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ON THE ELIMINATION OF ALGEBRAIC INEQUALITIES

DANIEL PECKER

Let S be a locally closed semi-algebraic subset of R”. We find
an irreducible equation of an algebraic set of R"*! projecting upon
S'. Our methods are simple and explicit.

1. Introduction. The inequality x > O is often replaced by the
proposition “x has a square root” or “3t € R, t> — x = 0”. This
is the most immediate example of an elimination of one inequality.
The general problem is to find an algebraic set projecting upon a given
semi-algebraic set: it is a converse of the problem of the elimination
of quantifiers.

Motzkin proved that every semi-algebraic subset of R” is the pro-
jection of an algebraic set in R”*! . However this algebraic set is very
complicated and generally reducible.

Andradas and Gamboa proved that any closed semi-algebraic sub-
set of R” whose Zariski-closure is irreducible is the projection of an
irreducible algebraic set in R"*X .

In this paper we shall first improve Motzkin’s result by finding equa-
tions generally of minimal degree. Then we shall give a few results
concerning irreducibility. One of the first examples of such a con-
struction is due to Rohn and has been studied by Hilbert and Utkin:

If 4C4C, = ¢? is a plane curve of degree six (where deg(C,) = 2,
deg(C4) = 4, € € R), then it is the apparent contour of the quartic
surface Cyz2 —ez+ C4=0.

2. The case of basic closed subsets. Let R = {x € R|x > 0} be the
set of nonnegative numbers. Let x = (x;, ..., Xy) be a “parameter”
and ¢ an “indeterminate”, so that we can speak of the roots of a
polynomial P(x, ¢). In the same way, unless otherwise specified, the
degree of P(x, t) will be its degree in ¢.

Let us define the polynomials g;(x) as follows:

(X1 s oee s Xiep1) = Xpp1 (X1 + 22 4+ -+ Xp).
It is easy to see that a,(x) >0, ..., a,(x) > 0 if and only if all the
X; are nonnegative or all the x; are nonpositive (i=1,...,n+1).
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THEOREM 1. Let Pi(x;, u) =u—x;.

Pn+1(xl s eee s Xntls u)
= Po(a1(X), ... s an(X), (= (X1 + X2+ - + Xpp1))?).
Then the following properties are true:

(i) P, is homogeneous of degree 2" 1.
(ii) If all the x, are nonnegative

n
Pn(xl,...,xn,u)=0:>05u§22x,-.
1

(iii) If all the x; are nonnegative, P,(xi, ..., Xn, t*) has only real
roots.
(iv) If Pu(xi, ..., Xn, t?) has a real root, then all the x; are non-
negative.
(v)
Pn(xl’ ey xj—la 05 -xj+19 cee s Xy l)
= [Prct (X1 e s Xty Xyts een s Xns D

(vi) Py(x1, ..., Xn, t2) is irreducible and monic in each letter.

Proof. First, we prove (1), (ii), (iii), and (iv) by simultaneous in-
duction: let us suppose (i), (i1), (iii) and (iv) verified for #; we shall
prove them for n + 1.

(1) Easy since the a; are homogeneous of degree 2.

(i) If u isarootof P, i(xy,..., Xpr1, u) =0, then
(= (X1 + - + Xns1))?
is a root of P,(a;(x), ..., ay(x), v) = 0 by induction
(= (o + -+ X041))? S 2@ (X) + -+ an(X) < (01 + -+ + Xpg1)?

whence 0 < u < 2(x) + - -+ X,41), which shows (ii) and (ii1).
(iv) If Pyyi(xi, ..., Xns1, t2) = 0 has a real root, then

Pn(al(x)! ey ai’l(x)> (ZZ—' (-xl +'-'+Xn+1))2)

has a real root and by induction all the a,(x) are nonnegative. There-
fore, if all the x; are nonpositive, P,(a;(X), ..., a,(x), v) has a root
which is greater than (x| + -+ + Xp41)? > 2(a1(x) + -+ + an(x)).
By induction this is possible only if

(X1 + -+ Xnr1)? = 2(ar(x) + - + an(x)),

1.e., when all the x, are equal to zero.
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(v) By induction: suppose the formula true for n, let us prove it
for n + 1. Let us study the case j > 2 (the case j = 1 is similar).
Let

X=Xy, 00 Xj=1, 0, Xji1, eony Xng1),
X = (Xl, cee s Xjo1s Xjgls eee s X,H.]).
We have:
ai(x) = a,'()AC) ifi<j-1,
aj-1(x) =0,
ar(x) =ap_1(X) ifk>j.
Then,

Popi(x, ) = Po(ay(x), ..., Gn(X), (1= (X1 4+ + Xp41))?)
=Py(ai(X), ..., a;2(%),0,a;1(X), ..., an-1(X),
(t= (X1 4+ + Xn41))?)
=[Po—t(@(X)s .y a1 (X), (E~ (X1 + -+ +xn+1))2]2
= [Pu(%, D).

(vi) By induction. Suppose P,(x, ¢?) irreducible. Let
P}H—l(-xl’ cee s Xptls tz) =A(.X, t)'B(X, t);

A and B monic in ¢. Let us substitute O for x,,; in this factoriza-
tion; using (v) we get:

(Pa(xyyeee, Xns 22 =A(x1, .., X0, 0,8)-B(X1, ..., X, 0, 0.

Since P,(x, t?) is irreducible, and 4 and B are monic in 7, we get
either:

A(XL, oo X0, 0, ) =B(X1, ...y X, 0, 80) = Po(xy, ..., Xn, t%)

or:
A(Xy, oo X0, 0, 8) = (Pa(X1, .oy Xn, 1))

In the first case, at any point where all the x; are positive P, has
a simple root and then 9A4/dt # 0. Then (by the implicit function
theorem) A has a root for x in a neighborhood of (xy, ..., x,, 0),
which is impossible since P,,; does not have such a root when x,.;
is negative. In the second case P,,; and A4 have the same degree in
t, and since 4 and B are monic in ¢, we obtain finally A(x, t) =
Poi(x,1?), B(x,t)=1. |
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REMARKS. We can compute easily P;, P,, P;.

P(x, )= ~x,

Pyx,y, )= - (x+y)* - xy,

P3(x,y, z, tz)

=[P - (x+y+2)* - (xy+yz+zx)P - xyz(x + ).
If we use the elementary symmetric polynomials sy = x+y + z+ u,
Sy, 83, 84 = XyzZu, we can even write P;:
P4(x’ya Z, us tz)
=[((F=s1)? = s2)> —xyz(x +y) —u(x + y + z)(xy + yz + zx)]
—ss(x+y)(x+y+2)(xy +yz + zx).

2

The main step in Motzkin’s work (cf. [M1], [M2]) was to find “a real
polynomial U)(xi, ..., X4, t*) such that x; >0, ..., x; >0 if and
only if, for some ¢, Uj(xi, ..., x4, t*) = 0.” His polynomials are
reducible, nonhomogeneous, have some complex roots even when all
the x; are positive, and they are very complicated:

Uj(x, y, 1) = [t*(x~y)0 =22 (x — p)*(x +y) + LI[(£? = y)* + (x —»)?],

deg,(U;) = 4, but deg,(Uz) = 104, deg,(U;) = 12, 496, deg,(Us) =
7,997, 47211

The induction formula defining our polynomials P, was found by
a geometrical construction (cf. [P1], [P2]):

The algebraic set v3: P3(x,y, z, 1) = 0 is such that the positive
cone on it

C*(v3) = {(x, y,z)€R3Ft >0, (% % -f-) e ,,3}

={(x,y,2)€RFA >0, P(x,y, z, 1*) =0} = (R*)>.

v3 is projectively equivalent to an algebraic set v; whose vertical
projection is a triangle. And it is not difficult, using P,, to define
such a set (see figure).

The following corollary is due to the cooperation of C. Andradas.

COROLLARY 1. There exists a real irreducible polynomial

Pn’m(xl,...,Xn,yl, ...,ym,tz)

having a real root iff all the x; are nonnegative and all the y; are
positive.
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FiGURE
Surface z* — 2(B; + By)z? + B} + B} = 0 with
Bi=x-x?, By=(1-x)y-y*

Proof. Let us define P, ,, by the formula:
Pn,m(xisyja tz)
= (yl ---J’m)zmn_ Pn+m(xi,yl s eee s Ym—15 l/yl o Yms t2)°

Since the polynomials P, are monic in each variable we see that P, ,,
cannot have a real root if y;---y,, = 0. The conclusion is easy. 0O

For example we have: Py »(b, ¢, t?) = (bct* — b%c — 1)2 - bc.

PROPOSITION 1. Let S be a semi-algebraic subset of RM given by:
S={xeRMb(x)>0,...,b5,(x)>0,c;(x)>0, ..., cm(x) > 0}.
There exists a real irreducible polynomial P(x, t) such that:
xeS&deR, P(x, t)=0.

Proof. Let P be a nontrivial irreducible factor of
Pn,m(bi(x) ’ Cj(x) » lz)'

Since P, has either only real roots or none, we see that P has a
real root iff P, ,, has one. o
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3. The case of obtuse corners. Let us define a function g(¢) and a
polynomial Q,(x, ¢) by the formula:

— xl . e a —-——xn — —_ Qn(x, t)
T t—x + +t—x,, b= (t—x1)--(t—xn)

g(1)

By symmetry we may suppose x; < x; < - < Xj.
The function g(¢) has a root on any of the intervals ]—oo, xi[, ...,

1xixivil, ..., 1xn, oo[ whose closure does not contain zero. To obtain
all the other roots of Q,(x, t), it is enough to take x; as a root or
order p — 1 if x; appears p timesin (x;,..., Xx,), and take O as a

root of order g if g of the x; are equal to zero.

We also see that g'(¢) never vanishes on these intervals.

Consequently y,(x) = sup{t € R|Qn(x, ) = 0} is well defined,
positive (resp. nonnegative) iff one of the x; is positive (resp. non-
negative). ¥,(x) is continuous because Q,(x, ¢) has only real roots.

If w,(x) is equal to one of the x;, all the x; are nonpositive, and
either the maximum of the x; is 0, or the maximum of the x; is
attained by two or more x; . In the first case, if only one of the x;
is equal to 0, a direct computation shows that Q) (x, 0) # 0. In the
second case, if the maximum of the x; is attained by exactly two of
the x; , we see that Q) (x, x;) # 0. Then, using the implicit function
theorem, we have:

PROPOSITION 2. There exists a function y,(x), semi-algebraic and
continuous on R", positive (resp. nonnegative) if and only if one of
the x; is positive (resp. nonnegative). Furthermore y,(x) is analytic
everywhere except on E; U E,

E, ={(X)ER”|Vi,X,‘<O,3i1, iz’xi1 = Xj, =0}’

E; = {(X) ER"VI, x; <0, 301, 0, i3, X5 = Xi, = X; = max(x,-)}.
1

This allows us to give a very simple proof of the following separation
theorem of Mostowski (compare [B-C-R]).

COROLLARY (Mostowski). Let F be a closed semi-algebraic subset
of R". There exists a continuous semi-algebraic function y zero on
F, analytic and positive outside F .

Proof. We know that any closed semi-algebraic set F' can be written
F = UYF;, with F; = {x € R"4}{(x) > 0, ..., 4L (x) > 0}. Let
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filx) = t//k,(—A’i(x) , ..., —AL(x)). f; is nonpositive on F;, analytic
and positive outside F;. The function y(x) = ]'[11V (fi(x)+]fi(x)|) has
the desired property. o

We need the following remark:

LEMMA. Let Cy, ..., Cy be pairwise relatively prime elements in
a factorial ring of characteristic zero. There exist positive integers
dy,...,dy such that the elements C,, ..., Cy and d;C;—d;C; are

pairwise relatively prime.

Proof. By induction. Suppose that for £ < N there exist positive in-
tegers d, ..., dy suchthat Cy, ..., Cy and d,C;-d;C;, i< j<k,
are pairwise relatively prime. Let P be the finite set of factors ap-
pearing in one of these polynomials. Let j < k be a fixed integer, and
consider the polynomials nCy,; —d;C;. These polynomials are pair-
wise relatively prime, and then, except for a finite number of values for
n, they do not possess any factor belonging to P. Take a positive in-
teger dj such that, forall j <k, di, Cy,—d;C; does not possess
any factor belonging to P. Any common factor of dy,Cy | —d;C;
and djCy, — d;C; must be in P, which is impossible. O

ProrosITION 3. If the real polynomials A(x), ..., Ay(x), Bi(x),
..., Bi(x) are pairwise relatively prime, there exists a real irreducible
polynomial R(x, t) which has a nonnegative root iff one A;(x) is non-
negative or one B;(x) is positive. It has a positive root iff one A;(x)
or one Bj(x) is positive.

Proof. By the lemma, we may suppose that the 4;, B;, and their
differences are pairwise relatively prime. Let

Wa(x) = wp(di(x), ..., 44(X)),
wB(x) = Wi (Bi(x), ..., Bi(x)).
w4(x) and wp(x) are analytic on R” except on a set of codimen-
sion two at most. Their minimal polynomials R,(x, w4(x)) =0 and
Rp(x, wp(x)) = 0 are therefore irreducible. These polynomials, being
factors of Q4 and Qp respectively (in R(x)[¢]), have only real roots.
Consider now the following function defined for « >0 or v #0:

T, v) = U+v+vur+v?
’ (u+ Vu2 +v2)?
(0, 0) = 0.

(u? +v?),
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v satisfies a real quadratic polynomial K(u, v, W(u, v)) = 0 which
has a nonnegative root if and only if # >0 or v > 0; (if u >0 or
v >0, ¥(u,v) is a nonnegative root of this polynomial).

Let R;(x, f) be the polynomial obtained by eliminating # and v
of the following system (I):

(I Rp(x,v)=

We see that R;(x, W(ya(x), vp(x))) = 0. Since W(y4(x), ywp(x)) is
meromorphic in a dense connected open subset of R”, there is an irre-
ducible factor R(x, f) of Ri(x, f) suchthat R(x, W(w4(X), wg(X)))
=0.

If R has a nonnegative root, the system (I) has a solution u, v, f;
with f; nonnegative. R, and Rp having only real roots, # and
v are real numbers. Finally we see that ¥ > 0 or v > 0 which
shows that y4(x) > 0 or wp(x) > 0. Conversely, if y,(x) > 0 or
wp(x) >0, W(ys(x), wp(x)) is a nonnegative root of R(x, f)=0.0

We may also remark that, since R, and Rz have only real roots,
R, and R have the same property.

In the proof of our principal result, we shall only need the easier
part of Proposition 3, when there isno B; . In this case the polynomial
R(x, t) is monic in ¢.

4. The principal result.

THEOREM. If S is a locally closed semi-algebraic subset of R", there
exists an irreducible real polynomial R(x, t) such that:

xeS e IeR, R(x, t)=0.

Furthermore, if S is closed, we can suppose R monic in t.

Proof. Let S=FNU, where F is closed and U open. We know
that we can write F = ﬂjlv‘ S; with

S/ = {xeR"[4{(x) > 0or --- or 4, (x) > 0}

where the Af(x) are irreducible polynomials. (Cf. [A-G1] & [B-C-R]
p. 26.). Similarly, we can write U = ﬂ]},’l 4157 with:

S;={x¢e RHIAZI(X) >0or ... or Aﬁll(x) > 0}.
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For each / let R;(x, u;) be the polynomial defined in Proposition 3.
R; is irreducible, monic in #;, and has only real roots. When / < N,
R; has a nonnegative root iff x € S;. When / > N;, R, has a positive
root iff x € S;. The function g (x) of Proposition 3 is noted /-

Let y be a root of PN“N_Nl(fl ..., Jn,I?) = 0 in an extension
field of R(f;, ..., fn). Let Q;(x, ') be the polynomial obtained by
eliminating the u; in the system (II):

Rl(x’ ul) = O:

RZ(xa uZ) = 03
(II) )

PNI’N_Nl(uI sy U2, oo, UN, I‘2) =0.

We have Q,(x,y) = 0. Let R(x,I') be an irreducible factor of
Q:(x, T') such that R(x, y) =0.

Since Py nN-n, is not monic, we must be careful with elimina-
tion theory. Let us introduce a new variable uy.;, and consider
the following system of homogeneous polynomials in the variables

u19°-~auN+1:

b

RMX, up, un41) =0
Ri(x, uy, uny1) =0,

(Ir')

P}\lf,,N-N,(“l’ v un, T2 uny).

Let O1(x, T )u% +1 be the polynomial obtained by successive elimina-
tion of the variables uy, uy_i, ..., #; in the system (II'). As it is
well known for systems of homogeneous equations, this system has a
nontrivial solution (u;, ..., uy, uy4p) iff Q1(x,I') =0 (cf. [W]).

Since the polynomials R;(x, #;) are monic in u;, we see that any
nontrivial root of (II') is such that uy,, # 0. Therefore, the system
(IT) has a solution iff Q;(x, ') =0.

If R(x,T’) has a real root, the system (II) has a solution u,, ...,
uy,I'. Since the R; have only real roots, the u; are real and
Py N-nN (U1, ... UN, I'?) has a real root. Therefore, if / < N;, u; is

a nonnegative root of R, ;if / > Ny, u; is a positive root of R;, which
shows that x e S = ﬂiv’ S; . Conversely, suppose x € S. Since the two
polynomials R(x,T') and Py n-n (fi, ..., fv, [?) have a common
root in an extension field of R(f;, ..., fy), their resultant relative to
I vanishes identically. R(x,T) and Py ~_n (fi(X), ..., fv(x), [?)
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have a common root. Since X € S, Py n-n, (fi(x), ..., fv(x), I?)
has only real roots, therefore R(x, I') has a real root. O

REMARKS. If S = ﬂ]lv S;, where each §; is a closed semi-algebraic
set written with m; inequalities, the degree of our polynomial is
2N¥m, ---my. This degree is smaller than the one obtained in [P2]
where the polynomials were solvable by square roots. It would be of
interest to give a simple proof that this degree is optimal “in general”.
(L. Brocker has a proof using fan theory, valid for basic closed sets.)
As in [P1], [P2] using the changing sign criterion, we obtain:

COROLLARY. Let S be a locally closed semi-algebraic subset of R"
having some interior points. Then S is the projection of an irreducible
algebraic subset of R"*!.

This corollary is the generalisation to non closed sets of a result in
[P1]. This earlier result was itself an improvement of the first paper
of Andradas and Gamboa on the subject.
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