Pacific Journal of

Mathematics

THE C*-ALGEBRAS GENERATED BY PAIRS OF SEMIGROUPS
OF ISOMETRIES SATISFYING CERTAIN COMMUTATION

RELATIONS

GEOFFREY LYNN PRICE




PACIFIC JOURNAL OF MATHEMATICS
Vol. 146, No. 2, 1990

THE C*-ALGEBRAS GENERATED
BY PAIRS OF SEMIGROUPS OF ISOMETRIES
SATISFYING CERTAIN COMMUTATION RELATIONS

GEOFFREY PRICE

Arising in the computation of the Arveson-Powers index for x-
endomorphisms of B($) is the notion of a pair of one-parameter
semigroups of isometries % = {U;: t€T*} and & = {S,;: te I}
satisfying the commutation relations S; U, = e #I, for " the set
of real numbers. If I" is any subgroup of R we show that the C*-
algebra 2 generated by % and . is canonically unique. 2, is
simple if and only if I' is dense in R.

I. Introduction. According to the von Neumann-Wold decomposi-
tion for an isometry V acting on a Hilbert space $, § may be de-
composed into an orthogonal direct sum of reducing Hilbert subspaces
91, $H, for V', where V|, is a unitary operator and 14 5, 18 a pure
isometry. In [6], L. A. Coburn characterized the C*-algebra C*(V)
generated by an isometry. If V' is completely unitary then as is well
known, C*(V') is isometrically *-isomorphic to C(a(V)), the alge-
bra of complex-valued continuous functions on the spectrum of V.
If V' has a non-trivial pure isometric part, C*(V) contains a closed
two-sided ideal which is isomorphic to the compact operators .Z . The
quotient algebra C*(V')/%Z is isomorphic to the algebra of continuous
functions on the circle, [6].

Generalizations of this result (see [4], [7]-[10], [12]) made by Coburn
and other authors have taken various forms. For example, the study
of C*-algebras generated by a semigroup of isometries has led to in-
teresting developments in the theory of an index for algebras of op-
erators. This theory is modelled on the theory of Fredholm operators
in B(H), and has led to some interesting connections between the
notions of topological and analytic index, [8]-[10].

In [12], R. G. Douglas analyzed the structure of the C*-algebras Ar
generated by one-parameter semigroups of isometries 7 = {V,:y €
I't}, where I’ is a subgroup of the real numbers. Without making any
assumptions about the continuity of the mapping y — V,, Douglas
showed that the C*-algebra r is canonically unique. This analysis
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was carried out via a characterization of the (commutative) quotient
algebras Ar/Cr, where Crt is the closed two-sided ideal generated by
the commutators in Ar. He determined also that 2Ar and A are
isomorphic if and only if the corresponding groups I', I" are order
isomorphic. (A similar analysis, using K-theoretic techniques, has
recently been carried out on the commutator ideals, [13], see also [19].)
This uniqueness result stands in marked contrast to the abundance of
isometric representations of the semigroups I't, as shown in [14].

The Cuntz algebras O,, n € (>, 2,3,...), are a highly non-
commutative generalization of C*(V). For n < oo, O, is defined
as the C*-algebra generated by » isometries S;, ..., S, on a Hilbert
space which satisfy the relations S}S; = d;;1, and Y [, S;SF = I.
These identities characterize O, uniquely, up to isomorphism. O, is
a simple C*-algebra; in fact, it possesses the remarkable property that
for any non-zero X in O,, there are A, B € O, satisfying AXB =1,
[11, Theorem 1.13] (see also Theorem 3.9 below).

If one replaces the second equation above with the inequality

71 SiS* < I, then the C*-algebra generated by the polynomials in
the S;’s is an extension of O, by the compact operators ([11, Proposi-
tion 3.1], see also Theorem 2.4 below). Taking n = 1, the C*-algebra
generated by a (non-unitary) isometry fits into this framework.

In this work we study a problem which is a combination, in a sense,
of the two generalizations discussed briefly above. For a subgroup I
of R, let 2 = {U,: y € I'*} and S = {S,: y € I'"} be a pair of
semigroups of isometries on a separable Hilbert space. We assume
that %4 and %% are related by the Weyl commutation relations
(1) S;U, =e M1, yel*,
for some fixed 4 > 0. Here again we make no assumptions about the
continuity of the mappings y — S, and y — U,. We should point out
that from (1) it follows that each S, must contain a nontrivial pure
isometric part, for y > 0, since the assertion that .S, is unitary leads
to the equation 1-= ||U,|| = |le™*S,|| = e~*, which is absurd. By
symmetry, U, also contains a pure isometric part. We show below in
Theorem 2.4 that if I" is a discrete subgroup of R, then the C*-algebra
2Ar generated by all operators U, , S, , for y € I't, is an extension, as
above, of the algebra O, by the ideal of compact operators. If I" is
dense, then 2 is simple: in fact, 2 is strongly simple in the sense
shared by the Cuntz algebras that for any X # 0 there are operators
A, B in 2 such that AXB = I (Theorem 3.9). We also show that the
C*-algebras 2 are canonically unique, Theorem 3.12. Our methods
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of proof of these results rely heavily on some techniques used by J.
Cuntz, [11], and R. G. Douglas, [12].

The principal motivation for studying this algebra comes from the
recent work of R. T. Powers and the author, [17], relating the in-
dex theories of Powers and W. B. Arveson on Ej-semigroups of x*-
endomorphism of B($), [1]-[3], [15]-[17]. Let a = {a;: t > 0} be
a one-parameter semigroup of x-endomorphisms of B(f)). Then a
is an Ej-semigroup if each «; is unital, if o,(B(5))) is properly con-
tained in B($), and if the mapping ¢ — a,(A4) is continuous in the
weak operator topology for all 4 in B(f). A strongly continuous
one-parameter semigroup # = {U;: t > 0} of operators (not neces-
sarily isometries) in B($)) is said to intertwine «, [1], if for all ¢+ > 0
and for all 4 in A($H), U;A = a;(A)U,. It may occur that o has
no intertwining semigroups, [16]. However, when intertwining semi-
groups # and % do exist, it follows, [2], that there is a complex
number ¢(% , %) such that, for all ¢,

2) S:U, = exp(tc(# , ).

Modifying . and % through multiplication by scalar-valued semi-
groups, one may assume that 2 and ¥ are semigroups of isometries
satisfying (1), [17].

Let %, be the family of all strongly continuous intertwining semi-
groups of a. Arveson’s index for a is obtained by calculating the
dimension of the Hilbert space completion of the space of functions
{f: %, — C: f is finitely non-zero and ) e, f(&) = 0} in the posi-

tive semidefinite inner product (f, 8) =Yy sey f(#)8(F gF) e, 7).
The Powers’ index is obtained by calculating "the multiplicity of a
certain representation of the dense *-subalgebra D©(J) of B(H),
where D(J) is the domain of the infinitesimal generator J of the one-
parameter semigroup «, [15]. The key problem involved in showing
that these two versions of index agree is to analyze the structure of a
pair of strongly continuous flows of isometries satisfying (1) (see [17]
for a proof of the existence of these flows and an analysis of their
structure).

We end this section by remarking that W. B. Arveson has defined
and analyzed the structure of a separable C*-algebra, called the spec-
tral C*-algebra, associated with an Ej-semigroup a of endomor-
phisms. These algebras, which are, along with the index, an outer con-
jugacy invariant for Ey-semigroups, are constructed from the product
systems E corresponding to «, [3]. As noted by Arveson, this family
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of algebras contains the Wiener-Hopf C*-algebra as a degenerate case
in much the same way that the Toeplitz C*-algebra studied by Coburn
is the degenerate case of the Cuntz algebras.

IL. The discrete case. In this section we consider the structure of
the C*-algebra C*(U;, S;) generated by a pair of isometries U;, S;
acting on a separable Hilbert space and satisfying the relation (1), for
fixed ¢. As we shall see in the next section, the proof of the simplicity
of Ar, for I' a dense subgroup of R, depends greatly on the special
case considered here.

We begin this section by introducing some notation which shall be
used throughout the paper. We denote by % = {U;: ¢t > 0} and by
&% = {S;:t > 0} a pair of semigroups of isometries on a separable
Hilbert space $ which satisfy, for a fixed positive 4 > 0, the commu-
tation relations (1). An explicit construction in [17] shows that such
pairs do indeed exist. Let % be the *-algebra of polynomials in the
operators U;, S;, t > 0. Using (1) and the fact that U;, S; are
isometries, one may always write any polynomial P € & as a linear
combination of terms of the form
(3) A= Ulnslz o UlZ;l—lSlZuS:Zu U;;u—l N S;kz U;:
for non-negative real numbers /;, ;. We say that a term in this form
is a word in reduced form. Associated with A4 are its (left and right)
lengths, /(4), r(A), where I(4) = Y7 i and r(d) = Y37, rj. As
we shall see (Lemma 3.1) a polynomial P has one and only one ex-
pression as a linear combination of words in reduced form (where we
agree to use the semigroup laws U, U; = Uys, SiS; = Siys to com-
bine the terms in 4 as much as possible), so that the length functions
are well-defined on reduced words. We say that a word A is even if
[(4) = r(A). By ®y(P) we denote the summand of P consisting of
linear combinations of all even words of P. P is said to be even if
®y(P) = P. Let S be the subspace of all even polynomials in & .
Using the commutation relations (1) one sees that &, is actually a
x-subalgebra of & .

DEeFINITION 2.1. For ¢ > 0, let F; be the even polynomial
F, =[UU} + 8.8 — e (US; + S:U)]/(1 — e M),

Let Fy=1.For t>0,let J;=1-F,.

Using the commutation relations and the isometric properties of U
and ., Lemma 2.2.1 below is easily verified. The other assertions
follow directly from 2.2.1.
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LEMMA 2.2. The operators F;, J; are projections in P satisfying
the following identities, for s >t >0;

(1) F,U; = Uy, and F,Ss = Ss,

(2) J1Us =0=J.Ss,

(3) FiFy = FsF, = Fs, and

(4) SiJs = JsJ; = Js.

LeEmMma 2.3. J; #0, for t > 0.

Proof. 1t suffices to show that for some isometry W in &#, W*F,W
#1,since I = F+J;. Let W = U;)5S;),, then W*U, = e~ #/2] =
W*St , SO

W*FEW =[e (2 —2e ") /(1 —e )T £ 1. O

We may now determine the structure of the algebra C*(U;, S;) =
;. We shall show below that this algebra is not simple. To see
this, define positive numbers a = a; = %(\/ 1+e*++/1—-e*) and
b=b,= %(\ﬁ+ e~ —\/1—e—*), and define operators

(4) T, 1 = (aU; = bS)/(a*~b*) and T, ;= (aS;—bU,)/(a* - b?).

A, is clearly generated as a C*-algebra by the operators 7; ;, i =
1, 2, and it is straightforward to show that the 7, ; are isometries
which satisfy the following identities:

(5.1) TP T, =0=T,,T:1,

(5.2) LT+ T, 217, = Fu.

Hence we may apply [11, Proposition 3.1] to obtain the following
result.

THEOREM 2.4. For t > 0, let A; be the C*-subalgebra of B(5)) gen-
erated by the isometries U, and S;. Then the projection J, generates
a two-sided closed ideal in ; isomorphic to the C*-algebra of compact
operators % , and U;/% is isomorphic to the Cuntz algebra O, .

As one might suspect from this result, the Cuntz algebra O, plays a
significant role in understanding the structure of the C*-algebras 2.

II1. Simplicity of 2 for semigroups I'. In this section we show that
if T is a dense subgroup of the real numbers, then the C*-algebra
Ar generated by the semigroups of isometries 24 and %% is simple.
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(Unless stated otherwise, we take I" = R in this section.) Our main
tool is to construct a conditional expectation from 2 to the C*-
subalgebra of 2 generated by the even polynomials &%,. In order
to show that this construction is well-defined, we need the following
lemma.

LEMMA 3.1. Any polynomial P € & has a unique expression as a
linear combination of words in reduced form.

Proof. To prove the lemma it suffices to show that if P = 0 is
a linear combination E?:O c;A; of words in reduced form, then each
coefficient ¢; must be 0. If not, let / = min;{l/le(A4;), r(A;)}. Without
loss of generality we may assume / = /le(A;), for some i. Next let r
(> 1) be the mlmmum length r(A4;), where j ranges over all indices
such that /(4;) = /. We may assume /(A4p) = / and r = r(4).
Using the semigroup properties UsU; = Usy;, Ss8; = Ss4¢, We may
construct partitions {0, /;, /i +L,..., L +---+ 1,} of [0, /] and
{0,ry,ri+ry, ..., r1+---+rm} of [0, r] such that every term A; of
P having lengths /(A4;) =/ and r(A;) = r may be written as a scalar
multiple of a word of the form

(6) Wi Wi Wiy W

for a;, b;e{1,2} and W, | =U;, W, ,=S;,forany t>0.

Now if A4, is any summand of P such that /(4;) > or r(A4;) >r,
then C = X*A4, Y is a scalar multiple of a word in reduced form with
I(C) >0 or r(C) >0, for X any word of the form W, , ---W ,
and Y any word of the form W, W, . Using Lemma 2.2, 2
there is a positive scalar ¢ suﬁicwntly small such that J;,C =0 or
CJ; =0 for 0 <t <t. Let ¢t be the minimum of the lengths ¢,
where k ranges over the summands of P such that /(4;) > [ or
r (Ak) >r.

Consider the operators Z, | = U, —e S, and Z, , =S, —e U,.
It is straightforward to show that the Z, ; are scalar multiples of
isometries and satisfy Z \W, » =0, Z;,W, 1 =0, and Z} /W, ;=
(1- e"“)] . We may suppose that A4, has the form (6). Let X =
Z, a, Ll a Ji, Y=2, p Z, J, Then X*A4yY is a non-zero
scalar multlple of J;, but X *A; Y = 0 for all other j. But then
0=X*PY = X*4pY ,a contradlctlon which yields the result. a

Using the uniqueness result above, and following [11], we note that
if % ={U;:t>0} and ¥ = {S;: t > 0} are a pair of semigroups
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of isometries on a separable Hilbert space $ which satisfy (1) then
the algebra P of polynomials in the operators in# and .¥ is alge-
braically isomorphic to . Hence we may define a norm || ||p on
Z by setting, for P € &,

[I1Pllo = sup{||z(P)||: = is a separable representation of #}.

We shall denote by .# the C*-aigebra obtained by completing & in
the | |lo-norm, and by % we shall denote the completion of the
subalgebra %, of even polynomials in #, see [11, 1.9].

The result above also shows that there is a unique way of extend-
ing the mappings U; — e7'U, and S; — e'"'S; to *-homomorphisms
a, of &, for all y € R. We observe that «,(P) = P forall y € R
if, and only if, P € & . We also note that the mappings «, are in
fact x-automorphisms of £, since clearly a_, o ay =1 =a, o a_,.
Moreover, if 7 is a separable *-representation of % thensois 7moa,,
whence ||P|lo = ||a,(P)|lo for all p € . Hence there is a unique ex-
tension of o, (which we also denote by o, ) to a *-automorphism of
2 , and from the obvious group law a,oa; = a;i, on &, the family
a = {a,: y € R} is a one-parameter group of automorphisms of ..
a is in fact a strongly continuous family; clearly |la,(P) — Pllo — O
as y — 0 for P € & (note that a,(A4) = exp(iy[l(4) — r(a)])4
for reduced words A4). For general X in %, the convergence
lay(X) — X|lp — 0 as y — O follows from the uniform density of
& in <. Summing up, we have:

LEMMA 3.2. Let & be the C*-algebra obtained as the completion of
P in the norm || |lo. Then there exists a unique strongly continuous
one-parameter group a = {a,:y € R} of x-automorphisms on &
defined by a,(U;) = €U, and a,(S;) = e'"S;.

THEOREM 3.3. Forany X € %, limy_,,(27T)~ f roy(X)dy con-
verges uniformly to an element ®y(X) € &. The linear mapping
Oy: & — A is a conditional expectation from & to % .

Proof. If A4 is an even reduced word then o, (A4) = A4, so ®p(4) =
A. If A4 is uneven, a,(A4) = exp(iy[{(4) — r(4)])4, so Py(4) = 0.
Hence ®y(P) exists for P € &, ®y(P) is the sum of the even terms
comprising P, so ®y(P) € & . Since £ is uniformly dense in & it
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is clear that ®y(X) exists for all X €.%, and moreover,
T
| axar
-T 0

T
< lim 27)"" / llay CONl 7 = X lo-
—00 -T

[@o(X)]o = Jim (27)~"

Clearly ®, preserves positivity.

Now suppose (P,) is a sequence of polynomials converging uni-
formly to X. Then |[®g(X) — Po(Pr)llo < | X = Pullo, so Po(X) is
the uniform limit of even polynomials of ##. Hence ®y(X) € & .
Conversely, if X € %4, then since X = lim,_, P, for a sequence
of even polynomials, ®y(X) = lim,— e @o(Py) = lim,_ P, = X, SO
that @ is surjective and ®yo &y = ;. Hence P, is a conditional
expectation on . O

Using some elementary results on almost periodic functions we
show (see also [12]) that the mapping @, is one-to-one on the positive
elements. We shall assume . to be unitally embedded in B($’) for
some Hilbert space $’. If P € & is written as a linear combination
of reduced words, P = E 1 ¢jA4;, then from the expression a,(P) =
¢ "6 4;, where & = I(4;) — r(4,), it is clear that the map-
ping y — (ay(P)f, g) is an almost periodic function of y, for any
f,ge$. For X € Z, consider the function ¢(y) = (a,(X)f, &);
and define ¢,,(y) = (ay(Pm)f, g) for some sequence of polynomials
{Pm} converging uniformly to X . Then for y € R,

lp(7) — om(P)| = [(ay(X) S, &) — (ey(P) S, &)I
< loy(X = Po)lloll £l gl

so that ¢ is the uniform limit of a sequence of almost periodic func-
tions. Hence ¢ is itself almost periodic, [5, Theorem 49.V]. Now if X
is a non-zero positive element of . we may choose a vector f = g in
$' such that ¢(0) = (Xf, f) > 0. But then ¢(y) is a non-negative,
almost periodic function which is not identically equal to 0, so that
its mean, M(p), is strictly positive, [5, Theorem 72]. But

T
M(p) = fim 27)" [ pr)dy

T
= Jim (2T)-1/ (ay(X)f, f)dy = (@o(X)f, f),
— 00 _T
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so that ®y(X) is a non-zero positive element of .4 . Hence we have
established the following (cf. [12, Proposition 2]).

ProPOSITION 3.4. The condition expectation ®y: & — & is one-
to-one on the positive elements of &% .

As in the previous section let Z and % be a pair of semigroups
of isometries acting on the Hilbert space §, and let A be the C*-
algebraic completion of & in B(£). We shall show that the comple-
~tion of # in B(H) is isometrically *-isomorphic to the completion

Z of A in . To begin this, suppose P = 327 , d;4; is the
unique decomposition of an even polynomial P in 2 into a sum
of (even) terms in reduced form. Let L = max{/(4;): 1 < j < g}
(= max{r(4;): 1 < j < q}). Foreach j,if A4; has the form (3), then
let R; be the partition of [0, L] formed as the union of the partitions
{0, L-( +"'+12ﬂ*1)’ L - (] +”'+12H—2)’ ....L-1, L} and

{0, L—(ri++ry 1), L=+ +ry), ..., L=ri, L}.
Let R be the union of all of the partitions R;j, 1 < j < g. Then
there are positive real numbers ¢;, ¢, ..., ¢y, for some n, such that

R= {O,L—(Cl +"'+Cn_1),L—(C1+"'+Cn.._2), oo ,L—CI,L)
(and 0= L —(c; +---+cxn)). Then clearly any 4; may be written in
the form

A= Wea W 0 W2 g Wiy
where a;, b; € {1, 2} depend on 4;, for 1 < i< k;, where k; <n
satisfies Zf’zl ci=1(A4;) (=r(4;)),and as above, W, | =U;, W, , =
S¢. If k; < n, then we may rewrite 4; as

—_— .« e * ... *
Aj=We oW a, Je, We 5 Wep
J J J ki Tk, 1°71
* *
+ Weia, s Wey o Fo W2 g W

From Definition 2.1, the second term above may be rewritten as a
linear combination of four terms, each of the form

* * *
I/VC| >4y ka 4, VI/Ck]H S I/VC,(J+l ,kaH I/VC,( ,bkj I/Vcl b

g 1

If k; +1 = n we do nothing; otherwise, we rewrite each of the four
terms as the sum of two terms

* * *
VVC‘ 4 VVC"J Ky VVC"J'” ’akJ“JC"JJr2 I/I/ijﬂ ’bk,+1 I/Vck/ ’bk/ I/I/;I .,

+I/I/c’l,al-.-mkl,akjm a FC W* b W*’b "'W*b.

ky+1? Tk ky+2 ij+15 K+l

,a
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Continuing this process, we may rewrite P as a linear combination
of terms each of which takes one of the following three forms:

(7.1) Je,
(7.2) I/Vcl’al”.I/I/Cr’arJCr-}-lW;:’br.‘.W/CT’bl’ O<r<n’
(7.3) cha,"'WC,,,a,,Wc:,bn"'WcT,bl-

Using the identities (4), we may further decompose (7.2) and (7.3) so
that P may be rewritten as a linear combination of terms, each of
which takes one of the following three forms:

(8.1) Je,»
(8.2) Tcl’al'..TCr’arJCr-{»lT:,b "'T(;‘:,bl, O<r<n,
(8.3) Tcwax“'Tcn’anT;:,,b,,“'Y?:,b,'

Note that any two distinct terms above (with either the same or dif-
ferent forms) have product 0; this follows from Lemma 2.2.2. Using
the commutation relations and (5) shows that for fixed r, 0 <r < n,
the 4” terms in & having the form (8.1)if r=0,(8.2)if O<r<n,
and (8.3) if r = n, are matrix units for a 2" x 2" matrix subalgebra
M, of #. Since BC = 0 for any elements B € M, and C € M,
for r # ry, the totality of terms of the form in (8) are matrix units for
a finite-dimensional C*-subalgebra of % . Since P lies in this alge-
bra, we may reassemble P as a sum of polynomials ) ; P., where
P, € 9, . Since the subalgebras 91, are mutually orthogonal, it is now
clear that ||P| = max{||P||: 0 <r < n}. Hence we have:

ProPOSITION 3.5. Let % and & be a pair of one-parameter semi-
groups of isometries on a Hilbert space %, satisfying (1). Let & be
the algebra of polynomials in these isometries. If P € R, there is a
finite-dimensional C*-subalgebra of & containing P .

Using the decomposition of P above we see that for any even poly-
nomial P, ||P| is the same in any representation of the semigroups
% and %, by the uniqueness of the C*-algebraic norm on finite-
dimensional matrix algebras. In particular, if 21 is the C*-algebraic
completion of #Z and . in B(%), as above, with norm || ||, then
for all P € %, ||P|| = ||Pllo (cf. [11, 1.9]). This yields the following
result.

THEOREM 3.6. Let % and . be a pair of one-parameter semigroups
of isometries on B($) satisfying the commutation relations (1), and let
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A be the C*-algebra obtained as the uniform closure of the polynomial
algebra Z in the isometries U,, S;, t > 0. Let Ay be the C*-
subalgebra of 2 obtained as the completion of the even polynomials
Py in the norm. Then there exists a *-isometric isomorphism from 2
1o 4.

THEOREM 3.7. Let %, ., and A be as above. For any element
P e (C) there exists a projection Q € Ay, depending on P, such
that QPQ € Fy and ||QPQ|| = [|[Po(P)]|.

Proof. Let P = 334 | d;A; be a decomposition of P into a lin-
ear combination of words in reduced form. If ®y(P) = 0, then we
may choose Q = 0. Hence, we may assume P # 0 and that there
are even reduced words A4; in the decomposition of P. Let L >0
be the maximum length (L = /(4) = r(4)) among all of the even
words. Note that if dy(P) is just a scalar multiple of 7, then L =0.
First suppose L > 0. For each reduced word (even or uneven) 4;,
form a partition R; of [0, L] as follows: if 4; has the form (3), let

n;+ 1 be the first index such that Z;Z;l [; > L,let mj+1 be the

first index such that Z:i’;r : ri > L, and set R; to be the union of
the partitions {0, L — (/; +--- + lnj), ..., L—-1,L} and {0, L -
(ry +---+rmj), oo, L—ri, L}y. Let R={0,L—(ci+ - +cCp-1),
.., L —cy, L} be the union of these partitions, and let ¢, = L —
(ci+---+cy—1). As in the proof of Proposition 3.5, each of the even
terms may be decomposed into a linear combination of terms of the
form (7), which in turn may be rewritten as a linear combination of
the terms appearing in (8).
Suppose 4 = A4; is an uneven term in the decomposition of P. If
[(A4) > L and r(4) > L, A may be rewritten in the form

(9-1) VVC,,a,"'mn,anWV*VVc:,bn'”VVcT,bl
where W and V are words in reduced form such that /(W) > 0
or [(V) >0, and r(W) =r(V) =0. If [(4) < L (respectively,
r(A)y < L), [(4) = Zf;l ¢; (resp., r(4) = Zf’zl ¢;) for some k; < N,
then by using a procedure similar to that used in the proof of Theorem
3.6, we may decompose A4 into a linear combination of terms taking
one of the forms below (where W is a reduced word with /(W) > 0
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and r(W)=0)

(9.2) JeW*, ifl(4)=0

(9.2") Wi, ifr(d4)=0,

(9.3) Wcl,a,"'m,,a,JC,HW*Wc*,b"'WcT,bla O<r<n,
(93,) I/Vcl’al.“I/Vcr’arWJCmI/VC*,b ”.VVCTJ)I’ O<r<n.

From the proof of Proposition 3.5, ®y(P) decomposes into a sum
>r_o P. of even polynomials, where each P, is in turn a linear com-
bination of terms each of which has the form of one of the elements
in (8). Also we have shown that ||®(P)|| = max||P,||. Choose r such
that ||@o(P)|| = ||Bfl. If r=0,set Q=Qp=J, . If 0<r<n,set

= .. * LR *
Q"Qr"' E : TC a Tcr,a,JCrHTcr,ar Tcl,al

. a,=1

Then it is clear, using the relations (5), that Q, is a projection. It
is also straightforward to show, appealing to Lemma 2.2.2 (and re-
calling that 7; ; is a linear combination of U; and S;) that if B is
any term in (9) arising from the decomposition of an uneven reduced
term in the expression for P, that QBQ = 0. Hence QA4;Q =0 for
all uneven terms 4;. Using the argument establishing that PP, for
r # ry in the proof of the proposition above, we also conclude that
QrP, Qr = 0 for r # ro. Finally, if B is any term in the decomposi-
tion of P, then it is easy to see, using (5), that Q,BQ, = B, whence
0,P.Q, = P,. Assembling these equations we obtain Q,PQ, =

Now suppose r = n. Then we modify an argument in [11] to show
that there is a projection Q, € %, such that ||Q,PQy|| = ||Px||. Con-
sider the matrix units (8.3) constructed in the proof of the proposition
for the 2" x 2" matrix algebra 9, For any & > 0 it is straightforward
to verify that if

Q_ Z Tcl,e1 “'Tcn,eanTg;,e : T; e

.,e,=1

then Q is a prOJectlon in &%, and the mapping D — QDQ on 9,
is an isomorphism from 9, to another matrix subalgebra, Q9,Q,
of #. It is also easy to verify that if B is any even term of the
form in (8.1) or (8.2), then QBQ = 0 by using Lemma 2.2.2. Now
suppose B is one of the terms of the form in (9) arising from the
decomposition of an uneven term A4; of P. It is clear, again from
Lemma 2.2.2, that for any term B of the form in (9.2), (9.3), (9.2'),
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or (9.3'), QBQ = 0. Suppose B is a term of the form (9.1). We
have

JsT:n’en o 7-'(;k|7e]B]-'Cl’el » Tcnen ’ Js
_ * * * * *
= ST o T2 o Wepay We, o WV WS o W Tt ey
“'Tcﬂ,en, Je
=yJ£WV*J89

where y is some scalar whose value is determined by (4) and the
commutation relations (1). Since /(W) > 0 or [(V) > 0, we may
use Lemma 2.2 to prescribe a value of ¢ sufficiently small such that
JWV*J, = 0. But this shows that there is an ¢ > 0 small enough
so that, choosing Q = @, of the form indicated above, Q,BQ, =0.
Combining all of these results shows that Q,4;0, =0 for all uneven
terms in the decomposition of P; that Q,P.Q, =0 for 0 <r < n;
and, since D — Q,DQ, is an isomorphism on M, , (|Q,P.Qnl|l =

[P - O
COROLLARY 3.8. If Pe 2, ||Do(P)|| < ||P]-
Proof. This is clear since ||[®y(P)|| = ||QPQ|| for some projection
0. a

Using the results above allows us to prove that . is simple. We
show in fact that .# is simple in the very strong sense that the Cuntz
algebras Qg are simple. The proof of the following theorem uses some
techniques in [11, Theorem 1.13].

THEOREM 3.9. For any non-zero element X of & there exist
A, BeZ suchthat AXB=1.

Proof. We may assume without loss of generality that X > 0; for
if there are A', B’ € ¥ such that A/X*XB' =1 we simply take 4 =
A'X*, B=B'. Hence ®y(X) is a positive (non-zero, by Proposition
3.4) element of .%5. We may assume without loss of generality that
[Do(X)|| = 1.

For positive ¢ < 1/4, let P € & be a self-adjoint polynomial
such that ||X — P|jp < €. By Theorem 3.3, ||[®o(X — P)|lo < &, sO
1+¢&>||Po(P)|lo>1—¢€. Let Q be a projection in % such that
QPQ € # and ||QPQ|lo = ||Po(P)||o . From the proof of the preced-
ing theorem, either QPQ = yJ., for some ¢ > 0; or there are positive
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real numbers ¢, ¢;, ..., ¢, €, such that QPQ is a self-adjoint op-
erator in the 2" x 2" matrix algebra M generated by matrix units
of the form T 4, - T¢ o JcT, C b T* . Let 337, v« Ej be the
spectral decomposmon of QPQ in 9, where the E; are rank one
orthogonal projections in 9 and y; >y, > --- > y,. From the in-
equalities above, y; > 1 — ¢, and ||QPQ|| = y;. Let V € 9t be a
partial isometry such that

VV*=E and V'V=E =T, T, JT; T ;.

Setting W =1, ---T. 1, we have W*V*QPQVW =y W*EIW =

y1Je. Finally define Y; = Z.); ;/vV1—e7*,i = 1,2, where Z, ;
is defined as in Lemma 3.1. Then Y; and Y, are isometries satis-
fying Y;YF.Y,Y, = 0, so setting ¥ = Y,Y,, Y*J.Y = 1. Hence
Y*W*QPQVW =y,I. Let D=QVW. Then |[D|p <1, so

|D*XD —I||o < [|D*XD — D*PD||o+ |[D*PD — I||o
<X = Pllo + Iy d = 1o < 2e,

so D*XD is invertible, and we are done. o
CoROLLARY 3.10. .Z is a simple C*-algebra.
We may now prove the following uniqueness result.

COROLLARY 3.11. Let % and .# be a pair of one-parameter semi-
groups of isometries acting on a separable Hilbert space $ and satisfy-
ing the commutation relations (1). Let A C B($)) be the C*-algebraic
completion of the polynomial *-algebra &% in the operators U;, Si,
t>0. Then . and A are isomorphic.

Proof. From the definition of % it follows that 2 must be a quo-
tient of &, i.e., A= n(¥) = ¥ /ker(n), for some representation 7.
But ker(z) =0. ]

Suppose I' is a subgroup of R, and % = {U;:t € T}, A =
{S:: t e I'*} are semigroups of isometries on a Hilbert spaces §) which
satisfy the commutation relations

SrU, =e M1, tel.

Then we may consider the polynomial x-algebra %4 generated by the
operators U;, S;, t € I't, and we define 2Ar to be the C*-algebraic
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completion of A in the norm on B($)). It is easy to see that the tech-
niques used to prove the results above for the case I' = R may be ap-
plied virtually without change to show that 2 is a simple C*-algebra,
if I" is dense in R. Combining Theorem 2.4 with these observations,
we arrive at the following extension of the results above.

THEOREM 3.12. Let I" be a subgroup of R with corresponding C*-
algebra Ar. If T is discrete, Ar contains a maximal closed two-
sided ideal isomorphic to the C*-algebra of compact operators % , and
Ar/Z is isomorphic to the Cuntz algebra O, . If T is dense in R, then
Ar is a simple C*-algebra, and the C*-algebra generated by pairs of
semigroups of isometries %, St acting on a Hilbert space is canoni-
cally unique.

It would be interesting to obtain necessary and sufficient conditions
on a pair of dense semigroups I'*, I’/ of R* for the corresponding
C*-algebras 2r, Ar to be isomorphic. In the situation where Br,
Br are the C*-algebras generated by single one-parameter semigroups
%, %r, of isometries, R. G. Douglas has shown in [12] that Br and
PBr, are isomorphic if and only if I" and I'y are order isomorphic.
We suspect that the isomorphism classes of algebras 2 are also de-
termined by order isomorphism classes of semigroups.
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