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The Segre class of a singular projective variety X is that of the
normal cone of the diagonal in the product X x X . This class was
introduced by K. W. Johnson and W. Fulton to study immersions and
embeddings. In our previous work we related the Segre classes and
the Chern-Mather classes for hypersurfaces with codimension one
singularities and X" c P?" with isolated singularities. In this paper
we generalize these results to the case of X" C PV with singularities
of codimension N —n (N < 2n).

The notion of Segre classes (of cones) has become of increasing
importance as a key ingredient for constructing or analyzing various
invariants, e.g., in intersection theory and group representation theory,
etc.

The Segre class treated in this note is the Segre class of a singular
projective variety, which was introduced by K. W. Johnson (and W.
Fulton) to study immersions and embeddings of singular projective
varieties [4]. This is the Segre class of the normal cone Ch(X x X)
of the diagonal A in the product X x X . We call this class Johnson’s
Segre class, denoted by S.(X).

Another well-studied characteristic class of a singular variety is
MacPherson’s Chern class, the existence of which was conjectured by
Deligne and Grothendieck. R. MacPherson [7] constructed this Chern
class, using Chern-Mather classes and introducing the notion of local
Euler obstruction. A. Dubson [2] gave a more concrete description for
MacPherson’s Chern class C.(X): Let % be a (in fact, any) Whitney
stratification of X with the smooth part of X as the top-dimensional
stratum and let CM(X) denote the Chern-Mather class of X . Then

C.X)y=CMX)+ > ms-CM(3),
SeZ,
dim S<dim X
where mg 1is a certain integer attached to each stratum S'.
Motivated by Dubson’s formula relating MacPherson’s Chern
class and the Chern-Mather class, the author [9] introduced the Segre-
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Mather class, defined in a similar manner to the definition of the
Chern-Mather class, trying to relate Johnson’s Segre class and the
Segre-Mather class. In order to relate these two classes, it turns out
that we need to know (or identify) the irreducible components of the
(projectivized) normal cone and their multiplicities. (This kind of sit-
uation occurs in obtaining the local index formula for a holonomic
system [1, 2, 5]; i.e., one needs to identify the irreducible components
of the characteristic variety (which is a cone) of the holonomic system
and their multiplicities.) In [9] the author gave formulas S.(X) and
SM(X) for the hypersurface case and for the case when X" C P?"
with isolated singularities. In this note we generalize these two results
to a more general case. This generalization was hinted by a question
posed by S. Kleiman (private communication): what is the difference
S.(X) - SM(X) if X" c P>"~! with curves as singularities? An in-
teresting feature of our result is that the difference between Johnson’s
Segre class and the Segre-Mather class of X is controlled by both
the codimension of X in PV (or more strongly, the local embedding
dimension of X) and the codimension of the singular locus in X .
Throughout this paper our ground field is the complex numbers C.

I would like to thank the referee for some useful suggestions and
comments.

1. Tangent star cone and Segre classes. Let X" be a reduced (sin-
gular) projective variety of equidimension = n in PY. Consider X
to be embedded as the diagonal of X x X . Then the tangent star cone
of X, denoted by TS(X), is defined to be the normal cone of the di-
agonal X in X x X. (Johnson [4] dubbed a fiber of the normal cone
tangent star.) Namely, if the diagonal is defined by the ideal sheaf I,
then

TS(X) :=Spec | P 1//17*" | .
Jj=0
The projectivized tangent star cone, denoted by P(X) (following John-
son’s notation [4]), is defined by:

P(X) := Proj (EB I /11‘+1) .

Jj20

This is nothing but the exceptional divisor of the blow-up of X x X
along the diagonal. It should be noted that P(X) is of equidimension
= 2n — 1. P(X) has the canonical line bundle (i.e., the Serre line
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bundle) Op(x)(1). Then Johnson’s ith Segre class S;(X) of X is
defined by:

Si(X) = pu(c1(Opoy ()" N [P(X)]),

where p: P(X) — X is the projection. If X is non-singular, then
P(X) is isomorphic to the projectivization of the tangent bundle 7X
and it is known that S;(X) is the Poincaré dual of the usual ith Segre
(cohomology) class s;(X) := s;(TX), ie., S;(X) = s;(X)Nn[X]. In
fact, this is a special case of the following general fact:

Fact (e.g., see [3]). Let V' be a vector bundle of rank r over a variety
X . Let P(V) be the projectivization of the bundle V', n: P(}V) - X
the projection and Op(y(1) the canonical line bundle over P(V).
Then we have

(1 (O (D))~ N [P(N)]) = s:(V) N[X].

On the other hand, the ith Segre-Mather class SM(X) is defined as

follows. Let v: X — X be the Nash blow-up of X and let TX be
the (tautological) Nash tangent bundle over X . Then

SM(x) = v, (s;{(TX)N[X]),

where si(f)\() is the ith Segre (cohomology) class of the bundle TX
over X. SIM (X) can, however, be described in a similar way to
the definition of S;(X): Let P( ﬁ) be the projectivization of TX,
OP(ﬁ)(l) the canonical line bundle over P(TX), ¢t: P(TX) — X the
projection map and p; := v -t. Then by the above fact, we get

SM(X) = p-(ar( (1)1 N[BT X))).

On»(f})

Since IP’(]/‘X’ ) and P(X) are isomorphic over the smooth part of
X , one could expect that the difference between S;(X) and SM(X)
is “supported” on the singular locus of X . (Note that they are classes
rather than cycles.)

2. Projectivized tangent star cone P(X). The definition of P(X) is
algebraically quite simple, but it is not so easy to capture it geometri-
cally. Let X be irreducible of equidimension = n. Then P(ﬁ) is
clearly irreducible and of equidimension = 2n — 1, but P(X) is not
necessarily irreducible and it may have many components lying over
the singular locus of X .
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ExaMmpLE 2.1. Let X! be an irreducible singular plane curve. Then,
set-theoretically P(X) has as many extra components P!’s as the num-
ber of singularities and each extra component P! projects onto only
one singularity.

P(X) can have many extra components projected onto one com-
ponent of the singular locus.

ExaMPLE 2.2. Let X! c P3 be the union of three lines P'’s in-
tersecting at one point such that they do not lie in a plane. Then
P(X) has three extra components P!’s which are all projected to the
singularity (= the intersection point of the three lines).

It is easy to make the following

Observation 2.3. Let X be an equidimensional projective variety
and X = X;UX,U---UX, be the decomposition of X into irreducible
components. Then X = X; UX,U---UX, is the (irreducible) decom-
position of the Nash blow-up/z( and the projectivization of the Nash
tangent bundle ]P’(I/‘/\Y) =PTX)U---U P(ZI/D\Y ») is the (irreducible)
decomposition of P( 7/"\X).

Now, as proved in [9], we can get the following result, which is a
key ingredient to relate Johnson’s Segre class and the Segre-Mather
class of X.

PRroOPOSITION 2.4 ([9, §3]). Let X be a reduced projective equidimen-
sional variety and X = X U---UX, be the irreducible decomposition of
X . Then there exists a canonical morphism q: P(TX) — P(X) such
that (i) py =p-q, (ii) the image q(B(TX;)) is an irreducible compo-
nent of P(X) and (iii) q(]P(I/‘/\Y)) = P(Xsm), where Xsm denotes the
smooth part of X and P(Xem) = P(X)|x_ = P(T Xsm)

Noticing that the multiplicity of each (typical) component
q(P(TX;)) in P(X) is equal to one, we can obtain the following

COROLLARY 2.5. Let the situation be as before.

[PXO] =" auB(TX)]+ > mj-ep[C)l,

i=1 J
where C; s are the other extra components of P(X), with multiplicity
m; := length(Op X),CJ): lying above the singular locus of X and e; :
Cj — P(X) is the inclusion map.
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Questions 2.6. (1) Is there any way, if possible, to identify irre-
ducible components C;’s of P(X) lying above the singular locus of
X ? (2) Is there any way (or algorithm), if possible, to compute or ex-
press the multiplicity m; = lenght(Op, X)’C,) in terms of some other
well-developed invariants of singularities?

REMARK 2.7. For the hypersurface case X” c P*t!1, there is one
and only one extra component C; lying above each irreducible com-
ponent Yj”~1 , of exactly dimension 7 — 1, of the singular locus Y of
X,and C; =P(TP""!|,.-1) [9, §4]. By a result due to G. Kennedy [6,
Theorem 3] we can show that its multiplicity m; is equal to the multi-
plicity of the Jacobian ideal in the local ring of X at the generic point
of Yj"‘1 (cf. [8]). For the case when X" C P?" with isolated singular-
ities x;’s, there is at most one extra component C; lying above each
singularity x; and if C; appears above x; then C; = P(T" IP’Z”|XJ) and
its multiplicity can be described as the shift multiplicity [9, §5]. In
the following section we generalize these two results to a more general
situation, except for the description of multiplicities, which seems to
be hard to give.

3. A formula for Segre classes. Let the situation be as above. Let
¢ = alOpD), 0 = Gz () 6i = 1Oy (1), & =
cl(OC}(l)) be the first Chern classes. Let #;: C; — X be the pro-
jection map, which is the restriction of p: P(X) — X to each Cj.
Then we have the following commutative diagram:

BTX) & P(X) < C
LooaN Lo /n
X — X

14

Then we get the following formula, which was stated in [9] without
proof. Here we give a proof for the sake of completeness.

PROPOSITION 3.1. Let the situation and notation be as above.

Si(X) =SMX)+ Y mj-npEHN[C).
J
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Proof. By the definition of Segre classes and Corollary 2.5,
Si(X) = p. (& N [P(X)])

—Zp (1 N g [B(T X)) +ij L& ne[C))

s=1

(by the projection formula)

~Zp*q* (g* e N [K(TX,) +Zm, peej-(e;¢" N [C)])

s=1

(by the naturality of Chern classes and ¢*¢ = 6 and €;¢ = ¢;)

—Zpl (07~ N [P(TX,) +Zm, FETNIC)])

s=1

(by the deﬁnmon of Segre-Mather classes)

=Y SM(x, +ij (S asial(en)}

Thus we get the equality in the proposition, because S,.M (X) =
> SM(Xs)

Now it remains to be more precise about the correction term

ij én 1+lm[C ])

which is relevant to Questions 2.6 in §2. Apart from being precise
about the multiplicity m;, we can at least claim the following, which
is a generalization of our previous results [9, §§4 and 5].

THEOREM 3.2 (see Remarks below). Let X" be a reduced singular
projective variety of equidimension = n in PV, and Y* denote the
singular locus of X, which is of dimension k. Then

(3.2.1) if codim(X", PY) < codim(YX, X"), ie, N < 2n—k,
then there is no extra component C, lying above the singular locus of
X ; hence we have

S.(X) = SM(X).

(3.2.2) If codim(X”, PV) = codim(Y*, X"), i.e, N =2n-k, then
there is at most one extra component C; lying above each irreducible
component ij, of exactly dimension k, of the singular locus Y of
X, and if C; appears over ij, then C, = ]P)(TIPNIYIA'). And we have,
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for each i,
Si(X) = SM(X) + s;_nic @) 0 (30 m; - 1¥F1)

where s;_, .1 (P") is the usual Segre (cohomology) class of the ambient
space PN, m; = 0 (only) when C; does not appear over y;? and

m; = length(Op X),Cj) when C; appears over y}‘ .

REMARK 3.3. It may be worthwhile to note a relevance to local em-
bedding dimension, which was pointed out to me by the referee. Let
m.l.e.dim. X denote the maximum of local embedding dimensions
of X (in the sense of Zariski tangent space). Since the tangent star
TS(X), sits in the Zariski tangent space 6, X, (3.2.1) can be strength-
ened, without referring to the dimension N of the ambient space PV,
as follows:

(3.2.1) if m.l.e.dim. X < 2n—k, then there is no extra component
over the singular locus; hence S,(X) = SM(X).

As to (3.2.2), we can say only the following (but not the Segre class
formula):

(3.2.2) if m.l.e.dim. X = 2n — k, then there is at most one extra
component C; lying above each irreducible component ij , of exactly
dimension k, of the singular locus Y of X.

Note that a key to obtaining the formula in (3.2.2) is the concrete
description of Cj;ie., C; = IP(T]PNIYk). But in (3.2.2)" one may not
be able to get a concrete description of C i

REMARK 3.4. We emphasize that for the hypersurface case all
(n — 1)-dimensional components of the singular locus appear in the
formula, whereas in the general setting (3.2.2) all k-dimensional com-
ponents of the singular locus do not necessarily appear in the formula.
Simple examples for this can be easily constructed.

Proof of Theorem 3.2. (3.2.1) is already observed in [9, Prop. 3.4],
so we prove only (3.2.2), by “dimension count” argument. Since X is
of equidimension n, P(X) is of equidimension 2n — 1, as noted in
§1. So each extra component C; is of dimension 2n—1=N+k -1
and 7;(C;) is at most of dimension k. Thus the fiber of C; over
y € m;(C;) C Y* must be of dimension N — 1 and the dimension
of n;(C;) must be of k, which is the only possibility. Since 7;(C;)
is irreducible because so is C;, it follows that 7;(C;) must be an
irreducible component of exactly dimension k of the singular locus
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y* of X . Since P(X) is the projectivization of the tangent star cone
TS(X), dim(TS(X),) = N, hence TS(X), = T,P", the fiber of the
tangent bundle 7PV at the point y. Therefore C; = P(TPV |Yk

where Y" = n;j(Cj). Therefore the formula in Proposition 3.1. be-
comes

Si(X) =SM(X) + Y mym- (& 0 [B(TPY [y)D-
J
By the dimension reason, it is clear that for0<i<n—k,
(%) Si(X) = SM(X).
Observing that n — 1 +i=N—-(n—-k)—-14+i=N-1+(i—n+k)

(using N—n:n—k) we have forn -k <i<n,

(#%)  Si(X +Zm, m (N A (TR0,

Now by the general fact (in §I) we have
n (& T A TR 0D) = d(Simaek (TR ) N 1YSD),
where i : Y} < X is the inclusion,
= iu(Si sk (T TEN) NYFD),
where e : X — PV is the inclusion,
(by the naturality of Segre classes of vector bundles)
=i, (i"e"s,_nx (TPY)N[Y}]) (by the projection formula)
=e"s;_nk(PY)Ni.[Yf] (by abuse of notation)
=5 sk (BY) N YL
Thus we get that for n —k <i < n,

Si(X) = SIM(X) + 8- n+k (ij[yk )

Since s;_, x(PY) =0 for i—n+k < 0, combining () and (*), we
get the formula in Statement (3.2.2). O

Problem 3.5. If X is a generic projection of a smooth n-fold in
P27+l to P27~k then X satisfies the hypotheses of (3.2.2) of Theorem
3.2. Compute the multiplicities of the extra components (Even in this
interesting and seemingly tractable situation computing multiplicities



SEGRE CLASSES OF SINGULAR VARIETIES 393

seems to be hard. It may require some other geometric arguments,
e.g., ramification, etc.)

REMARK 3.6. The case when codim(X”, PY) > codim(Y*, X")
(or, m.L.e.dim. X > 2n — k) is very subtle or complicated because it
is possible that extra components lie over not only the top-dimensional
singular locus but also lower-dimensional subvarieties of the singular
locus. A simple example for this is the following: Let X% c P* be the
union of the three planes P?, P3, P3 defined by:

P?i={[20:21:0:0:z0€P?, P3:={[0:21:2,:0:z4] P,

and

P3:={[0:0:z5: z3: z4] € P*}.
Then

PiU3 C Py i={[z0:21:2;:0:2z4] €P*} and
P2NP; =line Lyp:={[0:2:0:0: z4] € P*}.
P3UP,CP3;:={[0:2,:2;:23:24] €P*} and
P3NP3 =line Ly3 = {[0:0: z;: 0: z4] € P*}.

P? and P3 are transverse to each other, and
P2NP3NPE={[0:0:0:0: 2]} = {x0}.

The singular locus of our variety X2 is L;;UL,3. Then there are three
extra components Cy, Cjo, Cy3 in P(X). (, is supported on the
single point {xo} because P? and P} are transverse to each other and
so the tangent star TS(X )y is nothing but the whole TXOIP’4 . Ci, and
C,3 are supported on the lines L, and L,3, respectively, because
P2 UP3 and P3 UP} are already in the three dimensional projective
spaces P}, and P3,, respectively, and so we have Cj; = P(TP},|L )
and Cp3 = P(TP3;|., ). Let my, m;, my be the multiplicity of Cp,
Cyy, Cy3, respectively, in P(X). Then we have

So(X) = S (X),
Si(X) = SM(X) + my[L3] + my[Lys],
S2(X) = XM(X) = mys1(P3,) N[Ly2] + masi (P3;) N[Las] + my - [xo].
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