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Let ¢ be a positive number sequence and define the sequence space
Q) := {x: x; = O(t;)} . Characterizations are given for matrices
that map the spaces /', /*, ¢, or ¢y into €(¢), thus ensuring that
the transformed sequence converges at least as fast as 7. These re-
sults yield information about matrices that map /', /, c, or ¢y into
G := U, H Q(r"), the set of geometrically dominated sequences.

1. Introduction. For each r in the interval (0, 1) let
G(r) = {complex sequences x: x; = O(r)}

and define the set of geometrically dominated sequences as

G= |J G».

re(0,1)

The analytic sequences are defined by
& = {complex sequences x: limsup |x,|'/" < oo}.
n

Obviously G C &7 . In [2, 6, 9, 10] the various authors studied matrix
transformations from & or G into /!, ¢, or [/, but the question
of mapping from [!, ¢, or [® into & or G was not considered. We
shall use the customary notation for a matrix transformation: if A4 is
an infinite matrix with complex entries and x is a complex number
sequence, then A4 transforms x into the sequence 4x whose nth
term is given by

o o]
(AX)n = pe X
k=0
The present work began as a study of /! — G and ¢ — G matrices,
but it was found that such results are merely special cases of a more

general theory. To set the stage for the general theory we replace the
geometric sequence {r¥} with a nonnegative sequence ¢ and define

Q(t) = {x: xp = O(t) }-
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Throughout the paper T will denote a sequence {¢(™}%  of nonneg-
ative number sequences such that (™ e Q(¢(™*+1)) for each m ; this

ensures that Q(z(™) C Q(¢#™+1))  and we define
o0
D(T) = | Q™).
m=0

ExaMPLE 1. If for each m, ¢(" is the geometric sequence {rk},
where 0 <r, <1 and r, 11, then D(T) is G.
For a given summability matrix A4, the sequences u and o are
defined by
Hn = SUp |ank|

and
o0
On = Z @nk|-
k=0

The main results of this paper state that for 4 to map /! [re-
spectively, c] into a “big-oh space” such as (7), it is necessary and
sufficient that x4 be in Q(¢) [respectively, o € €(¢)]. Moreover, in
order for A to map /' [respectively, c] into D(T) it is necessary
that 4 map into a particular Q(¢#(™) for some ¢ in T . Thus the
characterizations of 4: /! — G and A4: ¢ — G are obtained as special
cases of the general theory.

The final section of the paper contains a brief discussion of some
classical matrix methods as mappings into €(¢) spaces.

2. The main results. Using the notation as given above, we proceed
to our first general result.

THEOREM 1. If A is a summability matrix and T, D(T), and u
are as given above, then the following are equivalent:
(1) ueD(T);
(ii) there exists a '™ in T such that p € Q(t™);
(iii) there exists a t'™) in T such that A: ' — Q(t(™);
(iv) A:1'— D(T).

Proof. Implications (1) = (ii) = (iil) = (iv) are obvious. To prove
that (iv) = (i), first note that (iv) implies that
(1) Un < oo for each n

and
(2) each column of A4 is in D(T).
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It follows from (2) that the sum of any finite number of columns of
A isin D(T), so there exists a sequence {{(”)} in T and a positive
number sequence {B,,-} that increases to oo such that

(3) > |anil < Byt ) for each n.
i<m®

To simplify the notation we will write m in place of m* since the
nestedness of the sets {Q(#™)} ensures that nothing is lost by con-
sidering the subsequence {¢t(")} as the entire sequence {7("}.

Now assume (1), (2), and (3) hold, but 4 ¢ D(T); we wish to
construct an x in /! such that Ax ¢ D(T). From each row of 4
select an entry satisfying

an ,k‘(m)l 2 %ﬂn

Since u ¢ D(T), (2) allows us to choose a subsequence of these
entries, say {d,/;) x'()}re, suchthat n'(i) and k'(i) increase with i;
also, u ¢ D(T) allows us to choose the #'(i) so that

(m)y _
(4) sgp{unf(,-)/tn,(l.)} =oo for all m.

For each i we also have
(5) @iy k)] 2 3wy = %Sup{lan'(z kl}-
Finally, choose a further subsequence'of these entries so that for
each j
k
(6) |a,,(j),k(j)| > 12Bk(j 1 t(((g 1))4 .
Now define x in /! by
xk={4_j, 1fk=k(]) and an(j)’k(j);éo,
0, otherwise.
For each j this yields

|(AX)njyl = = Z |n(jy k(i1 47" + angy k1477 + Z |y k()14

i<j i>j
k(j=1)) _ 1 —_j ~
> —Bi(i—nlyy) "+ 3n(hd =ty Yy 47
i>j

k(-1)) | 1 -
2 =Bii-nlyy U F g4

k(j k(j—1
> —Byj-nyty ) + H12B oty V414
- (k(j=1))
_Bk(J—l)tn(j) :
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Hence, Ax ¢ Q(t*U-1)) and it follows that Ax ¢ D(T).
By taking T as in Example 1 we get the following corollary as an
immediate consequence of Theorem 1.

COROLLARY 1A. If A is a summability matrix and u, = supy |ay|,
then A:1' - G ifand only if pn€G.

Another consequence of Theorem 1 can be obtained by replacing 7’
with a single sequence, i.e., ™) = ¢ for every m. Thus D(T) = Q(¢),
and we get the following result.

COROLLARY 1B. If A is a summability matrix and t is a nonneg-
ative number sequence, then A =1' — Q(t) if and only if u € Q(t).

This corollary gives rise to the title of the paper, because it character-
izes those matrices A that will transform every absolutely convergent
series Y x; into a series » (AXx), that converges at least as fast as a
given series » 1.

Now we turn our attention to matrix mappings from /* into D(T),
which, as we shall see, subsumes the cases of mappings from ¢ or ¢
into D(T).

THEOREM 2. If A is a summability matrix and T, D(T), and o

are as given above, then the following are equivalent:
(1) o0€D(T);

(i) there exists a t'™) in T such that o € Q(t'™);

(iii) there exists a t™ in T such that A:1° — Q(t'™);

(iv) there exists a t™ in T such that A: c — Q(t'™);
v) there exists a t' in T such that A: cy — Q(t™);
(vi) A:¢cy— D(T).

Proof. As in the proof of Theorem 1, most of the implications are
obvious and we prove here only that (vi) = (i). Note that (vi) implies
that each row of 4 isin /! (i.e., g, < 00) and each column of A isin
some Q(z(™). Therefore finite sums of the column sequences are in
D(T), and we can choose a sequence of #\/)’s with constants B; > 0
such that for each j

(7) Y lawl < Bjt.
k<j

Suppose that ¢ ¢ D(T). Choose increasing sequences {k(j)} and
{n(j)} of column and row indices as follows: k(1) and n(0) are
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chosen arbitrarily, and after k(j) and n(j — 1) are selected choose
n(j) > n(j— 1) so that

. . k
(8) On(j) 2 Li2Bigjy + J) + 2Bi(j )
Next choose k(j+ 1) > k(j) so that
k(j
9) S langy,l < Begyty -
k>k(j+1)

Thus (7), (8), and (9) together yield

k(j+1) i)
(10) Yo lang) .l = J@2Biy + Ny
k=1+k(j)

Now define the sequence x by

'a— .
xp = ULk i k() < k < k(j+ 1) and @y 4 # 0,
|@njy, klJ

and x; = 0 otherwise. It is clear that x € ¢y, but for each j we have

k(j+1)
[(AX)u)l == D angy kl +{ D an]) Xkl = O lang) il
k<k(j) k=1+k(j k>k(j+1)
. k(j+1)
> 2B+ S ay k|—>th,(§)”-
k=1+k(j)

Hence, Ax ¢ Q(t*U)) for j=1,2,...,s0 Ax ¢ D(T). Thus we
have shown that if (1) is false then (vi) does not hold, which completes
the proof.

As with Theorem 1, we can state two immediate corollaries to The-
orem 2. The first is the case in which D(7T) = G as in Example 1,
and the second is the case in which 7 consists of a single sequence.

COROLLARY 2A. If A is a summability matrix and o, = Y} _; |@u],
then A maps [®°,c, and ¢y into G ifandonly if 6 €G.

CoROLLARY 2B. If A is a summability matrix and t is a nonneg-
ative number sequence, then A maps [®, c, and ¢y into Q(t) if and
only if o € Q(t).

Once again, it is the latter corollary that is described in the title
of the paper: for, if one wishes to have a matrix A4 that transforms
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every null sequence into a sequence that converges at least as rapidly
as some t, | 0, then A must satisfy ¢ € Q(¢). Similarly, if ¢ is a
nonzero constant sequence, then (¢) = /*, and in this case Corollary
2B reduces to the well-known result that 4 preserves boundedness if
and only if o is bounded.

Another observation should be made about obtaining a “given rate
of convergence” by mapping cy into (). Recent work [1, 7] has
shown that regular matrices cannot accelerate the rate of convergence
of every null sequence. Therefore, we emphasize that having 4 map
co into Q(¢) does not say that every sequence in ¢y is accelerated,
even if ¢, | O very rapidly; some sequences that are already in (1)
may map into other members of (¢) that converge at the same rate
or slower.

3. Examples involving classical matrices. If A4 is regular then o €
[* but g ¢ cy. Therefore Theorem 2 and its corollaries do not yield
much information about regular matrices, and this includes most of
the classical methods. We can, however, draw some conclusions about
mapping /! into Q(¢) by finding x4 and applying Corollary 1B.

ExaMPLE 2. The Cesaro matrix of order j is given by

(n+§:i—k)

(")

(see, e.g., [8, p. 46], so it is plain that

Cj[n> k] =

_C __J
ﬂn’"cj[nyo]—n+j7

whence C;: 1! — Q(1/n).

ExaMmpPLE 3. For the Euler-Knopp mean of order r it is known
[3, Theorem 9] that u, ~ [27nr(1 — r)n]~'/2; so by Corollary 1B,
E.: ' - Qn~1/?),

ExaMpPLE 4. For the Taylor matrix 7, [3, Theorem 11] we have
Un ~ (1 —r)[2mnrn]~1/2, and therefore

T,: 1" - Q(n~1/?).

ExAMPLE 5. The Borel matrix [8, p. 53] is given by B[n, k] =
e "nk/k !, and it is not hard to show that

o= Bin = ()
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From Stirling’s Formula it follows that
|
ﬂn \/m s
and so B, like E, and T,, maps /! into Q(n=1/2).

ExAMPLE 6. The Hausdorff means [5, Chapter 5] can be defined by
1
Hyln, k] =/ E/[n, kldo,
0

where E, is the Euler-Knopp mean and fol |dp| < oo. Thus from
Example 3 we infer that

(Hln, K < Kn~2 [ f[r(l _ T V2lde(r)l,

where K is a constant. Therefore we conclude that if

1—
[r(1 =n]~|dg| < oo,

0+
then s, = O(n~Y/2) and H,: I' - Q(n=1/?).

ExAMPLE 7. The Norlund mean generated by the nonnegative se-
quence p with pg > 0 is given by

pn—k/Pna if k<n,

N”[”’k]={0 ifk>n.

In general,
1
HUn = P_n max{pk}zzo ;

and this is somewhat awkward in Corollary 1B. In case p is monotonic
the u formula becomes quite simple, and we can state the following
easy conclusions:

(i) if p is nonincreasing, then u, = py/P, and N,: ' — Q(1/P,);

(ii) if p is nondecreasing then u, = p,/P, and N, = [! —
Q(pn/Pn) .- :

It should be noted that these results do not always give much in-
formation. For example, in Case (i) if p € /! then 1/P ¢ ¢y and
(i) asserts only that N, maps /! into /*. (Every Norlund matrix
maps [/ into [* because o, := 1.) Similarly, if p, = R", where
R > 1, then p,/P, ~ (R—1)/R, and (ii) tells us only that N, maps /!
into /.
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ExXAMPLE 8. An Abel matrix [4] is given by

Adn, k] = t(1 = 1,)%,

where 0 < t, <1 and lim, ¢, = 0. For A4, it is obvious that u, =1t,,
and therefore by Corollary 1B, A4,: /' — Q(1).

The authors would like to thank Professor James DeFranza for some
very helpful conversations.
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