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Let Q be an open setin R" (n > 3) and S bea C? (n— 1)-
dimensional manifold in Q. Let o € (0, #n—2) and E be a compact
subset of S of zero o-dimensional Hausdorff measure. We show that,
if 5 is subharmonicin Q\E and satisfies s(X) < c[dist(X, S)]***~"
for X € Q\S, then s has a subharmonic extension to the whole of
Q. The sharpness of this and other similar results is also established.

1. Introduction and results. Let Q denote an open set in Euclidean
space R” (n > 3), and let E be a compact subset of Q. This paper
is concerned with results of the following type: if s is a subharmonic
function in Q\E, where E is “small” and s is “not too badly be-
haved” (near E ), then s has a subharmonic extension to the whole
of Q. We say in this case that E is a removable singularity of s.
There is an obvious analogue of this notion for harmonic functions.

It is a consequence of a classical result [7, Theorem 5.18] that, if E
is polar and s is a subharmonic function on Q\E which is bounded
above near E, then E is a removable singularity of s. The idea be-
hind our results is that, by imposing constraints on the geometry and
size of the set £, the boundedness requirement can be considerably re-
laxed. The size of E is measured in terms of its a-dimensional Haus-
dorff measure m,(E). A discussion of Hausdorff measures in relation
to subharmonic functions can be found in Hayman and Kennedy [7,
§5.4].

Let O, denote the origin of R”, let |X| denote the Euclidean norm
of a point X € R", and B(X, r) be the open ball of centre X and
radius r. Also, let ®: Q — R be a C? function with nonvanishing
gradient throughout Q. We put S ={Y € Q: ®(Y) =0}.

THEOREM 1. Let o € (0, n —2) and E be a compact subset of S
such that m,(E) =0. If s is subharmonic in Q\E and satisfies

(1) s(X) < c[dist(X, $)]°** " (X e Q\S)

for some positive constant c, then E is a removable singularity of s.
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CoOROLLARY. Let o and E be as above. If h is harmonic in Q\E
and satisfies

[(X)| < cldist(X, S)I*7" (X € Q\S),

then E is a removable singularity of h.

Regarding the bound on «, Theorem 1 is true, but not interesting,
when a = n — 2: for then we are requiring s to be bounded above
near the set E, which is polar by [7, Theorem 5.14]. For higher values
of a, the set E need not be polar [7, Theorem 5.13].

Theorem 1 is related to work by Dahlberg [4] on subharmonic func-
tions in Lipschitz domains. In the case of a domain with a C? bound-
ary, his theorem simplifies to the following boundary analogue of The-
orem 1.

THEOREM A. Let Q be a bounded domain in R* with C?* boundary,
let « € (0,n—1), and let E be a closed subset of 02 such that
mo(E) = 0. If s is subharmonic in Q, satisfies limsups(X) <0 as
X — Y caQ\E, and

s(X) < c[dist(X, 8Q)*'" (X eQ),
then s <0 in Q.

The sharpness of Theorem 1 and its corollary is shown by the fol-
lowing result, which does not require E to be a subset of S. (Clearly
(2) is stronger than (1) when E C S.)

THEOREM 2. Let a € (0, n —2) and E be a compact set such that
my(E) > 0. Then there is a positive harmonic function h on R"\E
such that

(2) h(X) < [disf(X, E)I"*™" (X eR"\E),

but for which E is not a removable singularity.

It is natural to ask whether Theorem 1 remains true if we drop the
requirement £ C S and replace (1) by (2). The following example
shows that this is far from the case.

ExAMPLE. For each k €N let S = 0B(0,, [log(k +1)]7!) and let
E, be a finite subset of S; such that B(X, 1/k) N E; is non-empty
for any X € S . Then the compact set E = [|J, Ex]U{O,} has the
property that m,(E) = 0 for every o > 0. On the other hand, the
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function s(X) = |X|>~" is harmonic on R"\E and is easily seen to
satisfy

s(X) < C(n, a)[dist(X, E)]*t*™" (X €R"\E)
forany a€[0,n-2).

Among previous work on removable singularities of subharmonic
functions we mention papers by Shapiro [14], Kuran [11], Kaufman
and Wu [9], and Armitage [1]. Our results are new in that, by introduc-
ing the restriction £ C S, we are able to permit very bad behaviour of
s near E. Thus, for example, the Lebesgue integrability requirement
in [14] is not applicable in Theorem 1 if @ < n — 3. We mention
also Cima and Graham [3], who showed that an analytic subvariety
E in the unit ball of C” is a removable singularity for holomorphic
functions which satisfy appropriate growth conditions near E .

A slight modification of the proof of Theorem 1 yields the following.

THEOREM 3. Let a € (0, n —2) and E be a compact subset of S
such that my(E) < +oo. If s is subharmonic in Q\E and satisfies

s(X) < u(dist(X, S)) (X € Q\S)

where t"*"2y(t) — 0 (t — 0+), then E is a removable singularity

of s.

Theorem 3 can be regarded as a generalization of the following
simple, well-known fact, which corresponds to the case a =0: if s is
subharmonic in Q\{Y} and limsup|X — Y|*"25(X) <0 as X - Y,
then {Y} is a removable singularity of s. The following shows that
Theorem 3 is sharp.

THEOREM 4. Let a € (0, n —2) and E be a compact set which
is not o-finite with respect to m,. Then there is a positive harmonic
Sunction h on R"\E such that

sup{A(X):dist(X , E) = p} = 0o(p***™")  (p—04),

but for which E is not a removable singularity.

Using ideas from [12], we can apply Theorem A to give removabil-
ity results based on the behaviour of the means, &/ (s*; X, r) and
A (st X, r),of st over the ball B(X, r) and the sphere 0B(X, r)
respectively. (Given X € Q, the function s* will be defined at least
almost everywhere on dB(X, r) for all small » > 0.) The following
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theorem, which is close to a result of Shapiro [14], complements re-
movable singularity results of Armitage [1] based on the behaviour of
spherical means.

THEOREM 5. Let a € (0, n —2) and E be a compact subset of Q
such that my(E) = 0. If s is subharmonic in Q\E and satisfies

3) Lt X, r)<er*t?™  (B(X,r) cQ),

then E is a removable singularity of s.

THEOREM 6. Let o € (0, n —2) and E be a compact subset of R"
such that my(E) > 0. Then there is a positive harmonic function h
on R"\E such that

M X, r)<ret? " (X eRY),

but for which E is not a removable singularity.

It is a pleasure to thank Professor Anthony O’Farrell for a number
of stimulating discussions.

2. Proofs of Theorems 1 and 3.

2.1. Let ¢ € (0, n/2),let X =(x, X') € Rx R"!, and define

D(Q,r)={X€B(Q,2r): |[X'-Q'|tang < |x — g}

for Q€R” and r > 0.

LEMMA A. On the set R = {X:|x| < |X'|tang} there is a positive
harmonic function of the form

(4) XM F, (tan~ (1x1/1X"))),

where k(p) > 0, Fy(p) = 0 and F, is continuous on (0, n/2).
Further, k(¢) = 00 as ¢ - 0+.

It is well known that there is a positive harmonic function 42 on
R of the form | XK@ F(X/|X|), where k(p) > 0 and F = 0 on
ORNAB(O,, 1). Further, F is unique up to a multiplicative con-
stant. This uniqueness and the symmetry properties of R imply that
h has the form (4), where F,(¢) = 0. Consideration of the sec-
ond order ordinary differential equation satisfied by F, shows that
F, € C*(0, n/2). For the final assertion, see Friedland and Hayman

[6].



REMOVABLE SINGULARITIES 75

We now fix ¢ small enough to ensure that k(¢) > n— 1. The set
RN B(0O,, 1) i1s a NTA domain in the sense of Jerison and Kenig [8],
so the boundary Harnack principle [8, (5.1)] can be applied to show
that there is a positive constant C(n, ¢) such that the Green kernel
G for the set R"\D(O,, 1) satisfies

G(X, Y) < C(n, ¢)|X[*? Fy(tan™" |x|/| X))
for
X € B(O,, 1)\D(O,,1) and Y €R"\B(O,, 3).
22. Let L = {X' e R"!: |X'| <4} and f: L — R be a C?
function such that f(0,-;) =0 and |Vf(0O,_;)| = 0. We write
n—1 2y 1/2
0% f
on-{ £ 24 ])"
. j,zk;1 ijaxk
Further, let 7 = {(f(X"), X'): X' € L} and put
A= |J D@,1.
{QeT:|Q'|<1}

A simple sequence argument shows that A4 is a closed set.

If J C R” is compact, we use H[J, F] to denote the Perron-
Wiener-Brelot solution to the generalized Dirichlet problem for the
unbounded component of R”\J, with data F on the finite boundary
and O at infinity.

LEMMA 1. Let B € (0, n—2) and define g on 0A by
[dist(X, )] (X¢T),
e - { Lo (X ¢T)
0 (XeT).
There are positive constants n, K such that, if f is as above and

satisfies |Vof| <n on L, then g is integrable with respect to harmonic
measure for R"\A and

H[A, g)(Y) <K|YP™"  (]Y]>5).

To prove this, let # be sufficiently small to ensure that |f(Q')| < V3
whenever |Q'| < 1. Thus |X| <4 for X € 4. Let G, be the Green
kernel for the set R"\4, and let Gy be the Green kernel for the set
R"™\D(Q, 1), where Q is some point in 7T satisfying |[Q’'| = 1. Then
G. < Gp in R"\4, and so from §2.1,

G.(X,Y)<C(n, 9)X - Qlk(w)F(,,(tan‘l x — g||X' = Q'])
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for

XeB(Q,1)\4d and Y eR"\B(O,, 5).
Dividing by dist(X, 4) and taking limits along the normal common
to 94 and 0D(Q, 1), we see that (for small #) the normal derivative
0G./0ny at X satisfies

0G,

(X, Y) < C(n, ¢, mldist(X, T,
3’1){

where
Xe{Ze€dA: 0<dist(X,T)< (sinp)/2} and Y €R"\B(O,, 5).

Since k(¢)—1>n—-2> B, it now follows that g is integrable with
respect to harmonic measure for R”\A. Further, the surface area of
{X € 84: dist(X, T) < (singp)/2} is bounded above by a constant
depending on 7, ¢, 1, but not f, so we can write

H[A, gl(Y)<C(n,0,n) (|Y]|=5),
and hence
H[A, g(Y) < C(n, o, n)(5/IYD"2 (Y] 25).

(Note: Dahlberg [5] has shown that, for bounded Lipschitz domains,
harmonic measure is absolutely continuous with respect to surface area
measure, and that the density function is given by the normal deriva-
tive of the Green function. In the above argument we have used this
fact and the observation that the image of R"\A4 under inversion in
dB(0,, 1) is a bounded Lipschitz domain, punctured at the origin.)

2.3. We now complete the proof of Theorem 1. From the implicit
function theorem there exists y > 0 such that, if Z € E, then (choos-
ing a suitable coordinate system (~5c1 s een s Xn) centr~ed at Z) there is
a C? function f7 such that f7(0,_;) =0, |Vf2(0,-1)| =0 and

(X eS:|x|<yand | X'| <y} ={X: |[X'| <yand % = fz(X")}.

Let ¢ >0 and 0 < d < y/4. Since my(E) = 0, there exists a finite

collection of open balls B; of radii r;/2 < J/2 such that

(5) Ec|JB; and Y rf<e.
i i

For each i, choose Z; € B;NE (any B; for which B;NE is empty is
discarded) and, using the above coordinate system centred at Z;, put

Ai = U E(Q 3 ri)'
{Qes: [Q'|<r}
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Clearly E C |J; 4; if ¢ is small. We define g; on 94; by
[dist(X, S)]*t2—" (X ¢9),
sn={,
(X €08).
Applying a dilation of centre Z; and magnification factor 7;, it follows
from Lemma 1 that
(6) H[A4;, &gl(Y) <Kre|Y —=Z*™" (Y €R"\B(Z;, 5r;)).
(Note that, provided y > 0 is chosen small enough, the hypothesis
Va2 f| < n is satisfied.)
Now let V' be a bounded open set suchthat EC V CV Cc Q and
let a be an upper bound for s on oV . If X € V\U, B(Z;, 59), then
by (1), (5) and (6),

(s—a)"(X) < cZH[Af, 8il(X)
<cK) relX -z

< cK(56)* "e.
Since ¢ > 0 can be arbitrarily small, we have s(X) <a for X €
satisfying dist(X, E) > 56 . Further, since 6 > 0 can be arbitrarily
small, we have s < a in V\E. Thus s is bounded above near the
polar set E, and so E is a removable singularity of s.

2.4. The proof of Theorem 3 requires only self-evident modification
to (5) and the last paragraph of §2.3.

3. Proofs of Theorems 2 and 4.

3.1. Theorem 2 relies on a lemma due to Frostman [7, Lemma 5.4].
This says that, if m,(E) > 0, then there is a finite, positive measure
1 on E such that u(B(X, r)) <r® for any ball B(X, r). Clearly we
can assume that y(E) < 1. The Newtonian potential v, due to u, is
harmonic on R”\E but not on R”.

Now let X € R"\E and p = dist(X, E). If p< 1 and Y €
B(X, p), then integration by parts yields

v(Y) = /E Y — ZP" du(z)

<tn-2) [ T B, )
p—Y—X|

<(n-2) / min{s*, 1}¢'~" d
p—Y-X|
<(m=-2)(n-2-a) Y (p—|Y - X|)*T".
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Putting p =[2(n — 2 — a)]~!, we now have

o [ . [v(Y)]PdY}W

p 1/p
<C(n, a){p‘” [ et - e dz}
0

< C(n, a){2p7 /2317
< C(n, a)pa+2—n.

Applying an inequality originally due to Hardy and Littlewood in the
case n = 2, and extended by Kuran to higher dimensions [10, Theo-
rem 1], it follows that

v(X) < C(n, a)p*™>",
and so, letting h = v/C(n, a), we obtain (2).

3.2. To prove Theorem 4, we note (see [13, pp. 83, 84]) that, if
E is not o-finite with respect to m, , then there is a positive, nonde-
creasing, continuous function w on [0, +o00) such that t~*w(t) —
0 (¢t — 0+) and E is not o-finite with respect to m,, . (Here my,
refers to the Hausdorff measure generated by w.) As in §3.1 there ex-
ists a finite, positive measure x4 on E such that u(B(X, r)) < w(r),
for any ball B(X, r). We write & for the Newtonian potential due
to x4 and assume that u(E)<1.

Now let ¢ > 0 and choose 6 > O such that r2w(¢) < ¢ for
te (0,0). Also, let X € R"\E and p =dist(X, E). If p<J and
Y € B(X, p), the reasoning of §3.1 yields

hY)<8> " +e(n—2)(n—-2-—a) Y p—|Y - X|)t? "
and
h(X)< C(n, a)( > " +ep>t2"),
whence

lim sup(p"~2~*sup{h(X): dist(X, E) = p}) < eC(n, a).
p—0+

Since & > 0 can be arbitrarily small, the result follows.
4. Proofs of Theorems S and 6.

4.1. To prove Theorem 5, let V' be a bounded open set such that
EcCV cV cQ and let a be an upper bound for s on 9V .
Let v = (s —a)" on V and let v = 0 on R"\V. Clearly v is
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subharmonic on R"\E. Now let I, denote the Poisson integral of v
in R” x (0, +00). Using integration by parts and then (3), it follows
that

o0
(X, y) = C(n)y / (Y2 4 ) 2 (s X, 1) dit
0
<C(n,a,c)y* ™" (XeR";y>0).

Applying Harnack’s inequalities [2, p. 200] twice in the ball of centre
(X, y) and radius y/2, we have

L_po)(X,y) =82Iy(X,»)/0y* < C(n, a, c)y*™".

But the distributional Laplacian Av is non-negative on R"\E by the
subharmonicity of v. Applying a half-space version of Theorem A
(obtained by inversion from the corresponding result for the ball),
it follows that I_,,) < 0 on R" x (0, +00). Hence Av > 0 on
R” and so v has a subharmonic extension to R"”. Since s is now
bounded above on V'\E, it follows that the polar set E is a removable
singularity of s.

4.2. Let u and v be as in the proof of Theorem 2. Then (cf. [7,
(3.9.6)])

MV X, r)=(n-2) /oo t="u(B(X, t))dt
r
<(n-2) /oo et dt = C(n)rot? =",
r
and Theorem 6 follows.
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