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A necessary and sufficient Fredholm criterion is found for a C*-
algebra of bounded operators on a cylinder, which contains operators
of the form LA™  where A= (1 —A)""? and L is an Mth order
differential operator whose coefficients are periodic at infinity.

0. Introduction. Let Q denote the cylinder RxB, where B is a com-
pact Riemannian manifold, Ag its Laplacian and /# the Hilbert space
L?(Q). Cordes [3] found a necessary and sufficient Fredholm criterion
for operators in the C*-subalgebra of .#(#) generated by: (i) mul-
tiplications by functions that extend continuously to [—oo, +00] X B,
(ii) A = (1 —Ag)~Y/? and (iii) operators of the form DA, where
D is either 8/0t, t € R, or a first order differential operator on B
with smooth coefficients. Here we extend this algebra by adjoining the
multiplications by 2z-periodic continuous functions to the generators,
and a similar Fredholm criterion is obtained.

The commutator ideal &» of the extended algebra &» is proven to
be x-isomorphic to 42¥ ®.%;, ® %, where ~Z denotes the algebra
of singular integral operators on the circle and % and % denote
the algebras of compact operators on L?(Z) and L?(B), respectively.
This allows us to define on %» an operator-valued symbol, the “ y-
symbol”, such that kery Nkero equals the compact ideal of .Z(#).
Here o denotes the complex-valued symbol on %5 that arises from
the Gelfand map of the commutative C*-algebra %.»/&». We prove
that 4 € €» is Fredholm if and only if y, and o4 are invertible.

The simpler case when the compact manifold reduces to a point
is considered in [S]. There, a unitary map W from L2(R) onto
L%*(S")® L%*(z) is defined, such that the conjugate W& W ! of the
commutator ideal equals 4 ®.%;. Here, we conjugate &» with
W ® Iy, where Iy denotes the identity operator on L2(B), and obtain
LR Ky, ® K -

If L is a differential operator on Q whose coefficients are contin-
uous and approach periodic functions at infinity, the operator 4 =
LAM belongs to %», where M is the order of L. We can apply
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the criterion above to 4 and prove that L is a Fredholm operator
if and only if it is uniformly elliptic and a certain family of elliptic
differential operators on the compact manifold S! x B is invertible.
This applies also for matrices of such operators.

These results can be extended in a standard way to non-compact
manifolds with cylindrical ends (cf. [2], VIII-3,4). Fredholm prop-
erties of elliptic-differential operators on such manifolds have been
studied, for example, by Lockhart-McOwen [6] and Taubes [8]. The
case where the coefficients are periodic on the ends is included in
Taubes’ results.

1. Definition of the algebra Z.» and a description of its commutator
ideal. Let Q denote the Riemannian manifold R x B, where B de-
notes an n-dimensional compact manifold with metric tensor locally
given by 4j;, and let # denote the Hilbert space L?(Q), with Q
being given the surface measure

dS =vhdtdx'- - dx",

where £ is the determinant of the n x n-matrix ((4jx))i<j k<n- The
metric on Q is given by ds? = d* + hjdx/ dx*, and the Laplace
operator is locally given by

Ag = A +A=d2 L9 ypnik 2
Q R B= 7 t2 NITES 9xk’
where ((h/¥)) = ((hjx))~!, and the summation convention from 1 to
n is being used.

The symmetric operator Aq with domain C§°(Q) is essentially self-
adjoint, since Q is complete (cf. [2], IV). We denote by H the closure
of 1-Ag and by A its inverse square root, A = H~!/2. Since H > 1,
we have A € Z(#). The algebra %, is defined as the smallest C*-
subalgebra of .#(#) containing the following operators (or classes of
operators):

(1) acC®B); beCS(R);

el jez; A; l%A and DA,
Dy Vbeing a first order differentlal operator on B, locally given by
—ib/(x)8/0x/, where b/(x), j=1,..., n, are the components of

a smooth vector field on B. The operators g?A and D,A, defined
on the dense subspace A~!(C5°(Q)), can be extended to bounded
operators of .Z(#) (cf. [2], for example). Bounded functions on Q
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have been identified with the corresponding multiplication operators
in Z(#) and CS(R) denotes the class of continuous functions on R
with limits at +o0 and —oo.

Our first objective is to obtain a necessary and sufficient criterion
for an operator in %» to be Fredholm. Such a criterion has been
found by Cordes [3] for the algebra generated by the operators in (1)
except e'/l, jEZ.

Taking advantage of the tensor product structure of 7,

# = L*(R)Q L*(B),

we consider the conjugate of %5 with respect to the unitary operator
F ® Iy, where Iy denotes the identity operator on L?(B) and F the
Fourier transform on L?(R),

(Fu)(1) ~iTy(t) dt.

1
= m/ ¢
In order to simplify notation, 4® Iy is denoted by A and Iz ® B by
B, whenever 4 € Z(L?*(R)) or B € Z(L*(B)).

We seek to describe what are By := F~ 14, F, where 4, k =
1,...,6,denote the operators listed in(1), in that order. The operator-
valued functions A(t) := (1+12-Ag)~1/2, TA(1) and D;A(7), T €R,
are all in CB(R, %), as proven in [3], page 220, and thus determine
operators in Z(#) by multiplication in the real variable. Here %
denotes the algebra of bounded operators on L?(B) and CB(R, .%)
the bounded continuous .%-valued functions on R. With this inter-
pretation, we get B, k=1, ..., 6, respectively given by

(2) acC®B); bD),becCSR); T;,jez;

A(r); —7A(r) and Dxf\(‘r),

where b(D) := F~'bF and T; denotes the translation (7;u)(z) =
u(t+j).

Let % denote the ideal of compact operators on L?(B) and
CO(R, #) denote the Z-valued continuous functions on R that
vanish at infinity. All commutators [By, B/], k, [ # 3, are contained
in the algebra

&7 = COR, %) +.% (%),

where #Z (%) denotes the ideal of compact operators of & (#), as
proven in [3], Proposition 1.2. Next we investigate what are the
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commutators [Bs, By], Kk = 1,...,6. We easily get [B3, B;] =
[B3, B,] = 0. It is also clear that, for any K(7) € CB(R, %), we
have

(3) [T, K(1)] = (K(t+ k) - K(1))T}, k € Z.

ProrosITioN 1.1. The commutators of the generators in (2)—and
of their adjoints—of the algebra Cy := F~1%,F are contained in

N
m:{ 3 K,-(r)T,-+K;NeN,KjeCO(R,%),Kemy/)}.
j=-N

Proof. Let us first prove that K(t + j) — K(7r) € CO(R, %), for
K(1) = A(1), TA(1) or DyA(t). It follows from the fact that —Ag
on L?(B) has an orthonormal basis of eigenfunctions, with eigenvalues
0<A <A<, Ay — 00 as n — oo, that, for each 7 € R, f\(t)
is unitarily equivalent to the multiplication operator (1 + 12+ 4,)"1/2
on L2(N). Hence: A(1) € CO(R, %),

”T[]\(T +j)— A(’C)]”Lz(m) < Ser[r}ai(o) !T[(S + (1 +j)2)—1/2 —(s+ 12)_1/2”

and

AT A +)) = i < max (24922 +))" +9)712 - 1.
N

Note that the right-hand sides of the two previous inequalities go to
zero as T — +oo. Furthermore, as

lim (1+7 +4) (14 (0 + ) + 4) 72 = 1 =0,

we have that A(7)"'A(7 + j) — 1 € %, for each 7 € R. We then get:
(t+ NA(x +j) —1A1) = 1(A(t + j) = A(0) + jA(r + j) € COR, T5)
and

Dy A(t + j) = DyA(1) = Dy A(D[A(T)'A(T + j) — 1] € COR, F3).

By the remarks preceding the statement of the proposition, this
proves that the commutators of the generators (2) are indeed con-
tained in &%7 . Concerning the adjoints, let us note that the classes
of B,’s, k =1,...,5, are self-adjoint and that, as proven in [3],
DA -AD, e CO(R, %) . Hence

(4) (DxA)* — DA = AD: — D:A € CO(R, %).
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Here, D; denotes the formal adjoint of D,. The commutators of
any K(1) € CO(R, %) with the generators B;, k =1,3,4,5,6,
are clearly contained in Z%Y . For K(t) of the special form K(7) =
a(‘c)I?, a € CO(R) and K € %, the commutator [b(D), K(7)] =
[6(D), a(t)]® K is compact, since [b(D), a(z)] is compact (cf. [4],
Chapter 111, for example), for b € CS(R). The vector space generated
by all K(7) = a(r)IA{ as above is dense in CO(R, %) and thus we
have

(5) [b(D),K(1)leZ(#), forbe CS(R), K(1) e COR, F).
This concludes the proof. O

Denoting by %gz the commutator 1deal of Z» and by &» the com-
mutator ideal of &5, it is obvious that & = F~1&,F .

PROPOSITION 1.2. The commutator ideal & of the algebra &5 is
obtained by closing the set of operators:

N
ég1>,02={ > biDK;(DT; +K;
j

N

bj € CS(R), NeN,K,-eCO(R,.%,Ke%(Z)}.

Proof. The algebra % is a “Comparison Algebra”, in the sense of
[2], Chapter V, with “generating classes™:

(6) &t :=CP(Q)UC®(B)U{elt; jezyuU{st)=t(1+) 2}

and 2! equal to the vector space generated by the first order linear
partial differential expressions on B with smooth coefficients and by
the expression 9/0¢. Indeed, %» can alternatively be defined as the
C*-algebra generated by all multiplications by functions in .« and
by all DA, D € @*. It follows then from Lemma V-1-1 of [2] that
F(#) C &» and therefore 7 (#) C &» . Moreover, it was proven in
[3], Proposition 1.5, that CO(R, %) is contained in the commutator
ideal of the C*-algebra generated by B;, Bs and Bg. Thus we get
& P,0C & .

All commutators of the generators (2) and their adjoints are con-
tained in é;p,o , by Proposition 1.1. Again using (3), (4) and (5), it
is easy to verify that é?p,o is invariant under right or left multiplica-
tion by the operators in (2) and their adjoints. Two facts then follow:
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(i) all commutators of the algebra (finitely) generated by the opera-
tors in (2) and their adjoints are contained in é?p o and therefore all
commutators of %, are contained in the closure of gp 0, and (ii) the
closure of gp o is an ideal of &5 . By definition of commutator ideal,
&, is contained in the closure of é’p 0- O

Let CO(R) denote the set of continuous functions on R vanishing
at infinity and let & denote the set of bounded operators on L?(R)

{Zb (D)a;(1)T; + K; N €N, b; € CS(R),

j=—N

ajeCO(R),Ke,ZfR}.

COROLLARY 1.3. With & denoting the closure of & defined above,

we have: R R
&r =& Q7

where ® denotes the operator-norm closure of the algebraic tensor prod-
uct.

Proof. The vector-space generated by

{(b(D)a(t)T; +K) ® K; b€ CS(R), a € CO(R), j € Z,

K € %, K € %}

is dense in &p ¢ and in £®.% . |

In the rest of this section, we define a unitary map

W: L*(R) — L*(S'; L?(z))

and find a useful description for (W & I3)&» (W ® I)~!

Given u € L*(R), denote:

u®(p) == (u( - Jj))jez>
for each ¢ € R. The sequence u°(¢) belongs to L2(z) for almost

every ¢, by Fubini’s Theorem, since L2(R) can be identified with
L%([0, 1) x Z). Let

F;: L*(s', d6) — L?(z), s' = {e?; 8 eR},

denote the discrete Fourier transform:

2” ..
(7 (Fau); = T / 8)e=0 40, jez.
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For each ¢ € R, define
(8) Y, := Fye ""9F ;L.
The operators Y, define a smooth function on R, taking values in the
unitary operators on L?(Z) and satisfying (Yyu); = u; , for k € Z
and u € L*(z), and Y,Y, = Y,y.0, for ¢, w €R.

We now define the map (with S! = {e?%/?; ¢ € R})
(9) w: L*(R) — L*(s', dg; L*(z)),

= (Wu)(p) = You(p).

Let CS(Z) denote the set of sequences b(j), j € Z, with limits as
j — 400 and j — —oco and let b(Dy) denote F;'b(M)F,;, where
b(M) denotes the operator multiplication by » on L?(Z). We then
denote by #Z the C*-subalgebra of % := .2 (L%(s')) generated by

b(Dy), b € €7(Z), and by the multiplications by smooth functions
on S'. It is easy to check that, with Ay = (1 —Ag)~1/2,

LAy =sDg),  s()= (147

Since the polynomials in s are dense in CS(Z), ¥ coincides with
the C*-subalgebra of % generated by —i Z%ASI and C*(s!). In
other words, .%% is the unique comparison algebra over S!. It there-
fore contains the compact ideal %, and all its commutators are com-
pact (cf. [2], Chapters V and VI).

The following theorem was proven in [S] (Theorem 2.6). See also
[7], Theorem 1.2.

THEOREM 1.4. With the above notation, we have:
(10) WeEW-' = 27 8%,

where %, denotes the set of compact operators on L*(Z). Furthermore,
for b€ CS(R), a € CO(R) and j € Z, we have:

A°(e®™?) := Yya(p — M)Y_, € C(S!, %)
and
(11)  W(b(D)aT)W=' =b(Dy)Y,a(p — M)Y_,_; + K,
K e ’%s‘xz
ProprosITION 1.5. The map
&r - LRI T,
A WAW™!
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is an onto x-isomorphism. For A € &» of the form A = b(D)K(1)T;,
with b € CS(R), K(t) € COR, ) and j € Z, we have:

(12) WAW™' = b(Dg)Y,K(p — M)Y_,_;+K, withK € %

XZXB*

For each ¢ € R here, K(¢ — M) denotes the compact operator on
L*(2)®L2(B) defined by the sequence K(p — j) € %, j € Z. The first
term of the right-hand side of (12) defines therefore a #yxs-valued
continuous function on S' = {€?™% ; p € R}.

Proof. By Corollary 1.3 and (10),
Weé,W = 9279.% 8%

and, by (11), formula (12) holds for K(z) of the form a(7) ® K,
a € COR) and K € % . We can then find a sequence K, (1) €
CO(R, #) such that K,,(t) — K(1), uniformly in 7 € R, and (12)
is valid for each K,,(7). Then

YoKm(p —M)Y_,_; — Y,K(p —M)Y_,_;

in #xg, uniformly in e?"? ¢ S'. Since the supremum-norm of a
function on $! taking values in .#(L%(Z)®L?(B)) equals the norm of
the corresponding multiplication operator on L?(S')® L?(z)® L*(B),
the convergence above also holds in .Z(L2(S))® L%(Z)® L*(B)). O

Let Mg; denote the maximal-ideal space of #2# /%, and let
ot 77 | %y — C(Msy)

denote the composition of the Gelfand map with the canonical pro-
jection. We then have (cf. [2], for example): Mg, =SS! x {~1, +1}
and

o3L(-, 1) =a(-), foraeC®(s!)

and
alf(’bﬂ)(- , £1) = b(xo0) for b € CS(z).

Let C(Mg; , #zxs) denote the #;.p-valued functions on Mgy .
Here %5 denotes the compact ideal of L?*(Z)® L2(B), Fixs =
Ty Hyp

THEOREM 1.6. There exists an onto *-isomorphism

Ep

R & F7) — C(MsL , #zx8)
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such that if 7 denotes the composition of ¥ with the canonical projec-
tion &» — &» )% (#) and A € & is such that B = F~'AF is of the

form B = b(D)K(t)T;, where b € CS(R), K(r) € COR, %) and
j € Z, we then have:

J4(e¥, £1) = b(£00)Y,K (9 — M)Y_,_;.
Proof. Let ¥ be given by

& Z, _ R IHBH
Z#)  Z(#Z) F

— C(Msr , Zzxs) ,

XZXB

where in the first step we take A +.% (#) € & /% (#) to F~1AF +
F(#), next to

WFAFW= + %,

XZXB?
and in the last step we use the onto *-isomorphism (see [1]):
FL QI QT

%SlXZXIB
A® K| ® K + FZ

_*(XA4SL7°%%XB)

xZxB UZEL((” , £1)K; ® K.
Defined this way, ¥ has the desired properties, by Proposition 1.5
and its proof. .

2. Definition of two symbols on % . Our first task in this section
is to give a precise description of the symbol space of %, i.e., the
maximal-ideal space of the commutative C*-algebra %,/&». The
symbol space of %, the C*-algebra generated by the operators listed
in (1) except the periodic functions e’/!, was described in [3]:

THEOREM 2.1 (Theorem 2.3 of [3]). The symbol space M of & can
be identified with the bundle of unit spheres of the cotangent bundle of
the compact manifold with boundary [—oo, +00]xXB, where [—oco, +00]
denotes the compactification of R obtained by adding the points —oo
and +oo. The a-symbols of the generators Ay, Ay, Ay, As and Ag
are given below as functions of the local coordinates (t, x; T, &), where
(t, 1) €[-00, +oo] X R*, (x, &) € T*B and 1% + hkEE = 1:

g4 =a(x), a4 =b(t), 04,=0, 04=1, 04 = b (x)E;.

i
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When periodic functions are adjoined to the algebra, the points over
|t| = oo become circles. More precisely, we have:

THEOREM 2.2. The symbol space Mp of &» is homeomorphic to
the closed subset of M x S! described in local coordinates by

{((t,x51,8),e);(t,x;1,8)eM, 0 €Rand § =t if 1| < oo}

Using this description of Mp, the o-symbols of the generators in (1)
are respectively given by

a(x), b)), €7%, 0, 1 and b(x)E,.

Proof. Let P,, denote the closed algebra generated by {e"/’; j €
Z}, i.e., the 2m-periodic continuous functions on R. Its maximal-
ideal space is S', with e/ e S! defining the multiplicative linear
functional f — f(6).

With & denoting the commutator ideal of %, the maximal-ideal
space of #/& is M, as described in Theorem 2.1. By definition of
the Gelfand map, a point (¢, x; 7, &) defines the multiplicative linear
functional

A+& —oay(t,x;1,8).

The following maps are canonically defined:

%
(13) Iy: ?—?%
and

. @
(14) lz.Pzn gy.

(It is obvious that & C &»)
Let us denote by 1 the product of the dual maps of i; and i, i.e.,

(15) 1:Mp - Mxs!,
W (woly, ,wol),

where w denotes a multiplicative linear functional on %, /& .

As the images of i; and i, generate %,/&,, 1 is an injective
map, clearly continuous, which proves that Mp is homeomorphic to
a compact subset of M x S!. Now we proceed to investigate which
points of M x S! belong to the image of i. This dual-map argument
1s essentially “Herman’s Lemma” (cf. [4]).

As in the proof of Proposition 1.2, here again we use general results
on comparison algebras. It follows from Theorem VII-1-5 of [2] that
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for every point of the cosphere-bundle of Q, (7, x;71,&¢) € §*Q,
there is a multiplicative linear functional on %»/&» that takes any
function a, belonging to the closed algebra generated by A4* in (6), to
a(x,t) and DA,
10 1,; 0
— 4 Zhi () B

D =57 + ib (x)axf +q(x)eI*,
to 7+ b/(x)&; . This multiplicative linear functional must correspond
to the point

((t,x;71,8),e")eMxs!,
with |f| < 0.

Suppose now that ((¢, x; 7, &), e!?) is in the image of : and that
|t| < co. Let w denote the corresponding multiplicative linear func-
tional on %»/&» and x denote a function in C§(L2) with x(¢) =1.
It is clear that x(-)e’) + &> belongs to the image of i; and thus, by
(15),

o(x()e') + &) = et
On the other hand, since /() + &, belongs to the image of i, , we get:
w(x(-)e') + &) = o(x(-) + &) (e’ + &) = e”.

We then obtain e? =e't.
For t = +o00 and any ¢ € S!, let us consider the sequence t,, =
0 £ 2nm. Since Mp is closed and

((tm> x5 7,8), €M) = ((t, x5 7,8),€%) asm— oo,
we conclude that ((¢, x; 7, &), ) e Mp. 0
REMARK 2.3. We have just proved above that
Wpi={((t, x; 1, ¢), ) e Mp; |t]| < o0}

is dense in Mp.

Next we define the y-symbol.

The C*-algebra %,/%(#) has the closed two-sided ideal
&»| X (#), which was proven to be *-isomorphic to C(Mg; , Zzxs)
in Theorem 1.6. Every 4 € %» determines a bounded operator of
L(&»|Z (#)) by E+Z(#) — AE + % (#), thus defining
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Let us define

(16) 7: G — Z(C(MsL , Hzxs))
A Y4 = kI"I‘AkIJ_1 s

for ¥ defined in Theorem 1.6.

For E € &», pyg is the operator multiplication by g €
C(Ms., Zzxs) (see Theorem 1.6). Let C(Mgr, %xp) denote
the continuous functions on Myg; taking values in Fyp =
Z(L*(z x B)) . Identifying functions in C(Ms; , %x5) With the cor-
responding multiplication operator of & (C(#s; , #zxs)), W€ can say
then that y is an extension of 7.

PROPOSITION 2.4. There exists a x-homomorphism
7: & — C(MsL, Zxs)»
where ,
Mg = {e’™; 9 €R} x {+1, —1},

given on the generators (1), according to notation established in §1 and
in Theorem 1.6, by:

(17) Ya, = a(x);  va, = b(+o0);

VA3=Y»j; V4, = Y¢K(¢"‘M)Y—(p§
va, = Y,K(¢p —M)Y_,, where K(7)= —17\(1) , TER and
Va4, = YoL(op —M)Y_,, whereL(t)= Dx1~\(1:) , TER.

Furthermore, 7y restricted to the C*-algebra CS,, generated by the
operators in (1) except b € CS(R), is an isometry.

Proof. Let us calculate y, defined in (16), for the generators
Ay, ..., Ag¢ of (1). By Proposition 1.2, it is enough to calculate the
result of a left multiplication by 4,, p = 1, ..., 6, on operators
E € &, such that F~!EF are of the form ¢(D)K(7)T;, ¢ € CS(R),
K € CO(R, %) and ! € Z. For such an E, we get F~1(4,E)F,

p=1,...,6, equal to, modulo compact operators,
c(D)a(x)K(0)T], (ch)D)K(D)T;,  c(D)K(t+ j)Tj4,
c(DADK[DT;,  —e(D)TA(MK(1)T; and c(D)DA(D)K(D)T;,

respectively. Here we have used (3) and
[C(D)’Bk]e'%(;"y)’ k=4a556
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(cf. [3], Proposition 1.2). By Theorem 1.6, we get:

ya,£(9 5 £1) = c(+00) Y, K (9 — M)Y_,_,
=a(x)ye(p, £1) (K =ak),
Y4,e(¢, £1) = (cb)(£00)Y,K(p — M)Y_,_ = b(£00)ye(9 , £00),
Y4,6(9, £1) = c(£00)YpK(p +j = M)Y_,_;_ 1 = YjyE(p, £1),
Pa,E(9, £1) = c(£00) Y, (AK) (9 — M)Y_,_,
= Y,A(p - M)Y_p7£(p, £1)
and analogously for p =5 and 6. This proves formulas (17).

For any A € &» such that F~!4AF = J(1) € CO(R, %), it is also
clear, using (5), that

ya(9, £1) = Y, J (9 — M)Y_,.

Hence, by (4), y A also belongs to C(Mg; , -Zxs) -

The norm of the operator of .#(C(Mgy , #zxs)) given by multipli-
cation by a function in C(Mg; , %xg) is equal to the sup-norm of
this function. In other words, the C*-algebra C(Ms; , %xg) 1S iso-
metrically imbedded in .#(C(Mgy , #zxs)). As the image of a dense
subalgebra of % is contained in C(Mg; , -#4.g), We conclude that y
maps %» into C(Msy , Zxs) -

Using the identification

L*’SHY®L*(z)® L*(B) = L*(S', L*(z x B)),
it can be straightforwardly verified that, for A(t) € CB(R, %),
WA(T)W-! € C(S!, %x«s) and it is given by Y,A4(¢p — M)Y_, . This
means that for k =1,4, 5, 6, we have
ya, = WF ' 4 FW™" and y=WF ' 4LFW™".
It is also clear that WT;W~! =Y_; and, hence,
ya=WFTAWF )™l forde&g,
proving that
lvallem,, .2 ) = |4lgw) and y, = (yA)* for 4 €&

This finishes the proof, since it is obvious that y 4= (yAZ)* . O
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The o-symbol and the py-symbol, defined in Theorem 2.2 and
Proposition 2.4 respectively, are related by:

PROPOSITION 2.5. For every A€ @p, |loamaw,| < [74ll, ie

sup{lo4((t, x; T, &), €)|; |t] = 0o} < sup{||ys(m)|l . ; m € Mg, }.

Z)<]B

Proof. Since the commutators of A4, with the other generators in
(1) and their adjoints are compact (cf. [3], Proposition 1.2), the set
of operators of the form

N
(18) A=) b4, +K
Jj=1

bijeCSR), Aj€%;,Ke#(¥), Ne€N,

isdense in %». As ox =0 and yx =0 for K € #Z(#), it suffices to
assume A of the form (18) with K =0.
For such an A, Theorem 2.2 implies:

o4((t,x;1,8), Z ZXTé) e'?).

Letting A+ denote the operators EN bj(£00)A;, it is clear then that
04((+00, x5 7, &), €%) = a4 ((£00, x; 7,¢), ) and
0a((—00, x5 7,&), ") =04 ((xo0, x; 7,&), ");

hence:

(19) loalm,\w, || < max{fla|l, llo,-|}.

The map o: 6» — C(Mp) was defined as the composition of
the Gelfand map (an isometry) with the canonical projection &» —
©»|Z (#). It then follows that

lo g+ ]l < (14T
As A* € &5, where y is an isometry,

(20) o llem,) < N7 4zllem,, .2, ,)-

ZXB

By Proposition 2.4,

N
val@, +1) =D bi(+00)y4 (9, +1) = 74:(9, +1)
j=1
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and

vale, —1)=y,-(¢, —1).
Furthermore, for any 4 € &, it is clear from (17) that y,(p, +1) =
v4(@, —1) and, therefore,

(21) 74l = max{{ly |l |74 1}
We are finished by (19), (20) and (21). O

If 74 =0, then, o4|m,\w, = 0. The converse is also true:

PROPOSITION 2.6. An operator A € €» belongs to the kernel of vy if
and only if o, vanishes on Mp\Wp. Furthermore, we have:

(22) kerynkero = 7 (%).

Proof. Let 9 denote the C*-algebra generated by multiplications
by functions in C(£2) and by the operators of the form DA, where
D is a first order linear differential operator on Q with smooth coef-
ficients of compact support. Given A, one of these generators just
described, we can find y € CP(R) such that y4p = Ap and then
Y4, = Vx74, = 0, by Proposition 2.4. So, we have % C kery.

Using the nomenclature of [2], .% is the minimal comparison alge-
bra associated with the triple {Q, dS, H}. It can be easily concluded
from [2], Lemma VII-1-2, that 4 € &» belongs to % if and only if
o4 vanishes on Mp\Wp, proving that % C kery, by Proposition 2.5.

Since kero = & and kery = %, the equality in (22) follows from
[2], Theorem VII-1-3. O

3. A Fredholm criterion and an application to differential oper-
ators. We will now give a necessary and sufficient criterion for an
N x N-matrix whose entries are operators in % ,regarded as a bounded
operator on L%(Q,CV), N > 1, to be Fredholm. Let us denote
L*(Q, cN) by #V and by ) the C*-subalgebra of Z(#N)

&l = {((4x); 4jx €%», 1 < j, k< N}.

It is easy to see that the compact ideal of .Z(#") coincides with the
matrices with entries in .7 (#), i.e.,

F(ZN) =2 = {(Ki); Kjx € #(#), 1 < j, k <N}
Let us define two symbols on %2 :

o) = (04 ))i<jk<n and 7 = ((7a,)1<j k<n >
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where A = ((4x))1<;. k<n € &2 . The following proposition follows
immediately from the definitions above and Proposition 2.6.

PROPOSITION 3.1. The yN-symbol of an operator A € €Y is identi-
cally zero if and only if its o™ -symbol vanishes on Mp\Wp . Further-
more, we have:

(23) kera¥ NnkeryV =7V,

THEOREM 3.2. For an operator A = ((Ajk))1<j k<N € &L to be
Fredholm, it is necessary and sufficient that:

(i) ok beinvertible, i.e., the N x N-matrix ((aAjk(m))) be invertible
for all m e Mp, and

(ii) yY be invertible, ie., the N x N-matrix, with entries in
C(Msy , Zx8), ((yA/k(m))) be invertible for all m € Mgy .

Proof. Suppose that A4 is Fredholm and let B be such that 1 — AB
and 1 — BA are compact. We have B € €/, since €5 /Z" is a
C*-subalgebra of .Z(#V)/% "N . We then get

N  _ N  _ N  _.N  _
0j—48=01-p4=0 and p_  p=7_p,=0

and, hence,

_ _N_N_ NN _ NN _ NN
l=00p =0g0, and 1=y 7p =774

Conversely, suppose that (i) and (ii) above are satisfied. Since
V. €Y — C(Ms., N x N-matrices with entries in .Z(L?(Z)®L?*(B)))
is a *-homomorphism (by Proposition 2.4), its range is a C*-algebra.
There must be then a B € &2 such that y} = (y¥)~'. Since
1 — AB € keryV, 1 — o¥o}) vanishes on Mp\Wp, by Proposition
3.1. As the map o is surjective, so is V. An operator Q € &2’ can
therefore be found such that its symbol ag equals the continuous
function vanishing on Mp\Wp

() ~af.
By Proposition 3.1 again, Q € kery" and, then,

N N
M-aB+Q) = V1-(B+0)4 = 0
Since we also have
N _ N.N__N-N_q_ ~N
Oi_a+0) =1 — 0408 — 0405 =0=0{_p,0)4>

the operator B + Q is an inverse for 4, modulo a compact operator,
by equation (23). O
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In order to apply this result to differential operators, it is convenient
to conjugate the y-symbol with the discrete Fourier transform. We
define:

(24) I: gy — C(MSL . ,Eﬂgnxﬁ)

AHFA(m):Fd—IYA(m)Fds mGMSL’
where Fy;: L*(S') — L%(z), s' = {¢'?; 6 € R}, was defined in (7),
and, as usual, F; also denotes F; ® I .

Next we calculate I'; for the generators of #,. It is obvious that,
for a € C*(B),

(25) La(p, £1) =a, (e*™?, +1) € Mg,
and, for b € CS(R),
(26) I'y(p, £1) = b(+o00), independent of g.

For j ez, F;'Y_;jF; equals the operator multiplication by e”¢ on
s! = {e'?, § € R}, and then, by (24) and (17),

(27) T,ulp, £1)=¢€"%, forall (e*™¢, £1) € M.
Let a € C(Q) be of the form
(28) a(ls x) = a-l-(t’ X)X+(Z> X) +a—(ta x)x—(ta x) +a0(t7 X) s

where a; are continuous and 27z-periodic in ¢, gy € CO(Q) and
x+ € CS(R) satisfy y+(+o0) =1, x++ x- = 1. By the continuity of
[, (25), (26) and (27), it follows that

(29) Ti(p, £1) =ax(0, x), for (e*™?, £1) € Mg;.

Note that (28) gives I'y , I'y and Iy, for 4, as defined on
page 283. ) B

N~ow we calclllate Fd*lK((p — M)F;, for p € R and K(1) = A(1),
—1A(1) or DyA(7), which is needed for obtaining FAp ,p=4,5,6.
Let us use again that —Ag has an orthonormal basis of eigenfunctions
Wm, M € N, with eigenvalues 0 < 1; < 1, < -+, 4 — o0 as
m — oo, and define the unitary map

U: L*(B) — L*(N),
U= (W, U)men-

By the spectral theorem, the conjugate U(1 + (¢ — j)? — Ag)~'/2U !
equals the operator multiplication by (14(¢—j)2+4,)""/? on L*(N),
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for each j € Z, ¢ € R. The operator /N\((o — M) € Z4y«p acts on
u=(u))jez € L*(z; L*(B))
by N
Alp — Myu=((1+(p - j)* + )" ")) jez
and, thus,
(30) (2@ U)A(p — M)z @ U)™' = (1+ (¢ — j)* +Am) ™'/,

where, by (14 (¢ — j)? + Am)~ /2, we now mean the corresponding
multiplication operator on L?(Z)®L?*(N).
Let us adopt the notation:

(B1) 1+ (9 —Dg)* —As:= (F4@U) (1 + (¢ = j)* + Am)(F4 ® U).

It is easy to see that 1 + (p — Dy)? — Ag is the unique self-adjoint
realization of the differential expression 1+ (¢ +i2;)?—Ag on S! xB
(see Lemma 3.3). By (30) and (31) then, we obtain:

(32) (Fy®Is) 'Alp — M)(Fy;®Is) = (1 + (¢ — Dp)? — As)~'/2,

for every ¢ € R. Using that Y, = F;'e"%F,, ¢ € R and (17), it
follows that:

(33)  Talp, 1) =€ (1 +(Dg — p)* - Ap)~' 2™,
(e*™?, £1) € Mgy.

Since, for each j € Z and each ¢ € R,
Ulp — )1+ (¢ —j)* —Ag)~'?U!
equals the operator multiplication by
(0 =N+ (9= ) +am)'/?
on L2(N), we obtain, in a way analogous to how (33) was obtained:
(34) T, 1) =e"(Dy - 9)(1+(Dg — 9)* — As)~ '/,
(e?™? | +1) € Mg;.
Here we have assumed the notation:

(¢ — Dg)(1 + (9 — Dg)* — Ag)~ /2
= (F;0U) o= )1+ (9 —J)* + ) 2(F;0U).

For the last type of generator, we need the following lemma.
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LEMMA 3.3. The subspace
{ue L*(S' xB); (14 (¢ —Dy)? — Ag)?u e C°(s!' x B)}
is dense in L*(S! x B), for every ¢ €R.

Proof. The statement is true for ¢ = 0, since
1+D5—Ap=1-Ag,,
is essentially self-adjoint on C*(S! x B), by [2], Theorem IV-1-8, for
example. For ¢ € R,
(1+ (¢ — Dy)* — 85)™"/2(1 + Dj — Ap)'/?

is a Banach-space isomorphism, since it is unitarily equivalent to the
multiplication by the function on Z x N

(L4 (9 = )2+ ) 2L+ 2 + )12,
which is bounded and bounded away from zero. O
For every v € C®(S! x B), it is clear that
D, F;v = F;Dyv,

where, on the right-hand side, D, is regarded as a differential expres-
sion on S! x B and, on the left-hand side, D, acts, as a differential
operator on B, on each component w; € C*(B) of

w = (w))jez = Fyv € L*(Z; L*(B)).
By Lemma 3.3, it therefore follows that
(35) Fy[Dx(1+ (9 — Dg)* ~ Ag)~'/21F !
= Dx[Fy(1 + (p — Dg)* — As)™'/2F 1.

The right-hand side of (35) equals Dz1~\(¢ — M), by (32). We have,

hence:

(36) L4, (9, £1) = e [Dy(1 + (p — Dg)* — Ap)~'/*Je™°.
Equations (29), (31), (32), (33), (34) and (36) prove:
PROPOSITION 3.4. The map T defined in (24) is given on the gen-

erators of B (with m = (e*™%, 1) € Mgy and Ty(¢, £1) € %,

sl = {e'?; § e R}) by:
I'i(p, £1)=a4(0, x), foraasin (28)
Ta(p, £1) =™ (1 + (Dg — 9)* — Ag)~'/2™?
T_9,(0,%1) =e7(Dy ~ g)(1+ (Dy ~ ) ~ &a) e

XB’

Tpalp, £1)=e D (1+ (Dy — p)* — Ap)~'/2e°.
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REMARK 3.5. Because of the way I" was defined, it is obvious that
condition (ii) of Theorem 3.2 can be replaced by

(ii') The matrix I'Y(m) := ((FAjk(m)))ISj,kSN is invertible for all
me Mgy .

Our next and final objective is to find necessary and sufficient con-
ditions for a differential operator with semi-periodic coefficients on Q
to be Fredholm. Most of the ideas and proofs in what follows are bor-
rowed from [2], §§VIIL.3 and IX.3, where the more general problem of
finding differential expressions within reach of a Comparison Algebra
1s addressed.

PROPOSITION 3.6. Let L be an Mth order differential expression
on B, with smooth coefficients. The operator LAM , defined initially
on the dense subspace A~M(C$(Q)), can be extended to a bounded
operator A in & (#). Moreover, we have that A € €», a4 coincides
with the principal symbol of L on Wp (points of Mp over |t| < 00)
and

Tap, £1) = e P L(1 + (Dg — p)* — Ag)~'/?e?,
(ez"i“’ , £1) € Mg;.

Proof. It is easy to see that any Mth order differential expression on
a compact manifold equals a sum of products of at most M first-order
differential expressions. (See, for example, the proof of Proposition
VI-3-1 of [2].) It is therefore enough to consider L of the form

L=D\D;---Dy,

where D;, j=1,..., M, are first order expressions. For M =1,
the proposition is true by Theorem 2.2 and Proposition 3.4.

Using that A2 = H-!, H =1 — Ag — A, it is easy to see that, for
ue A‘Z(Cg"(ﬂ)) ,and D; and D, first order expressions, we have:

(37) D D,A*u = DiA*Dyu+ D, A*[H , D,]A%u.

The commutator [H, D,] is a second order expression on B and can
therefore be expressed as a sum of products of at most two first order
differential expressions:

p
[H, D2l =) F;G;.
j=1
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This shows that, on the dense subspace A=2(C$*(Q)), D;D,A? equals
the operator

P
(DIA)D3A)* + (D1A) Y (FFA)*(GiAA € %,
j=1

where D* denotes the formal adjoint of a differential expression D.
Since g, = 0, we get:
GD1D2A2 = GDIAGD;A ’

which, restricted to Wp, coincides with the principal symbol of D,
D, , by Theorem 2.2. It also follows that:

14
— % %k
FDIDZAZ -_ FDIAFD;A + FDIA E FI:]*AFGIAFA.
j=1

By Proposition 3.4, we get:

e'?’T ) b a2(p, £1)e™0?
1772

p
= (D1Ap)(D3Ag)* + D1y D (FfAg)*(GiAg)A,
=1
P
= D|A2D; + D1A3 Y FiGjAZ,
=1

where A, = H,'*, H, = 1+ (Dy — 9)* — Ag. Since [H, D,] and
[H, , D,] are equal (as expressions on B), we get:

e, p 2(9, £1)e™ " = DAL D2 + DiAJ[H, , D2A; = DDA

proving the proposition for L = D;D,.

Suppose now that the proposition is true for sums of products of at
most M first order differential expressions and let L = DD, --- D44
be a product of first order expressions. Define: F = D;D, and G =
Dy --- Dy, . Using the formula

LAM*ly = FA2GAM 'y + FA’[H, GIAM 1y,
ue AMH(CR(Q),

the proposition follows for this L, by the same argument as
above. o
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Let {Ug} be a finite atlas on B and {¢z} a subordinate partition
of unity, i.e. support ¢g C Ug. Let L be a differential operator on
Q, acting on CV-valued functions, locally given on U by

®  1-3 ¥ a0 (F2) (A2

J=0la|<M,

J

10\ [ .0 \™ 8 \™ .
(75) .—( l'a—)a) "'<—laxn) s foraeN

and |o| = a; + -+ + an,. We will say that L has semi-periodic coeffi-
cients if the matrices

Ag ;i o(t, x) = 0g(x)Ag ; &, X),

regarded as functions on Q, have as entries functions of the type (28).
It is easy to see that this definition is independent of the choice of atlas
on B. We want to decide when

L: HY(Q,cM) - L*(Q, cV)

where

is a Fredholm operator, assuming that L has semi-periodic coeffi-
cients. Here M denotes the order of L, M = max{M; +j,j =
1,...,M}.

We also denote by A the operator A ® Iy on Z(L*(Q,CV)),
where Iy denotes the N x N identity matrix. Since A commutes
with £ and L=3 Lg, for Lg:= pgL, we get:

10 10 ; ;
M _ la| JAM—lal—=J
LA ﬁgj a(t X) ( ax) A (iat) AA .

After multiplying (TB_x) above by xp ;o € CP(Up), xp,j,a(x) =1
for x in the support of A 8,j,a» We still get the same operator and
Xp.j.a(x)(3£)> is now a differential expression defined on B. We
can therefore apply Proposition 3.6 and conclude that LAM € €.
Using, moreover, that g,m-..-, =0 for |a| +j < M, we get:

op(t, x51,8) =3 Y g o, x)ET, 7] < oo.
B lal+j=M

The right-hand side of the previous equation coincides with the princi-
pal symbol of L restricted to the co-sphere bundle of Q. Invertibility
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of the og-symbol is therefore equivalent to uniform ellipticity of L,
by Remark 2.3.

The operator-valued symbol I'; ,» is also given by Proposition 3.6
(and Proposition 3.4):

e T, \u(p, £1)e'?®
10\“/1d Iy
- 2 A,.09(555) (o) M-

where we have used that A, and 0 commute. We have denoted by

Ajgt ja the 2z-periodic continuous functions such that
Ag j.alt, X) = 1+ (VA5 ; (6, %) = x-(0 45 ; (1, X) € CO(Q).
(See (28).)

Let L;(¢) denote the differential expressions on S' x B
A’} .
19\*/190 J
i —_ — — —
Z 2 +A/’J“(0’x)(l’8x> (1'80 ‘/’) ’
la|<M,
and define the operator

(39)  L*(p):=)_ Lj(p): HY(s' xB, ") - L*(s' x B, CY).

Since A, is an isomorphism from
L*(s' xB, cV) onto HM(s! x B, cV),

the above considerations, together with Theorem 3.2 and Remark 3.5
prove the following theorem.

THEOREM 3.7. Let L denote an Mth order differential operator on
Q of the form (38), with continuous semi-periodic coefficients, and let
L*(¢) denote the differential operators on S' x B defined in (39).
Then

L: HM(Q, cV) - L*(Q, cV)

is Fredholm if and only if L is uniformly elliptic and L*(¢p) are in-
vertible for all ¢ € [0, 1].
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