9(x, A) = Ep(x, v, A), with w € &,(Mp, 1),
Sy = po(8: Xy, for £ € 3(mp). If 6(co + DH| < ao, with ¢o as
in Lemma 3.1, then ®y € C°(M xR x Fc s:V ®T) and for each
meM, teR, ®y(m,t,) is holomorphic on A € Fc s, where
@, is defined as in Lemma 5.3. Furthermore, (5.8) remains true if
A€ %’5 .

Proof. Let ny,m € Ulme), u € ¥(F). By Lemma 3.1 the es-
timate (5.10) in the proof of the last lemma would be changed by a
factor of exp{co|irllo(ma;)}, if A € F¢. Also if 1 € F 5, then by
(5.14) the estimate in (5.12) can be replaced by

moAoBo(1 + |A])%*+"
(14|t — u — Tp|)Poet—4=T)Rz(A)-ONHI) = 4y 5 ¢ T,
It follows then that the left-hand side of (5.10) is less than or equal to

d(mar)~'Ep(mar)vs, s (W)|(maz, , A, w)|"
. e[coa(m)5+uc0||Hl|6—u(k+l+p(H))]

-moAg - (1 + |M)a°+b0(l + It —y- TO')boe(t—u—To)(mzo(Al)—JllHH).
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As
collH||6 + [|H||d — Rzo(A) — (k + p(H)) <0

by choice of &, we have finally that the left-hand side of (5.10), for
u>t—1Ty, A€ Fc s is less than or equal to

d(mar,)"'Ey(mar,)vs, s (W)|(mar,, A, u)|"1e%7Mo~«

-moAp - (14 A%+ (1 4 |t — u — Tpy|)2oe =T R2(4),
This last estimate, as in the proof of the previous lemma, shows that
@, € C*, and also proves the holomorphy statement, if we recall that
Ey(A) is rational and everywhere defined on ¢ 5. O

LEMMA 5.6. Let ®y be as in (5.7). There exists

QeCMxF"(x):VeT), 1 <1< my

(mgy as in (4.11)), such that

m
(5.15) o(m, t,2) = Z )eZ A1,

Further, if we let
Do(m,t, A, k)y=Oy(m,t, ), Qi(m,A, k)=Qi(m,A)
showing the dependence on k, then if k' > k we have
(5.16) Qi(m, A, k)=Qi(m, A, k') (1 <1< my).
Proof. The equality (5.15) just follows from the definition of @,
and the semisimplicity of I'(X;) for 4 € "(x). The equality (5.16)

just expresses the fact that if &,(4) = {{;(4), ..., {,(4)},and &, (A) =
{mA), ..., uy} thenif k' >k

Ci(A) =z;(A) =u;(4) (1Lj<mg),

and I'y/(X,) restricted to T, C T} is equal to I'y(X;). The fact that
QeC®(MxF"(x): VT) follows from (5.13) with A varying in
a compact subset, Q C F”(x); one has to observe that there exists
m=my n ; q>0 such that

o p(as)in)
inf [P (D) > m.

As before, the lemma follows quickly from this. O

Let us now write,
(5.17) o(m, t,4)=> ®ij.p(m,t,2)@eij:um
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Here the sum isover M € Z? , o(M) <k, 1 <j<dy, 1<i<r,
and <I>,-J~:M(m, t,A)€eV. Put

(5.18) po(may, A) =®@i9.0(m,t,4) (meM,teR).

We also let
le }' ZQU M ®elj M

M, j, i, as above, and set
(5.19) Pi(m, 2) = Qly. o(m, 2).
LEMMA 5.7. The function ¢, is well defined on M x & .

Proof. From (5.4) with n; = n, = 1, we have for any s, € R
(5.20) @(asa;, 1) = Exp{tI'(X;)}®(as, 4)

v "Exp{(t — )T (X))} ¥(dsur A) du
— Exp{T(X,)}®(a; , 1)
+ /SH Exp{(s +t — w)'(X;)}¥(a,, 4) du.

The last line by change of variables. On the other hand

(5.21) ®(asar, A) = P(as+1, A)
= Exp{(s + )I'(X;)}®(1, 4)

S+t

+ Exp{(s + ¢t — w)I'(X;)}¥(ay, ) du.
0

Subtracting (5.21) from (5.20) we see that the following expression
is equal to zero;

Exp{tI'(X;)}®(as, 1) — Exp{(s + H)I'(X3)} (1, 4)
0
+/ Exp{(s + t — u)I'(X;)}¥(ay, A) du.
S
An easy computation similar to the above now shows that
(I)O(aS9 t, A) =(D0(1,S+t,).)

which shows that ¢( is well defined. o
From Lemma 5.6 and (5.19) it follows that

m,
po(may, 2) = Y Pi(m, Dex™' (A€ F"(x), me M*, 1> 0).
=1
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One easily deduces that gg € C®(M x# : V: 7). Recall that u;g5. =
1. If ¢ is defined as in Lemma 5.2 then as

DO(n: mas; Ny, A)
= Eo(A)®(n1: mag; n2, A) + Ex(A)®(n1: mag; ma, 4),

one obtains the estimate in Theorem 5.1 by combining Lemmas 5.2
and 5.3.

All that remains to be shown in the proof of Theorem 5.1 is that
P, = 0 if z,(A) cannot be written in the form X,(sox” + s;4) with
s; e € W(a, ap). To see this, let o € °Q. We call X,(s.(x +4)) a
leading exponent of ¢ along Q if the corresponding coefficient of this
eigenvalue is nonzero in the sum (5.2). From Harish-Chandra [3], §6
all leading exponents satisfy the requisite property. As all other expo-
nents are integrally equivalent to a leading one, then all exponents (i.e.
those exponential terms in (5.2) which appear with a nonzero coeffi-
cient) satisfy the required property. Hence Theorem 5.1 is completely
proved. ]

COROLLARY 5.8. Let ¢(x, A) = Ep(x, w, A) with the notation and
assumptions of Corollary 5.5. Let ¢o(x, A) be the function of Theorem
5.1, andlet 6 beasin Corollary 5.5. Then forevery m € M, go(m, -)
is holomorphic on ¢ 5.

It will be necessary for applications to have Theorem 5.1 written
in a slightly different form. First, if a € °Q, and s;!|, € W(a, ap),
then we have for all j € Q%, and n € g(a, j) (as y centralizes ap)

SaX” (H) + sjA(H) — p(H) —n
= x(s;'H) + A(s7'H) — p(H) — n = s;,A\(H) — p(H) — n.

THEOREM 5.9. Let ¢ be a function of type 11(x). For every s~ €
W(a, ap), n € Z,, there exists I's , € C°(M x F"(x): V: 1) such
that the series

oo
(5.22) Y D Ty a(m, Aalst—ma=r),
s"GW(a,aP) n=0

is an asymptotic series approximating ¢ uniformly for m, a, and A
varying in M+, A(Q), and F"(x) respectively. More precisely, there
exists € > 0 such that for any ny, 1, € U(ml), u € S(ac) there exists
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F cU(gc), r >0 such that Sr.r(p) < oo and

(2.64) “(o(me ma; ; nau)

D
- > D Tsnlmim;m,d)

sT'eW(a,a,)n=0

- U(sA — na — p)alsi-na=r)

< Sk (@)|(m, X)) d(m)" Epr(m)eP2)-o)t
reF"(x),me M, t>0,

where p; € Z, is chosen so that —(psa + p)(H) > Rzo(A), and
—((ps + Da + p)(H) < Rzo(A) forall e F .

Proof. The existence of the series follows easily from Theorem 5.1.
The estimate (5.23) follows from Theorem 5.1 on noting that the func-
tion ¢ equals the sum on F"(yx). ]

6. Eisenstein integrals. In this section we shall recall some standard
facts concerning Eisenstein integrals. Most of the section is taken
from Arthur [1]. We shall therefore only state the results which we
find necessary, and refer the reader to Arthur for their proofs.

As before V' will denote a fixed finite dimensional double unitary
K-module. Fix a Levi subgroup M in Z(My). Let (M, 7)
be the space of 7-spherical functions on M/A, which are square
integrable, and j3(m)-finite. Equivalently, we may consider elements
of usp(M, 7) as functions defined on M which are right invariant
under A,,,1i.e. p(ma)=¢(m), me M, and a € Ay, and which are
3(m)-finite and square integrable on M /A4, . The space usp(M , 7) is
finite dimensional, and equals {0} unless A /A4, has discrete series.
If w is an equivalence class of square integrable representations of
M/Ay, let o,(M, 1) be the space of functions ¢ € uep(M, 7)
such that for any &* € V'*, the function

m&*(p(m)), me M/[Ay,
is a sum of matrix coefficients of w. Then

Heusp(M, T) = @Mw(Ma 7).

w
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Let ¢ € Hysp(M, 1), PEP(M), x € G,and L€ ap . Asin §3
we define the Eisenstein integral by the formula

Erlx, 0. 2)= [ T pplx)el ) e

where the function ¢p is the function on G such that
pp(nmk) = p(m)z(k), neNp,meM, kek.
Then the function
Ep(p,A): x— Ep(x,9,4A)

depends analytically on A, and is a j3(g)-finite, t-spherical function
on G.

Let W(Ap) be the Weyl group of (G, Ap). It is a finite group
which acts on the vector spaces ayp and aj. Suppose that M, is
another Levi subgroup in #(Mj). As is customary, we will write
Wi(ap, apy,) for the set of distinct isomorphisms from a;, into ap,
which are induced by W (A4). Recall that any two groups P € #(M)
and P, € #(M,) are said to be associated if dimay, = dim ap, and
this set is not empty. If t € W(ay, “Ml) we shall denote by w; some
representative of ¢ in K. Now, suppose that X is any subset of
M such that K32K;, = X, and that ¢ is a t-spherical function
from X to V. If t € W(ay, apm,), define a 7-spherical function on

%, = wZw, ! by
(to)(m1) = t(wy)p(w; " myw)t(w,), my € X.
If P € #(M) let tP be the group w,Pw;! in P (M;). Then if
@ € Heusp(M , T), it is easily shown that
(61) EP(¢ ’ A’) = EtP(t¢ ’ t’l)
More generally, if L is any Levi subgroup which contains both M
and M, and R € #L(M), there is an identity
(6.2) tER(¢, A) = EiR(tg , t4)

for Eisenstein integrals on L and tL = w,Lw,

Suppose that P € #(M). If T is a Cartan subgroup of M, let
Ap(G, T) be the set of roots of (G, T') whose restriction to Ap be-
longs to A(P, Ap). Suppose that P’ also belongs to &#(M). Then
the number

1/2
Beip =1 ((a’za)> (product over a € Ax(G, T) NAp(G, T))
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is independent of T. (As usual, P stands for the group in 2 (M)
opposite to P.) Let dX be the Euclidean measure on np: associated
to the norm

1X)? = (X, 6X), X €np.

We can normalize a Haar measure dn’ on Np by
/ o(n')dn' =/ pexpX)dX, @ € CX(Np).
NPI 1’1’,1

The same prescription gives a Haar measure on the subgroup Np N
Np. From these two measures we then obtain an invariant quotient
measure on the coset space Np' N Np\Np . Now if ¢ € &usp(M , 7),
A€ay c and m € M, define

(Th p(A)9)(m)
= Brp /N o 1(Kp(n))p(Mp(n)m)eC+2oH () gy

and
(T p (D)) ()

= BP’|p/ @o(mMp(n))1(Kp(n))eP+P)Hm) gy
NN P\NPI

The integrals converge if
(RA+pp,a)>0

for each root o € Ap N Ay . Because of the factor Bpp, the integrals
are independent of the measure on Np: and of the form (, ).

Both J 1’,,| p(4) and J, 1’,,' p(4) can be continued as meromorphic func-
tions from ajs ¢ to the finite dimensional space of endomorphisms
of usp(M, 7). They satisfy all the usual properties of intertwining
operators. In particular, let d(P’, P) be the number of singular hy-
perplanes which lie between the chambers aj/(P) and ap (P'). If P”

is a third group in (M) such that
dP",P)=d(P",P)+d(P,P),

one has

(6.3) J;,,,lp(l) = J;I,‘P,(A)JI’,,IP(A) , 1=1,r.

Suppose that M, is a Levi subgroup which is contained in M, and
that R, R' € #M(M,). The functions

;z'lR(A)’ AEa*M“C,1=l,r,
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associated to M and M. (instead of G and M) can certainly be
defined. They depend only on the projection of A onto the orthogonal
complement of a3, ¢ in a}, . We have the formula

(6.4) L@ = Teg®),  1=1,v.

If A€ay,c and P, P{ € (M), the operators J

commute. They also both commute with 3(m).
Suppose that s € W(ay, ay,). Let P € (M) and P, € #(M;).
The groups s~!P, and s~!'P; both belong to #(M). Define

Lyp (2) and T2, (3)

(6.5) cpip(s, A) = "P A5 lp(l)
(6.6) Cng(S , 4) = cpp(s, Aepp(1, A7,
and

(6.7) Ocp p(s, A) = cpp (1, s1)Lep p(s, A).

These are all meromorphic functions on ay, ¢ with values in the space
of linear maps from yusp(M, T) t0 Husp(M7, 7). We have the fol-
lowing functional equations:

(6.8) cgzlp(sls, A) = c?,zlpl (51, sﬁ»)«:,%l (85 4),
(6.9) °cpp(s15, ) = °cpp (51, 54)°cp p(s, 2),
(6.10) cpp(515, A) = c?,ztj,,l (51, sA)cp p(s, A)

= cpp (81, 4)0cp p(s, A),
(6.11) Ep(x,9,A)=Ep(x, cpip(s, 1)p, s4),

the equalities holding for s; € W(anm, aMz) and P, € #(M;). Sup-
pose that t € W(Ay). If M' € Z(M,),

tM' = w M w;!
is another Levi subgroup; if P € #(M), then tP € #(tM'). The
restriction of ¢ to a,, defines an element in W (a,, , a,;,), which we
will also denote by ¢. We then have the following identities:
(6.12) Ll p W = Tl p(22),  1=1,r.
(6'13) tcPllP(s ’ )") - CIP,IP(ts ’ 2’) )
(6.14) cpip(s, Mt~ = cpup(st™, tA),



180 P. C. TROMBI

and similar formulas for °cp p and c3 p- One also has the formulas:
1

(6.15) cpp(sA) = SJ%IS_,PI (z)—l.fs’_,-ﬁllp(z) ,
and
(6.16) Ocp p(s, A) = s.ISI_IPl|P(A)J}’,|S_1Pl A~

One can show that

Tppr W) pp(2) = T p (W) T pr (A).
Let pupp(4) be the inverse of this operator. It is a meromorphic func-
tion of A with values in the space of endomorphisms of ysp(M , 7).
Forany 4, pp/p(4) commutes with any of the operators

;’;'P{(}»])’ il EGXI,C’PI’PI,G’@(M)’IZ-I’ F.

Therefore pp/p(4) also commutes with PP, (A1) . One can then show
that

(6.17) Kpp(4) = Up\p' (l)ﬂp’wu)
if
d(P",P)=d(P", P)Y+d(P, P),
and
(6.18) Kpr)P(R)(A) = tgr(A),
if A, P, R,and R are as in (6.4). For any P € (M), define
(6.19) kp(d) = g p(A).

It follows from the above properties that up(4) depends only on M
and G, and not the group P. Moreover, for any t € W(ays, aMl)
and P, € #(M,),

(6.20) up(2) = ip,(1A).

LEMMA 6.1 [Arthur [1, Lemma 2.1). Suppose that M, € ¥M(M,),
RePM(M.) and Pc P(M). Thenif A€ ay, ¢ and A€ ay ¢,

Ky i) (A +A) = pry(A + Apr(A)7

We shall now quickly review the relation between Eisenstein inte-
grals and induced representations. Fix M € Z(M;). Let w be an
equivalence class of irreducible square integrable representations of
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M /Ay, and let (o, Uy) be a representation in the class of w (Uj, is
the Hilbert space on which ¢ acts). Let P € (M) and define # (o)
to be the Hilbert space of measurable functions

v: K U;

such that
(i) y(mk)=0a(m)y(k), me Ky, k€K,
(i) vl = fx \x IWI?dk < oo.
If A €ayr c, there is the usual induced representation

(Ip(a, 4, x)y)(k) = e*H PPN G (Mp (kx)) y (Kp(kx)),

v € #(g), x € G, which acts on #(g).

Let now (7, 1) be an irreducible representation of K, instead of a
double representation. Let #(a), be the finite dimensional subspace
of vectors in # (o) under which the restriction of Ip(c, 1) to K is
equivalent to a multiple of 7. Suppose that § € Homg (V', Uy); that
is, S is a map from V to U, such that

S(t(m)¢) = a(m)S(&), eV, meKy.
If £ € V', the function
¥s(@): k- S(t(k)S), kek,
belongs to /% (o). By Frobenius reciprocity, the map
S +— ¥y

is an isomorphism from Homg (V', Us) onto Homg(V, #(0)). No-
tice that % (o), is the space spanned by

{\PS(é)lS € HomKM(Va UU) » 6 € V}

It is isomorphic to HomKM(V, U )V.If Se HomKM(V, Us), and
P’ is another group in #(M), set

JP"P(G s A)S

= ﬂp'uﬂ/ U(MP(n))ST(Kp(n))e(“/’p)(Hp(")) dn,
N,,/ﬂNP Pl

defined a priori only for those A € a3 ¢ for which the integral con-
verges, Jp/p(0, 4) can be continued as a meromorphic function from
aj, ¢ to the space of endomorphisms of Homg (V, Us). The map

Ys(&) — ¥, 0,05, SeHomg (V,Us), eV,

P
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which we can also denote by Jp/p(c, 4), is just the restriction to
# (), of the usual intertwining operator from Ip(c, 4) to Ip/(a, 7).
There is a canonical isomorphism
P, HomKM(Ua , V)~ Homg(#(a), V).
This map is given by
¥ew) = [ w)7S w0y dk,

for $* € Homg (Us, V) and y € #(o). Notice that #(0); is the
space spanned by
{&"¥5-IS" € Homy, (U, , V), &€ V'),

It is isomorphic to Homg (Us, V)® V™.
Suppose that
’ (ti, Vi)» i=1,2,
is a pair of irreducible representations of K. We shall now take 7 to
be the double representation of K on

V =Homc¢(V1, V2),

defined by
T(kz)X’[(kl) = Tz(kz) oXo Tl(kl) s
for k, k, € K, and X € Hom¢(V;, V3). Any double representation

of K will be a direct sum of representations of this form. If S; €
Homg (Vi, Us), and S; € Homg (Us, V2), then

p(m) = S50(m)Sy, meM,

is a function in usp(M, 7). The J functions defined above are
related to those defined previously by the formulas

(6.21) (Jpp(D@)(m) = (Jppr (0, 1)"S3)a(m)S1
and

(6.22) (Jpp(D)@)(m) = S30(m)(Jpp(a, 4)S1).
We also have

(6.23) TE;IP(O', A, x)¥s =Ep(x, ¢, 4).

We now will recall some facts concerning the Harish-Chandra
asymptotic expansion of the Eisenstein integrals. Let B, B €
P(My) and consider the expansions of the functions

EB(xaq)aA)a (DG%,AEQO,C,
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along the chamber Ay(B’). (Here .24 is the finite dimensional space
of t-spherical functions on M{}.) If ¢ is a small positive number and
a € Ay(B'), (cf. (6.27) below) then Eg(a, ®, A) can be written

Z Z (CB'[B,C(Sa A)(I))(l)a(SA—C—pB:) ,

SEW (4)) LEZ, (Z,)

where cgp (s, A) is a meromorphic function of A with values in
End(%4), the space of endomorphisms of .. The functional equa-
tions for the Eisenstein integral give rise to the formulae

(6.24) tCB'IB,C(S’A) :CIB/]B,IC(IS’ A),
(6.25) cpip (5, AT =cpyp (st 1A),
(6.26) cpip,c(515, A) = cgp (51, 5A) g 1p(s, A),

for elements ¢, s; € W(A4y) and B, € ##(M,). Suppose that x is an
element of

G, =K A5(B)-K;

where
(6.27) A§{(B) = {a € Ao(B)la(Hy(a)) > &, o € Zp}.
Then

x =kiaky, ki,kyeK, aed5B).
Define

(6.28) Epyp ((x, @, A)

=t(k)) Y. (cgip, (s, AP)1)ar 421 (ky).
(€Z,(Zy)

Then Egp (P, A) is a 7-spherical function on G;. It is meromor-
phic in A, and

(6.29) Ep(x,®,A) = > Epg(x, P, A).
SEW(A,)

From the three functional equations above, one obtains
(630) EB']B,S(XB q)a A) =EtB'|B,ts(x: ®7A)’

(6.31) EB:lB,S(x,<I>,A)=EB,|IB’St_x(x,t(D,lA),
(6.32) Epp ;,(x, P, A)=Epj ,(x, Ocg (s, N, sA).
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These functions are all 3(g)-finite. Indeed, if z € 3(g) let uo(z: A)
be the differential operator on Mg obtained by evaluating u;¢(z) at
A . Then the equation

(6.33)  Egp,(x; 2, ®, A) = Egy ,(x, tio(z: A®, A)
follows from the analogous formula for Eisenstein integrals. Since ®
is 3(m)-finite, then Epp (x, ®, A) must be 3(g)-finite.

Let M € Z(My),re W(do)M, R, R' € ZM(M,), where W (Ay)M
denotes the subgroup of elements of W (A4y) which leave a}, point-

wise fixed; it can be identified with the Weyl group of the pair
(M, Ap). Then we can define the functions

ER'IR,r((I)a A)

on a neighborhood of infinity in M. Let P, L € #(M). Let B =
P(R). There is a unique coset s in W (4g)/W(4g)™ such that the
group P, = sL contains B. If M; = w,Mw;' then P, belongs to
P(M,). Let sp be the unique representative of s in W (4,) such
that sg(a) € A(B, 4p) for every a € A(R, Ap)-

LEMMA 6.2 [Arthur [1], Lemma 1.4.2). If A is in general positive in
ag, then

ERIR,1(JI{(R)|p(R)(A)J‘]E(R)IP(R)(A)(Da A) = sT'EP (EB|B,sB((D, A));

where
E"(a, Ep s, (P, A))

= Y (ca.c(s5, AD)(1)alsB=r=0,
[€Z,(5,)

here we consider X as a subset of g, and the equality holds on M.

We shall also need two results of Harish-Chandra’s. Fix M €
P(My), M cuspidal, T a Cartan subgroup contained in M, and
P € #(M). Let notation be as in §2; in particular & = (-1)~"/2a3,
Further let ¥’ denote the set of A € # such that n(4) # 0, where

n(4) = [[(a, 4) (product over a € Ap(G, T)).
For 6 >0 let
(6.34) Fc,s = {4 € Zl||Arll < 3}
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LEMMA 6.3 [Harish-Chandra [4], Theorem 18.1). Fix 4 € ' and
Py, P, € #(M). Then the constant term of Ep(ma, y, A) along the
parabolic P, is given by the following expression:

> (epp (s, Ap)(m)a*
SEW(A)
the equality holding for all y € Spp(M , T)|, m € M', a € Ay .
Moreover, we can choose 6 > 0 such that for every s € W(A),
n(A)cpp (s, A) extends to a holomorphic function of A on ¢ 5.

LEMMA 6.4 [Harish-Chandra [5], Lemma 17.3, Lemma 19.2]. (1)
Let s € W(A), P, P, € (M), then %cpp (s, 1) maps #,(M, 1)
into %,(M, t), w, an equivalence class of square integrable repre-
sentations on M . Moreover, if A € F', then Ocpl p,($, A) is unitary.

(2) Fix P, Qe P(A) and s € W(A). Then

v Yo p(s, v)
defines a rational map of af. into End L.

7. Continuation of the asymptotic expansion. Suppose that ¢(x, A)
equals Ep(x, P, A), where P is some cuspidal parabolic subgroup,
D € Ausp(Mp, 7). We will now show that the coefficients of the
asymptotic expansion (5.22) of ¢ along Q, where W(ag, ap) # &,
can be expressed in terms of Eisenstein integrals defined on M . This
shows that the asymptotic expansion has coefficients which have mero-
morphic extensions to ap c.

Let BC P, B C Q,with B minimal, @ maximal, and P cuspidal.
We shall continue to use the notational conventions of §2. Namely,
we shall not subscript objects associated with @ (so we shall write a
for ag = apr where Q = NM), and subscript objects associated to B
with ¢ (e.g. Ao = Ap). Further, we let & = (—1)!/2a}, and we recall
the nonstandard notation, ¢ =ap ¢. Let L € (M) and put,

(7.1)  a} (L) = {A€a} |R@A, @) > 0Va € AL, 4r)}.

LemMa 7.1. Let t € W(Ay), t ¢ W(40)M, and A € af (B).
Then
RIA(H) < RA(H)
where H € a is as in (2.1).
Proof. It suffices to consider the case, A € aj(B) = ag (B) Nag.

Let Z(B, Ap) ={aj, ..., aq}. Denote by f;, 1 <i<gq, the funda-
mental dominant weights dual to &; where &; = 2/(a;, o;)-a;. As Q
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is a maximal parabolic, standard with respect to B, then there exists
k, 1 <k <gq, such that o;(H) =0 for all i # k. Define Ay € aj ¢
by the equation

(}“Hs ‘U)=ﬂ(H), #Eaa,c-

Then 0 £k
A > A j = . .
(et &) {Ck=2/(ak,ak), if i =k.
It follows that
Au = ¢ Pr.

Suppose then that A € aj(B). We have for s € W(4p)
(SA—A)(H)=A(s"'H - H) = (A, sig — An).
But

a
A=) (A, &)Bi,
i=1
and

SAH - }-H = Z —m;¢; m; > 0.

This last equality since Ay is a positive multiple of a dominant weight.
Hence g
A(T'H—H) =Y —(A, &;)m,.

i=1
This shows that A(s™'H — H) < 0 as (A, &;) > 0 by definition of
a$(B) . Further, we see that A(s™!H — H) =0 if and only if m; =0
for all i, which is equivalent to sH — H = 0 which would imply that
NS W(A())M . O

For any b € U(gec) let vp(b) be that unique element of
A& (mNs))U(t) such that b—vp(d) € 6(ng)U(gc) - Then by Lemma
4.3 of Trombi and Varadarajan [2] we have

(7.2) b=vg(b)+Y_ &(mE nli, meMT,
i=1

where &;, {; € U(tc), ni € U(mc) and gi(mexptH)— 0 as t— oo,
H asin (2.1).

Let R = BN M. Note that R is a minimal parabolic subgroup of
M . Put

(7.3) crip(A) = crir(l, A) " epip(l, A).
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It is known (cf. Cohn [1], Theorems 4 and 5) that for a parabolic sub-
group P, the singularities of cpjp(1, 4) and cpjp(1, 1)~! areall of the
form %, ,={A€ay,c|(A,a)=r}, where re C, a € Z,(A(P, Ap)).
We shall say that A € a},  is in general position if A does not lie on
any of the singular hyperplanes %, .

LeMMA 7.2. If A € af o(B), A in general position a; = exptH,
with H asin (2.1), then

lim a; %P Eg(ma,, ®, ) = Eg(m, cgip(A)®, 1),

t—00

where the equality holds for all m € Ky;Ao(R)Kys, and Ky = KNM .
Furthermore, if n€ U(mg), b€ U(ge) then

lim a~ %P Eg(n: ma;; b, ®, 1) = Er(n: m; vg(b), crip(A)®, A),
with A, m as above.

Proof. By (6.29) we have

EB(mata (I)a l) = Z EB|B,S(mata (Ds j')
seW(4,)

= > Z Epip,is(ma;, @, A).

1EW (Ay) W (A)M seW (4,)"

Here, the first sum is over a complete set of representatives of the
cosets of W(49)M in W(Ay), where we choose the element 1 to
represent the identity coset. As A is assumed to be in general position
we have by (6.32) that the above equals

> 3" Epp,w(ma;, Ocpp(s, D@, sh).
WEW (4y)/W (4,)" seW (4,)"

Observe that for w, s as in the last sum we have with Ag = 4|4,
A*g = Ala. , where *R = RN M', that

(7.4)  wsA(H) = ws(Ag + A-g)(H) = w(Ag + sA-g)(H),

and,
Po =P+ Pr.
For all w # 1, ws ¢ W(Ag)M for all s € W(49)™. Hence from
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Lemma 7.1 we see that
lim a; *"" Eg(ma,, @, )
1—00
= Y lima " PEgyg ((ma;, %cpp(s, AP, sA)

t—o00
seW(Ao)

= Y. Egga(m,Jh B(sl)Jé(R)IB(sl)ocBw(s, D, sA).
SEW (4,)M

This last equality follows from Lemma 6.2; here we need to observe
that if A is in general position, then so is sA for all s € W (A4o)M
Since,

Thir(sA) = Tgp(s2) = 1,

then we have

(s4).

crir(l, sA) = R[R(S).) and cpp(l, sA) = B|B

Hence, if m = kjak,, with k;, k, € Kjs, and a € M, , then
Egir,1(m, J5 (5/1) (s, A)P@, s4)

= 1(k1) Z CR|R,§(1,Si)J-Q(R)|B(SA)OCB|B(SJ)
(EZ, ()

- D(1)al* P O1(ky),

and
Crir,¢(t> #) =Tr ¢(tu — prR)CRIR(Z, 1)
As we have observed cgir(1, sA) = J 4 (sl) and this in turn equals

r
Tt i, (SA) BY (6.4). From (6.3) we “have

r r r
Tamiom M am s ) = JomsH) =

By (6.7) we have that the right side of the above equality equals

(k1) > Tr,¢(sA = pR)CRIR(S , A)cRiR(S, A)'epip(s, A)
¢

Bw(s).) = cgp(1, sA).

- D(1)a* = PR=C)1(ky).
But by (6.10) we have

CRIR(S > A) = CRr(s, A)crir(l, 4),
and by Theorem 7 of Harish-Chandra [4] we have

cRir(S, A) = c§ip(s, A).
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Hence,

crir(s, A)7lepp(s, A)7h = crir(l, A)legip(L, A) = crip(4).

The first equality now follows.

For the second equality of the lemma, let us take 5, #, € U(mc¢),
and prove the equality with b and vp(b) replaced by 7,. Granting
this case we sec that the general case with b € U(gc) follows from
(7.2) on noting that the functions g;(mexp¢H)— 0 as t — oo. For
the proof of the special case we note that for any ¢ > 0, x € G, that

Eg(nix;ny, ®,4) =) Epp (m:x;m,®,1),
N

and Epp s(n1¢ x; n2, @, 1) can be expressed as an infinite series of
the same type as the undifferentiated series. The proof of Lemma 3.3
given in Arthur [1] can easily be adjusted so that it applies to this
series. Hence the proof in the special case proceeds just as in the first
case. O

We now wish to use the subquotient theorem to show that the iden-
tities of the last lemma can be extended to arbitrary Eisenstein inte-
grals. First note that by Lemma 1.7.2 of Arthur [1], that given ® €
Heusp(Mp , T) there exists V; € ousp(Mp, 7), A, €a5 ¢ (1 <P <)
such that if Ry = MpN B then ’

N
(7.5) D => Eg(x,¥;, A).
i=1
We shall assume without loss of generality (for example by restricting

® e ,(Mp, 1), Wwith w € ﬂ},), that s = 1. By Lemma 17.5 of
Harish-Chandra [7] we have

(7.6) Ep(x, Eg (¥, A), 2) = Eg(x, ¥, A+ A).

Here we may by the functional equation (6.11) assume that A €
*af ¢(R; N M}) where *aj  equals the orthogonal complement of
ap ¢ in ag ¢ and A is extended by zero to ap c. We have then that

(1.7)  Ep(x,®,4) =Ep(x, Er (¥, A), A) = Ep(x, ¥, A+ 4).

Let s7! € W(a,ap). As s7!a C ap then a C sap. Choose bs €
Chamb(sap) and aj € Chamb(ay) such that a*(Q) C clbs, and
bs C clag ;. As each element of Chamb(sayp) (resp. Chamb(ay’))
corresponds to an element of P(sMp) (resp. P(My)) then there
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exists P; € #(sMp) (resp. Bs € #(My)) such that Py = M;N; where
M; = sMp and if a; = sap then

a(Q) C clag(Ps) Cclag(Bs) and Bs C P C Q.
For notational convenience let us put
(7.8) B(M)=B;NnM and P(M)=PNM.

Let sp denote the unique representative of the coset sW(4o)™ such
that spa € A(B, Ap), forall a e A(BNM, Ap).

LEMMA 7.3. Let p € o o(Ps). Then p = si for some unique A €
ap c(P). We shall assume u is in general position in af . Let
D € Ausp(Mp, 1), and m € Ky Ag(Bs(M))Kpr. Then

lim e~ CsA= P Ep(ma,, @, A)

t—o00

exists and equals

(7.9) Ep sy (M, cpanyp (s82)°cp p(sp, AP, spA),

where
cpanip(A) = cpanyipan (1, A)'epp (1, A).
Furthermore, if n € U(m¢c), b€ U(ge), then

lim e "Ss*= P Ep(n: ma,; b, @, )

t—o00

exists and equals
(7.10)  Epary(ne m;vo(b), cpanyp (s84)°cp p(sp, AP, spA).

Proof. First by the functional equation (6.11) we have

lim e~ AP H) Ep(ma,, @, A)

t—o00

= lim e~“*=PH) Ep (may, Ocp p(sp, A)D, s57).

t—o00
Now suppose that ® and ¥ are related as in (7.7), and A €
a3, c(BNMp), with A perpendicular to aj . Observe that spA(H) =

A(sE‘H) =0 as A vanishes on ap. Then by (6.16) and Lemma 1.7.3
of Arthur [1] we have the above limit equals

lim e~ G-I Ep (may, Ocp p(sp, A+ )Y, sp(A + 1))

t—o00

But u € af (Fs) implies that 4 € ap c(P); further, letting 2(B, Ao)
={ay,...,04},and aj, ..., ap denoting those simple roots which
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vanish on ap, then we can define H; € qp by the condition o;(H;) =
ij,and B; € af ¢ by (4, i) = A(H;) forall 1€ aj ¢ Then AR =
>.b_,m;B; with m; > 0. Hence,

RA,aj)=m;, f1<j<p,

R, aj) >0, ifp+1<j<a’

The second equality follows since R(A, o) = >0 m;(Bi, aj) =0
as i#j. But (4,a;)=(4, a?.) where a‘} denotes the restriction of
a; to ap. Clearly a? belongs to A(P, Ap) since B C P. It follows

tht R(4, a;) > 0, and hence that sg(A+4) € aj ¢(B;s). From Lemma
7.2 the above limit equals

Eg (ay(m , cg a8, (s8(A + 2))0¢p 1555, )Y, s5(A + 2)).
As B; C P, C Q then By(M) C P(M). Let
® =pp(sp, AP = Epar (¥, s5(A + 1)),

RA+1,aj) = {

where N
Y= OCBSiB(SB s A+ )n)q}

From Lemma 1.7.3 of Arthur [1] we have
cpip (1, 582)® = Eg o (cp (1, sp(A+ ), spA).

Applying Lemma 1.7.3 of Arthur [1] once again but this time to M
replacing G we obtain

cp anip (s8A)® = Ep nar (cs s, (s8(A + 1)), spA).
Hence,
Ep (my(cp )P, (spA)D, spA)
= Eg (a)(cB (a5, (SB(A + W)Y, sp(A + 2)).
This proves (7.9). The proof of (7.10) follows from the second equal-
ity of Lemma 7.2. o

ProrosiTION 7.4. Let notation and assumptions be as in Corollary
5.5. Then for a € °Q, j € Q%, (sax? — p)(H) —n > Rz, A €
Fc,sNF(x), neo(a, j) and me M*, we have

Exp{—sI'(X3)}En(sax” + 5;A)®o(m, 5, A)
= thr}}o Exp{—tT'(X,)} En(sax® + sjA)®(may, A).

The equality holds for all s € R.
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Proof. By (5.7) we have

Exp{—sI(X;)} En(SaX” + 5jA)Po(m, s, 4)
= Ey(sax” + 5;4)®P(m, A)

+/ En(sox” + 5jA) Exp{—ul'(X;)}¥(ma, , A) du.
0

On the other hand we have from (5.4) that

Exp{—tI'(X;)} En(Sax” + sjA)®(ma; , A)
= En(sox” +5;4)®(m, 4)

t
+/ Ey(sox” + sjA) Exp{—ul'(X;)}¥(ma, , A) du.
0

It follows from the estimates in the proof of Corollary 5.5 that
the limit of this last expression as ¢ tends to infinity equals the first
expression. O

Recall that T} = €, ; p Ceij: m(X;) where e;;. p(X;) 1s defined
in (2.16). For any e €°Q, j€ Q%, ne€d(a, j), let T,E‘”:”) denote
the linear space spanned by the following set of vectors:

{ex).k(X))lkeQg,nea(a, k), and
KeZ,ony+w(K)=n,1<1<dk}.

LEMMA 7.5. Let A € F'(x) N Fc,s with 6 as in the discussion
preceding Corollary 5.5, and v € V. Then

(7.11) En(sa’ +$iA)v @ €rs: ar(X;) =0, if exs: pr(Xz) ¢ T3

Proof. To see this note that e;. (X)) ¢ T,E‘” ‘" implies that
either k X a, or k <a but ny +w(M) #n. But E, (s, + 5j4) is
just a polynomial (with rational coefficients) in I'(X;). Hence, from
(2.13) and (2.22) we see that there exists a rational function p(4) such
that forall v eV,

(7.12)  En(Sax” +$;A)0 ® €k p(X))
=p().)’l) ®ekl:M(Xl) + Z dr,u,N(A)eru:N(Xl)-
,u,N
o(JrV)io(M)

Let
F'(x) ={1eF(x)Ip(4) # 0},
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then FZ"(x) is dense in F(x). Suppose that E,(s.x” + $jdo)v ®
exr: m(X3) # 0, for A =2g € ¥ (x)NFc 5 - Then there exists a neigh-
borhood N(4g) in F¥(x) on which Ey,(s.x” + 5;A)v @ €x;. p(X;) #
0. It follows from the above mentioned density that there exists
Ho € N(Ao) N F"(x) N Fc,5. Applying I't(X;) to the equation
(7.12) above with 4 replaced by uo we obtain on the one hand that
P(U0)Xn(SaX” + Sjto)exs . p(Xy,) equals

p(.uO)XM(SkX/tO)ekI : M(X/to) + Z Dru : N(.uO)eru : N(X,uo)-
,u,N
o(IrV)lio(M)

On the other hand it also equals by (7.12)

P (1) Xn(Sax” + sjto)ex; . m(Xy,)
+ Y Xu(SaX” +8i0)dru: N(Aery: N(Xy)-
o(](/’)lébj(VM)
Subtracting this equality from the one above we obtain (recall that the
ejj: m(Xy,) form a basis)
P(u0)(Xpr(Sk X)) — Xn(SaX” +5jl0)) =

As p(po) # 0 then we must have Xps(sp Xy ) = Xn(SaX” +5j10) Which
is a contradiction as this equality implies that kK < a and n = o(M)+

Rok - O
Let me M. Put m' = 6(m~1), and set
(7.13) M' = {m € M|det[(Ad, - — Ad, 1)|»] # O}.

For m e M’ let
(7.14) b(m) = (Ad,,- —Ad,t)|a, c(m) = (Ad,,-1)nb(m).

Note that M’ is an open subset of M, and b(m), c(m) are C>-
functions on AM’. Also recalling (3.4) we see that M+ C M’, and for
all me M+,

(7.15) c(m) == (Ad,1,, )",
r>1
b(m) = — Adg(my > _(Ad,,1,,
r>0

Let %, be the algebra generated (without 1) by the matrix coefficients
of ¢(m) and b(m).
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LEMMA 7.6. Let o(M) > 1, and b € YMU(gc). Then there exists
fim €%, Eim, Lim € U(te), nim € UMc), 1< i< p, such that
(1) b=32F_, fim(m)ER, nisaline, me M,
(2) ifmeM,
lim a'®-M firr(ma),
exists, and if f;y;(m) denotes the limit, then f;,, is continuous on M
and bounded on M+ .

Proof. (1) of the lemma is just the statement of Lemma 4.3 of
Trombi and Varadarajan [2], modulo an observation made in the proof
of that lemma, namely, that vr(b) = vp(b) =0.

For (2), let notation be as in (2.5) and put X; = 6(Y;). We observe
that from Lemma 4.1 of Trombi and Varadarajan [ibid.] we have,

Y;=-2Ad, - Eb(m)X; + 2Ec(m)X;,
where E is the projection of g onto t along s. As Ad,, leaves the
A-weight of X € 7 invariant, then on letting Z; = —(X; + Y;) € t we
can write,
(7.16) Yi= Y. {bi(mZ" -ci(mZ;},

Jj>
B,(H)=P,(H)

where bj; and c;; are the matrix elements of b and c relative to the
basis {X;, ..., X,}. We note that by (7.15)

c(ma)X; = (Z(Admfm)"Adf;”l)) Ad' X,

r>1

=a 2.3 a2-Vh(Ad,1,) " Xi.

r>1

By comparison to a geometric series we see that the series converges
absolutely and uniformly for m varying in a compact subset of M
and for all a such that a* > 1, where we use the notation of (2.1).
It follows that

(7.17) Jlim a*bic(ma)X; = (Ad 1) X;

from which we observe that,

(7.18) lim af.c;j(ma) = 0.
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A similar calculation shows that

(7.19) al%go abb(ma)X; = — Adg(m) Xi.

We can now proceed to prove (2) of the lemma by induction on o(M).
If o(M) =1, then

b=Y/b
for some 1 <i<n. Let us write,
ls B
(7.20) 'b=vo(b)+ > "g(m) & mi' Lk,
k=1
where

q
vo('b) = uw,
I=1

and u;, g € U(me)NA(F (meNsc)), v, &, 'S € Ulte), 'gk € H -
Hence,

b= > —ci(m)lz;,'b]

7>
B,(H)=B,(H)
q
-1
+ Y S {b(m)ZM w - cji(m)u, Z;}
s 1=l
B, (H)=B,(H)

‘s
+ Y Y e m){bi(m)(Z &)™ i Gk
2 k=l
B,(H)=B,(H)
—cii(m)Er 'nil G Z;}.
We can express [Z;, b] in the same form as (7.20). Recalling that the
limg—.00 '8k (ma) = 0, and (7.17) we see that (2) holds for all M € Z1}

Q
such that o(M) = 1. Now assume (2) holds for all M € Z’} such that
o(M)=p with p > 1 and let M € Z be such that o(M)=p+1.
If b€ YMU(gc) then we can write

b=Y'b, 'beYMU(gc), o(M)=p.
We apply the induction hypothesis to 'b. Hence, we can write

‘s
b= g (myET ni' Lk,
k=1
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where the functions satisfy the properties listed in (2) for M replaced
by 'M . As above we can write

b= Z { —cji(m)[Z;, b]

E)
B,(H)=B,(H)

+ 3 g (m){bji(m)(Z; &)™ '

k=1
—¢ji(m) 'f;ﬁ"l'ﬂk'Cij}} .

Now, (f, M)Y(H) = (B,'M)(H) + B;(H). It follows from (7.17),
(7.19) and the induction hypothesis that

lim a%-*)g, (ma)u;i(ma)

ar—oo

Q
exists for all i, j where u;; = cj; or bj;; and the results of (2)
hold for the limits. We observe that the terms c;;(m)[Z;, 'b] can be
written as —c;;(m)(adx b+ ady b) . Recalling the definition of 'b, we
see that the terms ad X, 'b are either equal to zero or can be written
as a sum of nonzero terms of the form Y™by where o(N) < p
and w(N) = w('M) - B;(H) = o(M) - pi(H) = o(M) - 2p;(H).
The terms of the form ady} 'b are either zero or can be written as
a sum of nonzero terms of the form Y"'by where o(N) = p and
w(N) = o('M) + Bj(H) = o('M) + B;(H) = w(M). Applying (1) of
the lemma to these terms, using the induction hypothesis, and recalling
that c;; multiplies each of these terms, then by (7.18) we have (2) in
this case. O

Let notation be as in Corollary 5.5. We shall denote by /(M) the
algebra generated by the functions f, f0, f9, where f is a matrix
coefficient of Ady|., and fo(m) = f(m=Y), (fO%(m) = f(6(m)).
Observe that psp(M) C (M) for all p € U(mc). Let ZH(M)
denote the space of all complex valued functions 7 defined on M
such that 7+ 7, is a map of Z, into (M) such that there exists
Cy >0, sy € Z, for which

7a]l < Cyn*iyo(m)?, meMt,neZ,,

n(mexptH) = Ze"” (m), meMT.
n>1
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Note that n,(mexptH) = e'"n,(m). Set
sy, n(M) = {f € (M| f(mexptH) = e~ f(m)}.

LEMMA 7.7. Let n€ U(me), f€F. Then nf € p(M).

Proof. The proof follows from Lemma 2.2.2 of Trombi and Vara-
darajan [2], on noting that b(m) = (Ady, |s)c(m), and (M) = A
in the notation of Lemma 2.2.2. o

LeMMA 7.8. Let fiy be asin Lemma 4.6. Then f;y; € sy o(M),
where n = w(M).

Proof. This just follows from the series representation for ¢(m) and
b(m). o
If s='e€ W(a, ap), sila=s, with s; as in §2, and » > 0 then put

Gy n= MQ,n(M) ® Q(y(SBaP,C))
® Ultc) ® U(te) ® U(mg) ® U(m),
where m! denotes the orthogonal complement of ap; in m, and m{

denotes its complexification. If X € 4; ,,say X = fOPRERE ®
nen,and ® € Ay (sM, 1), u€ s, then set

Ox(m, @, u) = f(M)P(W)T&)Epan(n: m; ', @, p)7(&).

PROPOSITION 7.9. Let notation and assumptions be as in Corollary
5.5. Let py, up € U(mg), s € W(Ag) such that s~' € W(a, ap).
Choose o € °Q such that s, =s. Let j € @3, and n € o(a, j).
Then there exists Xij.p = Xij.m(S, 1, 42) € &s,n Where n =
wH(M) + no; such that for all A€ F¢c s NG (X),

En(sax? +sA)®o(p1c m; uy, t, A)
equals

Z etsl(H)HXi].M(m , CP:(M)IPS(SB'{)OCPJP(SB , A)(D, SBA) ®€ij M-
i,j, M

Proof.. First note that for 1 € 7' (x) N Fc s that there exists for i,
j, M as in the statement of the proposition, rational functions of 2
such that

r
eij:m =Y. e u(Xy).
I=1
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Hence, if ;. 3/(A) = X7y ¢l s (Wi v 5

,
D(mag, A)= Y. > c. y(MEp(may; uij.pr, @, 1) @€y p(X;)
i .M I=1

= > Ep(mas; uj. p(A), @, 2) ® e p(Xy).
1j.M

It follows from (7.11) that
En(Sax”+8;2)®(ma;, 2) =Y 'Ep(may; uy;. p(2), @, @€y p(Xy),
where )’ denotes the sum over all those /, j, M for which e;; . 5/(X;)
€ T,Eaj ‘") By Proposition 7.4 this implies that

e SHITPHIIME, (sax” + 5;A)@o(p1¢ M 2, 1, A)

!
= Z lim e “SAH)+PH)+M) oy - may, ; oy p(A), @, A)

Ur—00
® €. M(X/I)-

But ad, leaves the A-weight of YM invariant. Applying Lemmas
7.3 and 7.6 we obtain the result upon noting that any element of m¢
can be written as a sum of terms of the form vu with v € U(m}),
and u € U(ac); hence if uy, u, € U(ac), vy, v € U(mlc) , then one
can easily prove that

Ep (ay(U1v1: m; vauy, @, A)
= (ur - w2)(A = pp. o)) Ep (ary (V1 m; 02, @, 4). O
We can now combine Theorem 5.9 with the results of this section.
THEOREM 7.10. Let notation and assumptions be as in Corollary

5.5. Further, let me M*, uy, u, € U(me), t >0, and L€ 5"(x).
Then we can write

(7.21) Ep(ui: mag; py, @, 4)
= Z erQ,n(lulémat;lqu q):)‘)a

sT'eW(a,a,)n20
where,
(7.22) ¢, (ma;, ®, A) =a*"* " "1¢ ,(m, ®, 1),
and,
(7.23) T2 (m,®,4)

= Ep (ay(m, cp a)(p (s82)°cp p(sB, NP, 584);
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if n>1,and s, and uy, Ky, are as above, then there exists a unique

X =

Xs.n,p .u, €&s n Such that

(7.24) T2, (wmem; up, ®,2)

(1}
(2]
(1]
(1]
(2]
[3]
(4]
(3]
(6]
{7
(1
(1]
(2]
(1]
(2]
(1]
(1]

= 0x(m, cpanp (s84)°cp p(sp, )P, spA).
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