Pacific Journal of

Mathematics

RINGS OF DIFFERENTIAL OPERATORS ON
ONE-DIMENSIONAL ALGEBRAS

MARC CHAMARIE AND IAN MALCOLM MUSSON




PACIFIC JOURNAL OF MATHEMATICS
Vol. 147, No. 2, 1991

RINGS OF DIFFERENTIAL OPERATORS
ON ONE DIMENSIONAL ALGEBRAS

MARc CHAMARIE AND JIaN M. MUssSON

Let k be an algebraically closed field of characteristic zero, and
A a finitely generated k-algebra of Krull dimension at most one. In
this paper we study the ring of differential operators &' (4). For
example we obtain necessary and sufficient conditions for Z'(4) to
be a direct sum of Simple rings, or to be left or right Noetherian.

0.1. Let k be an algebraically closed field of characteristic zero and
A a finitely generated (commutative) k-algebra. The primary purpose
of this paper is to study the ring &/(A4) of differential operators on A
when dim(4), the Krull dimension of 4, is at most one. If A is also
reduced or is a domain 2 (A4) has been studied extensively in [10] and
[15] and we prove analogues of the main results of these papers. For
example

THEOREM A. Let A be a finitely generated k-algebra with Krull
dimension at most one. Then

(a) @(A) is right Noetherian and finitely generated as a k-algebra.

(b) @(A) is left Noetherian if and only if A has an artinian quotient
ring.

0.2. One of the main ideas in [15] is to compare Z(4), for 4 a
domain, to & (/T) where A is the integral closure of A . In particular,
[15, Theorem B] gives necessary and sufficient conditions for & (A4)
and 9 (/T) to be Morita equivalent. We prove a similar result here.
We denote the nilradical of 4 by N(A4), and say that A has injective
normalisation if every maximal ideal of 4/N(A) is contained in a

unique maximal ideal of its integral closure.

THEOREM B. Let A be a finitely generated algebra with dim(A4) <1
and let A be the integral closure of A/N(A). Then the following are
equivalent: N

(1) Z(A) is Morita equivalent to Z(A).
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(2) Z(A) is a direct sum of simple rings.
(3) A=A & Ay ®--- ® A, where each A; is a primary ring with
injective normalisation.

0.3. As geometric motivation for the study of differential operators
on non-reduced algebras we mention a result of S. P. Smith [14]. Let
R = k[x, y] and f € R a polynomial defining an irreducible curve
X. If & =¢(X) it is known that the Z'(R)-module &;/¢# has finite
length and has a unique minimal submodule. There is some interest
in describing this submodule. The main result of [14] is that when
the normalisation map X — X is injective &r/@ is a simple I(R)-
module. This follows easily from the fact that 2 (R/f"R) is a simple
ring. In turn simplicity of 2(R/f"R) follows from a corollary to
Theorem B in this case, see 2.6.

0.4. We outline the proof of Theorem A. The case where A has an
artinian quotient ring is handled in §2. In general, there is a factor al-
gebra 4 of 4 which has an artinian quotient ring and a surjective ho-
momorphism ¢: Z(A4) — D(A), see 4.2. Since Z(A) is Noetherian
by the results of §2, it will suffice to prove

THEOREM C. With the notation of 4.2, J = Ker¢ has finite length
as a right 2 (A)-module.

For an arbitrary k-algebra 4 we define a standard 2 (A)-module to
be a right Z'(A4)-module of the form 2 (A4, A/M) for some maximal
ideal M of A. Standard modules have been studied in [13]. In §3
we show that if V' is any A4-module of finite length then 2/ (4, V)
is a direct sum of standard modules (Corollary 3.4). We also explain
how Matlis duality may be used to study standard modules. Finally in
Proposition 4.3 we show that if dim A4 <1 then any standard module
has finite length. Theorem C follows easily from these results.

0.5. Let M be a maximal ideal of 4 and denote by A,,, /TM
respectively the localization and completion of 4 at M. Several
results, including Theorem B, remain true when A4 is replaced by A4y
or Ays. In 1.1 we abstract the properties of 4, 43, and /TM which
are necessary for the proofs. In some situations, for example when
using Matlis duality, the results for 2 (AA M) are more pertinent than
those for 2(4).
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0.6. In §5 we describe a method which can be used to compute
2 (A) explicitly in a number of cases.

Any unexplained notation in this paper will be as in [11]. We have
tried to merely sketch proofs which are routine adaptations of those
in [15]. However the proof of the implication (2) = (3) of Theorem
B is new even in the case where A4 is a domain.

1. Preliminary results.

1.1. Let M be a maximal ideal of the finitely generated algebra 4.
Since several results on 2(A4), P(Ay) and 2 (EM) can be proved
simultaneously we abstract the required properties of the commutative
algebras here. We assume

(a) dim(4) <1 and A has an artinian quotient ring F .

Next we prove

(b) There exists a subring B of F containing 4 such that B is
a finitely generated 4-module and (B + N(F))/N(F) is the integral
closure of A= (4 + N(F))/N(F) in F/N(F).

If x € F and x + N(F) is integral over 4, then x is integral
over A, so A[x] is a finitely generated 4-module. Since the integral
closure of A is a finitely generated A4-module the result follows.

(c) There is a subalgebra B of B such that B = B@® N(B).

Since B/N(B) is a direct sum of Dedekind domains and idempo-
tents may be lifted over a nilpotent ideal, we have B =B, ®--- & B,
where each B;/N(B;) is the coordinate ring of a nonsingular curve.
By the infinitesimal lifting property, [6, Exercise I1.8.6] there exists a
subalgebra B; of B; with B; = B; ® N(B;). Then (c) follows with
B=B,9---9&B,.

We next show that the analogues of (a)—(c) remain valid when A
is replaced by A, or ,/TM.

For a multiplicatively closed set S in a commutative ring 4 we
set S(0) = {a € A|sa=0 forsome s € S}. Let S=A4\ M, and
let 0 = K;N---NK, be a minimal primary decomposition where
K; is P;-primary. Assume the K; are numbered so that P, C M
if and only if 1 < i < m. Then by [1, Proposition 4.9] S(0) =
Kin---NK,,. In particular S(0) has no embedded primes, so passing
to A/S(0) we may assume S consists of regular elements without
changing assumption (a). Since S = k*(1 + M) we have (|,M" =0
by Krull’s intersection theorem. Hence 4 C Ay C Ay .

Let J be the Jacobson radical of the semilocal ring Bg. We prove

(a)) dim(A4y) <1, dim(A4y) < 1, F is the full quotient ring of
Ay and A, » has an artinian quotient ring Q.
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(b) Bg (resp. (Bs);) is ﬁniﬁely generated as an Ay, (resp. /TM)
module and Bs/N(By) ’gresp. (ABS) 7)/N((Bs)s) is the integral closure
of Ay/N(Ay) (resp. Ay/N(Au)).

(c)’ Let S (resp. J) be the image of S (resp. J) under the natural
map B — B (resp. Bs — Bs). Then Bs = Bz® N(Bs) and (Bs); =
(B3)7® N(Bs), .

Applying the exact functor — ®p Bs to the sequence 0 — N(B) —
B 5. B — 0 we obtain exactness of 0 — N(B)g — Bs Is, Bz -0

where S = n(S). If i: B — B is the inclusion map, then elements
of i(S) are units in Bg so there is a map is: §§ — Bg such that
nsis is the identity on Bz. Thus BS = Bs @ N(Bs). To simplify
notation set D = (ES) J and E = (B )7 - A similar proof shows that
D=EaoND).

We claim that D has an artinian quotient ring. It suffices to show
that N (ﬁ) is torsion free as an E-module. If x is any regular element
of E, then since E is the completion of a direct sum of Dedekind
domalns at a semimaximal ideal, there is a multiple y of x which
is a regular element of F§. Since Bg has an artinian quotient ring,
0 — N(Bs) — N(By) is exact where the map is multiplication by y.
Applying exactness of the completion shows that y and hence x are
nonzero divisors on N(D) as required.

Finally we claim that ﬁ//f u has finite length as an Ay-module.
This is clear if A); = Bg so assume not and let 7/ = ann AM(BS /An) be
the conductor. Since I is a proper ideal of 4y, wehave IC M C J.
However Bg/I has finite length so J” C I for some n. It follows that
the J-adic and I- adlc topologies on Bg coincide and (BS) J= (BS)
Similarly A, M= A 1 . Now take the I-adic completion of the sequence
of Ap-modules 0 — Ay — Bs — Bs/Ay — 0. The last term is
unchanged, since it has finite length and this proves the claim. Hence
the conductor of D in 4, M contains a regular element of D and so
the artinian quotient ring of D is also the quotient ring of Ay . This
proves the analogues of properties (a)—(c) for Ay and their analogues
for A, are similar.

1.2. Let J be an ideal in a ring A4 such that ()J” = 0 and de-
note by A the completion of A4 in the J-adic topology. If d €
Z19(A), an easy induction shows that d(J"*9) C J". Therefore if
a=1(ay, a, ...) is a Cauchy sequence in the J-adic topology, so also
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is d(a) = (d(ap), d(ay), ...) and d extends to an element of 9‘1(2).
Furthermore if 0 € 29 (ff) and & vanishes on 4 then d = 0. To
see this suppose a € A and write a = a; + ap where a; € A and
ay € Jr4. We obtain d(a) = d(a,) € J* for all n so d(a) = 0.
Thus any element d € 29(A) extends uniquely to an element of

-~

29(A) and we obtain maps

~

A®,9294) - 294) and A®,2(4)— D (A).

THAEOREM.AIf A is a finitely generated k-algebra then 4,2 1(A) =
9A) and AR4D(A) =2 (A).

Proof. If A is the local ring of a point on an algebraic variety, a
corresponding result is proved by Ishibashi in [7, page 13, Corollary]
and his proof extends to the present case. However we include an
alternative proof for the convenience of the reader.

First suppose A = k[x;,..., X,] a polynomial algebra. If 9 €
9 (/f) we show by induction on the order of @ that 9 € A0, D (4) =
A[oy, ..., 8,] where 8; = 8/0x;. This is clear for 8 € 4. By in-
duction we have d; = [0, x;] € A[d,, ..., 8,]. Now [d;, x,] is the
partial derivative of d; with respect to 8; and [d;, x;] = [d;, x;].
Thus by a familiar argument involving exact differential equations,
there exists d € /f[(?, , ... Oy] such that [d, x;] = d; for all i and
d(1) = 9(1). It is now easy to see that 4 and O agree as operators
on A, and as we observed above this implies 8 =d .

In general write 4 = B/I where I isanidealin B = k[x;, ..., x,].
Let J' be the inverse image of J in B. Then B, /I, = A;. Let
S={0ecaB)oI)CI} and T = {8 € 2(B)|d(I) C I}. Then
by [10, Lemma 1.4] we can identify &(4) with S/IZ(B) and in a
similar way 2(4) may be identified with 7/72(B). Write S7 =
SNZ9(B) and T9 =T N2P9(B). We first show that 79 = B®y §9.
By [10, Lemma 1.5] there is a finite set of elements {v, ..., v,} of
I such that if 9 € 99(B) then d € SY if and only if d(v;) € 1
for all i. It is also easy to see that for § € gq(ﬁ), 0 € T9 if
and only if 8(v;) € T for all i. Let @ A be the free A-module
of rank r and ¢: 29(B) — " A the homomorphism of left B-
modules such that for 8 € 29(B), the jth component of ¢(8) is
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d(vj)+ 1. Then S = Ker¢ and 79 = Kerl ® ¢: B ® 24(B) =
Z49(B) — @' A. However since B is a flat B-module we also have
Kerl ® ¢ = B®p Kerg. Thus T9 = = B®p S? as claimed. Applying
B ®p — to the exact sequence 0 — I@q(B) - S - 214) - 0
we obtain A®A 9A) = Tq/L@q( B) = QQ(A) Taking direct limits
we have Z(4) = lim 29(4) = A®,4 lim 29(4) = 4@, Z(4) as
required.

CoROLLARY. If 4 isa ﬁmtely generated k-algebra then for any in-
teger n, 9(/1) (A)+ J”@(A)

Proof. This follows since A=A+ J".

2. Algebras with an artinian quotient ring.

2.1. LEMMA. Let A be any k-algebra and P a finitely generated
projective A-module. Then Z(A,P) = P Q4 Z(A) and Z(P) =
Endg4(2(4, P)). Furthermore, if P is a progenerator then Z'(P)
and Z(A) are Morita equivalent.

Proof. By the dual basis lemma, there exists x; € P and «; €
P* = Homy(P, A), 1 <i < n,such that 1p = Y x;a;, so the map
PR,42(4) - 2(A, P) sending x®d to xd has an inverse given by
d— in ® o;d

Define ¢: Z(P) — Endg4)(2(4, P)) by letting ¢(d) send d' to
dd' for d € Z(P) and d' € (A, P). Then ¢ is onto since if
o € Endg(4)(Z(4, P)) then ¢(3 o(x;)a;) = 0. Clearly ¢ is one-
one.

Finally if P, is a progenerator then so is (P ® Z(A4))g4) so the
result follows.

THEOREM. Let A be a finitely generated algebra which has an ar-
tinian quotient ring F and suppose dim(A) < 1. If A/N(A) is in-
tegrally closed in F/N(F) then Z(A) and Z(A/N(A)) are Morita
equivalent.

Proof. In this case we can  take B = A in statement (b) of 1.1. Hence
by (¢) in 1.1 we have 4 = A® N where A is a subalgebra of 4 and
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N = N(4). Since A4 has an artinian quotient ring, N is torsionfree
and hence projective as an 4-module. Also A4 is an A progenerator,
so by the lemma 2 (4) and 2(4) are Morita equivalent. However

by [11, Lemma 2.1], & (A4) = Z(4) so the result follows.

2.2. THEOREM. Let A be a finitely generated k-algebra of Krull
dimension at most one which has an artinian quotient ring F. Then

(a) @(A) is (left and right) Noetherian.

(b) D(A) is a finitely generated k-algebra.

(c) Z(A) has left and right Krull dimension equal to that of A.

(d) If M is a simple 2 (A)-module then Endg 4 M =k .

Proof. 1t is known that the required properties of 2 (A4) are Morita
invariant. Let B be a subalgebra of F' containing 4 chosen asin 1.1.
Then by Theorem 2.1 & (B) and Z(B/N(B)) are Morita equivalent.
Since B/N(B) is a direct sum of coordinate rings of non-singular
curves Z(B/N(B)) has all the required properties and thus so does
Z(B). Also I(A) and 2P (B) are orders in the same semisimple
artinian ring by [11, Theorem A] and B/A is a finitely generated
torsion 4-module. It is now straightforward to complete the proof as
in [15, §2] or [10, §5].

2.3. LEMMA. Suppose dim(A4) < 1, and A has an artinian quotient
ring and injective normalisation. Then A is a direct sum of primary
rings.

Proof. We first handle the special case where A is reduced. Let
A be the integral closure of 4, M a maximal ideal of 4 and S =
A— M . By hypothesis Ag is regular local and hence a domain by [8,
Theorem 164]. Therefore Ay, is also a domain, so by [8, Theorem
168 A=A, ® ---® A, is a direct sum of domains A4, .

In general, by applying the above argument to 4/N(A4) and then
lifting idempotents over N(A4) we have 4 = A ®---® A4, where each
A; has a unique minimal prime. Since 4 has an artinian quotient
ring, it follows that A4; is primary.

2.4. LeMMA. Suppose dim(A) < 1 and A is a simple left D (A)-
module. Then A is a primary ring with injective normalisation.
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Proof. Let S be the set of elements of 4 which are regular
mod N(A4). Since S(0) is a Z(A4)-submodule of 4 by [11, Lemma
1.4], we have S(0) = 0. Hence A4 has an artinian quotient ring.
If A= A4, ® A, a direct sum of algebras then each A4; is a Z(A4)-
submodule by [10, Proposition 1.14]. Hence in view of Lemma 2.3,
it is enough to show that 4 has injective normalisation. Also we can
assume dim(4) = 1. Let M be a maximal ideal of 4. We claim
that 4 = /TM has a unique minimal prime. Let KiNK;N---NKp, =0
be a minimal primary decomposition in 4 where K; is P;-primary,
and assume for a contradiction that #» > 1. Since A4 has an artinian
quotlent ring, the ideals P;, 1 < i < n, are the mlmmal primes of
A.Set I=K 1 + K> . Since the set of zero divisors of 4 equals U] P;
by [1, Proposition 4.7] and I ¢ ] P; by [8, Theorem 81], I con-
tains a regular element. Thus Ay /I is artinian and hence INA4 #0.
Also I # A since the K are proper ideals in the local ring 4. Now
by [11, Lemma 1.4] and [1, Proposition 4.9], each K; is a & (A)
submodule of 4. Therefore I is a & (A) submodule. Since every
element of Z/(A4) extends uniquely to an element of & (/T) ,INA isa
proper & (A)-submodule of A. This is a contradiction, so the nilradi-
cal N (/f ) 1s the unique minimal prime of Ay . Now A, Mm/N (ff M) 18
the completion of 4/N(A) in the M/N(A)-adic topology. Since this
is a domain, it follows by [5, Theorem 6.5] that A//N(A) is contained
in a unique maximal ideal of the integral closure of 4/N(A). Thus
A has injective normalisation.

2.5. Proof of Theorem B (1) = (2) is trivial.

(2) = (3). Assume Z(A) is a direct sum of simple rings, and let
1 = e + -+ e bea decomposition of the identity into centrally
primitive idempotents. Since any central element of 2 (A4) belongs
to A, we have 9 (4) = D (4e)) ® --- ® Z(Ae,) and each I (Ae;) is
simple. Therefore we can assume that Z(A4) is simple. This implies
that A4 is a simple 2 (A4)-module because any proper factor module
would have non-zero annihilator in 4 and hence in 2(A). Hence by
Lemma 2.4 A is a primary ring with injective normalisation.

(3) = (1). We may assume that A is a primary ring with injective
normalisation. Let F be the artinian quotient ring of 4 and let B be
a subalgebra of F containing 4 and satisfying properties (a)-(c) of
1.1. We claim Z(4) and Z(B) are Morita equivalent. Let M be a
maximal ideal of 4 and Q the unique maximal ideal of B containing
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M . Since Bp/Ap is a finitely generated torsion A4j,-module we have
Q" C anny (Bg/Apy) for some r. Let P = Z(Bg, Ay) = {d €
2(Bp)ld(Bg) € Am}. As in the proof of [15, 3.3 and 3.4], it is
enough to show there exists a d € P such that d(1) € k \ {0}. Now
By = Bz ® N(Bg) where By is a subalgebra of By with unique
maximal ideal Q. Since Fa is a discrete valuation ring, there exists
t € By and 8 € DerBy such that Q = tB; and 9(f) = 1. Set
d =TIZi(td - j) € 2 (Bg). By [11, Lemma 2.1] we can extend d
to a differential operator on Bg by setting d(N(Bp)) = 0. Note that
d(t") = Ant" forsome A, € k and 4, =0 ifandonlyif 1 <n<r-1.
As in [15] this implies d(Q') € Q. Since By = (k + kt + --- +
kt-YeoQ ® N(Bg), we have d(Bg) C k +0Q C Ay sodeP and
d(1) e k \ {0} as required.

This shows that ' (4) and Z(B) are Morita equivalent. Finally
Z(B) and Z(B/N(B)) are Morita equivalent by Theorem 2.1, and
B/N(B) is the integral closure of 4/N(A), so the theorem is proved.

2.6. COROLLARY. Let A be a finitely generated k-algebra with
dim(A4) < 1. The following conditions are equivalent.

(1) 2(A) is a simple ring.

(2) A is a simple left Z(A)-module.

(3) A4 is a primary ring with injective normalisation.

Proof. (1) = (2) was noted in the proof of Theorem B.

(2) = (3) is the statement of Lemma 2.4.

(3) = (1) We can assume dim(A4) = 1. By Theorem B, Z(A4)
is Morita equivalent to 9’(/?) where A is the integral closure of
A/N(A). Since A/N(A) is a domain, A is the coordinate ring of

a nonsingular, irreducible curve. Thus Z(4) is a simple ring and
hence Z(A) is also simple.

REMARK. If R = k[x,y] and f = f(x, y) € R is irreducible, it
is easily seen that 4 = R/f"R is a primary ring for all » > 1. Thus
if X is the planar curve defined by f and the normalisation map
X — X is injective we have that Z(A4) is a simple ring and A4 is a
simple 2 (A)-module. This gives Proposition 2.8 and Corollary 2.9 of
[14].
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2.7. PROPOSITION. Let A be a finitely generated k-algebra with
dim(A4) < 1, and assume that A has an artinian quotient ring F .
Then A has finite length as a left Z(A)-module.

Proof. Let B be a subalgebra of F containing 4 and satisfying
conditions (a)-(c) of 1.1. Set I = ann4(B/A). Since B/A is a finitely
generated torsion A-module, 4/I has finite length. Also B = B; &
-+ @ B, where each B; is primary and B;/N(B;) is the coordinate
ring of a nonsingular curve. Thus B; is a simple & (B;)-module. Let
m;: B — B; be the projection map. If M isa 2 (A)-submodule of 4,
we define A(M) = {i|n;(M) # 0} . We claim that I(@,c; s, Bi) S M.
Since also M C @, a(m) Bi» and there are only finitely many choices
for A(M) this will show that 4 has finite length as a 2 (A4)-module.

Assume [ € A(M). Let ¢; = m;(1) € B;; then n;(M) = eM
so 9(B)M 2 Z(B)e;M = B;, since B; is a simple Z(B)-module.
Since 12 (B) C Z(A) we obtain M = Z(A)M D IZ(B)M D IB; as
required.

REMARK. The above remains true if 4 is not assumed to have an
artinian quotient ring, see Proposition 4.3.

__2.8. All of the results in this section hold if 4 is replaced by A4y or
Ay . For the analogue of Theorem 2.2 with A4 replaced by Aus, we
should observe that if B is an overring of A4 constructed in 1.1, then
the endomorphism ring of any simple 2/ (B/N(B))-module equals k.
This easily reduces to the following special case.

LemMmA. If B = k[[x]], @ = Z(B) and M is any simple Z-
module, then Endg M =k .

Proof. Since M is holonomic, [3, Ch. 3, Prop. 3.11] applies.

3. Standard modules.

3.1. Let A be an arbitrary (commutative) k-algebra. If V' isan A4-
module and M an ideal of 4 we denote by anny (M), soc, (V) and
E (V) the annihilator of M in V', the socle of ¥ and the injective
hull of V' respectively.
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LEMMA. Let Q beanideal of A, and V an A-module with QV =0.

(@) If d € 2™(A, V) then d(Q"") = 0 (equivalently dQ™*! =0
in D4, V)).

(b) If Q is M-primary where M is a maximal ideal of A then
Z(A,V)={d € Homy (A4, V)|d(M") = 0 for some n}. In particu-
lar, when 2(A, V) is regarded as a right A-module via the action of
D(A), then socy(D(A4, V)) = anng4,y) M is an essential submodule.

Proof. (a) If x € Q, then by induction on n, 0 = [d, x}(Q") =
d(xQ") —xd(Q"). Hence d(xQ") =0 and the result follows.

(b) Suppose M* C Q for some s. By (a) d € 2"(A, V) implies
d(M*"+1)) = 0. Conversely if d € Homy(4, V) and d(M") = 0,
then as in the proof of [11, Lemma 2.1] we have [d, A); =[d, M]; C
> j+k—i M7dM¥ which is zero for i >s+n. Thus d € Z°™(4, V).
For the final statement suppose d € Z (4, V), d # 0 and choose n
minimal with d(M") = 0. there exists x € M"~! with d(x) # 0.
Therefore dx € anng 4,y M and the result follows.

CoROLLARY. (Compare [13, Corollary 4.5).) If M is a maximal
ideal of A then as a right A-module

D(A, AIM) = E4(A/M).

Proof. Set E = E4 (M). It is well known that Homy (A4, A/M)
is an injective A-module, so £ may be identified with a submod-
ule of Homy (4, A/M). Also E = |J,anng M" by [12, Proposi-
tion 4.23] so E C {d € Homy (4, A/M)|d(M") = 0 for some n} =
(A, A/M). By the lemma 2 (4, A/M) is an essential extension of
Homy (4/M , A/M) = A/M so the result follows.

3.2. LEMMA. Let K be an ideal of B, and A= B/K. If V is any
A-module then there is an isomorphism of right 2 (A)-modules

D44, V)= {d e (B, V)|d(K) = 0}.

Proof. Apply the functor 2g(-, V), which is left exact by
[15, 1.3c)], to the sequence 0 — K — B — A — 0 to obtain
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0—->2p(4,V)— 2B, V)— 2K, V). The result follows since
QB(A ’ V) = QA(A s V) .

3.3. Let B =k[x;, ..., x,] beapolynomial algebra. For 1 <i<n
set 0; = 0/9x;. Let m = (x1,...,x,) and D = k[0, ..., On].
Then D is a subalgebra of 2(B) with Z(B) = D ® mP(B). Let
n: B — B/m be the natural map. The map Z(B) — (B, B/m)
sending d to 7md is surjective with kernel m<Z(B). Thus as right
2 (B)-modules, D = 9(B)/mZ(B) = Z(B, B/m). To avoid any
confusion we shall write Dg gy for D considered as a right Z(B)-
module rather than as a subalgebra of Z/(B). Clearly Dgp) is a
holonomic Z(B)-module supported by the origin. (We refer to [4]
for definitions.)

LEMMA. (a) Let X be a right Z(B)-module such that socg(X) =
anny(m) is an essential B-submodule of X . Then X = socg(X)®yD.

(b) The map Y — Y ®; D defines an equivalence of categories be-
tween the category of finite dimension vector spaces over k and the
category of holonomic 2 (B)-modules supported by the origin.

Proof. This follows from [4, V.3.1.2 and V.3.1.6] and induction
on n.

3.4. THEOREM. Let A be a finitely generated k-algebra and 0 —
U—V — W — 0 an exact sequence of A-modules where V has finite
length. Then the sequence of right 2 (A)-modules

(*) 0-9(A4,U)->9A4,V)>2(4,W)—-0

is exact and splits.

Proof. For each maximal ideal M let V(M) = {v € VloM" =0
some r}. Then V = V (M), the sum ranging over maximal ideals
M of A,50 (A4, V)=P (A, V(M)). In proving the theorem we:
can assume V =V (M), so VM" =0 for some r.

By Lemma 3.1 (4, V) =, Zs; where Z; = {d € Homy (4, V)|
d(M?*) = 0}, which we identify with Homy (4/M*, V). The exact-
ness of the sequence (*) follows easily from this.
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Now write 4 = B/K where B = k[x;, ..., X,] a polynomial alge-
bra. We can assume M = m/K where K C m = (x;, ..., x,). Let
D = k[d;, ..., 0,] as in 3.3. Since Z (B, V) has a finite composi-
tion series with factors isomorphic to Dy p), it is a holonomic Z(B)-
module supported by the origin. Hence by Lemma 3.3 2(B, V) =
B,U)e2(B, W). Considering the submodules annihilated by K
and using Lemma 3.2 we obtain Z(4, V)= 2(4A, U)o2 (4, W) as
required.

Let /(V) denote the composition length of the 4-module V.

COROLLARY. Let V be an A-module of finite length. Then (A, V)
is a direct sum of [(V) standard modules. Furthermore [(V) =
[(socy Z(A,V)).

Proof. The first statement follows by applying Theorem 3.4 to a
composition series for V', the second from the fact that any standard
module has simple socle as an 4-module by Corollary 3.1.

3.5. The following result will be useful in computing examples.

COROLLARY. Let K be an ideal in the polynomial algebra B =
k[xy,...,xn] with K Cm= (x{,...,Xxn). Let A= B/K,D =
k[Oy,...,0,) as in 3.3 and M = m/K. Suppose that V is an
A-module of finite length such that VM* = 0 for some s. Then
D(A,V)=(socy D(A, V))annp K.

Proof. By Lemma 3.3 (B, V) = (anng, yym)D. By Lemma
32 since K C m,Z(A4,V) = anng;p y)K 2 anngp yym so
anng g yym = anng yyM = socyZ(A4,V). As a right Z(B)-
module I (B, V') is isomorphic to a direct sum of copies of Dy p) .
Hence (4, V) = anng g, y) K =(socy Z (4, V))annp K as required.

3.6. We explain how Matlis duality can be used in the study of
standard modules. Let M be a maximal ideal of A4, 4 = Ay and
g = 2(A, A/M). Observe that & may be regarded in a natural

~

way as a right Z(A)-module. Indeed A/M" = AA/A/Z " for all n, so
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by Lemma 3.1, £ may be identified with & (/f A /M) . Clearly any
g (2)-submodule of & isa Z(A)-submodule. Conversely let X be
a D(A)-submodule of & and f € X. Then fM" =0 for some n.
Ifdeo (/i\) we can use Corollary 1.2 to write d = d; + d, where
dy € D(A) and dy € M"D(A). Then fd = fd, € X. Thus X
isa (/f) submodule of & . If V is an A-submodule of 7, set
V*={ae€ Alv(a)=0 forall ve ¥V} and if V is an ideal of 4, set
V*={d € 2|d(v) =0 for all v € V}. Then by [12, Theorem 5 21]
V — V* sets up a one-one order reversing correspondence between
A-submodules of & and of 4. It is easily verified that right & (/f)-
submodules of 2 and left & (A4)-submodules of A correspond under
this duality. Hence we have

PROPOSITION. The maps V — V* give a one-one order reversing cor-
respondence between the submodules of the right 2(A)-module
D(A, A/M) and submodules of the left @ (A)-module A.

4. Algebras with Krull dimension at most one.

4.1. If N isa Z(A)-submodule of A, there is a natural map 2 (4)
— D(A/N) with kernel A(A, N) [11, 1.2]. It is of interest to know
when this map is surjective. We prove one result in this direction. It
is convenient to express A in the form 4 = B/L where L is an ideal
in a polynomial algebra B.

LEMMA. Let L, N, Q be ideals of the polynomial algebra B such
that L = NN Q, Q is M-primary where M is a maximal ideal of
B, and N/L isa 2 (B/L)-submodule of B/L. Then the natural map
D(B/L) — Z(B/N) is surjective.

Proof. Given d € 2(B/N) we can lift d to an element 9 € Z(B)
such that 9(N) C N and d(b+ N) = 9(b) + N for all b € B [10,
Lemma 1.4.]. Let N = (f},..., f,). We show there are elements
d,...,d, € Z(B) such that 8’ = 0 + fid, + --- + fpd, satisfies
9'(L) C L. Then &’ will induce an element of </ (B/L) which maps
onto d. Since L = NNQ, it is enough to ensure that §'(L) C Q. If 9
has order ¢, then 9(M*) C M~ for every 5. Choose s large enough
so that MS~! C Q. Since M is a maximal ideal of B, L/LNM" is
a finite dimensional vector space over k and we can choose elements
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V1, ..., Yq € L whose images form a basis. For each j write 0(v;) =
Y. Jiaj; with aj; € B. Since B/M* is a local artinian ring, there
exists 9; € Z(B/M?) such that 9;(v;+ M*) = —a;;+ M"* forall j, by
[11, Lemma 2.1]. Using [10, Lemma 1.4] we can lift §; to an element
d; € Z(B) such that d;(M*) € M* and d;(v;)+ M* = ~a;; + M* for
all j. If ' =0+ Y, fid, we have &'(v;) € M* C Q for all j and
LNMS) COM)+Y. fid)(M$) C M*~' C Q. Hence 8'(L) C Q as
required.

4.2. We establish some notation which we will use from now on in
dealing with algebras of dimension at most one. Let K be an ideal in
a polynomial algebra B such that 4 = B/K has dimension at most
one. Let K = (), K; be a minimal primary decomposition where
K, is P;-primary and set Q = {4 € A|P; is minimal over K} and
I=()cqK;. By[11, Lemma 1.4], I/K is a & (A)-submodule of 4.
Also 4 = B/I has an artinian quotient ring since it has no embedded
primes. If Q = (V;cp\ Ki» then T = I/K is isomorphic to an ideal
of A/Q and so has finite length as an 4-module. We let J = A(A4, I)
the kernel of the map ¢: Z(4) — Z(A).

COROLLARY. The map ¢ is surjective.

Proof. Let {K;|A € A\ Q} = {K;, ..., K;n} and suppose K; is
Pi-primary. Let Lo =1 andfor 1 <i<m, L;=INK;Nn---NK;, so
that L,, = K. By [11, Lemma 1.4] L;_;/L; isa 2(A/L;)-submodule
of A/L;, and since P; is a maximal ideal of A, it follows from
Lemma 4.1, that the map 2 (4/L;) —» D(A/L;_,) is surjective. Since
¢ is obtained as the composite Z(4/K) —» Z(A/Ly—1) — - —
D(A/Ly) — 2(A/I), the result follows.

4.3. PROPOSITION. Let A be a finitely generated algebra with
dim(A4) <1 and M a maximal ideal of A. Then

(a) 2(A4, A/M) has finite length as a right Z(A)-module.

(b) Ay has finite length as a left & (AM) module.

Proof. By Proposition 3.6 the two assertions are equivalent. Ap-
ply the left exact functor Z4(-, 4/M) to the exact sequence 0 —
I —-A4— A4— 0 toobtain 0 — P,(4, A/M) — D4(A, A/M) —
24(I, A/M). Since T and A/M are both finite dimensional over
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k, it is enough to show that 9,(4, A/M) = (A A/M) has fi-
nite length as a right & (4)-module. Thus in proving the theorem we
can assume that 4 has an artinian quotient ring. However we have
already obtained statement (b) in this case, see 2.8.

We remark that the above result fails for domains of dimension
two. For example let 4 = k[x, y, z}/(x3+y3+23) and M the ideal
of A generated by x, y, z. By [2, Proposmon 1], M" isa 9 (A)
submodule of 4 for every n. Thus M"isa 9 (A) submodule of 4
for all n.

4.4. THEOREM C. With the notation of 4.2, J has finite length as
a right Z(A)-module.

Proof. As noted in [11, 1.2] J = A(4,1) = 2(4,1). Since T
has finite length, this is a finite direct sum of standard modules by
Corollary 3.4. By Proposition 4.3, each standard module has finite
length so the result follows.

4.5. Proof of Theorem A. Let A be a finitely generated k-algebra
with dimension at most one. If &(A) is left Noetherian then 4 has
an artinian quotient ring by [11, Theorem A].

Conversely, suppose that 4 has an artinian quotient ring. Then by
Theorem 2.2 2(A) is left and right Noetherian and finitely generated
as a k-algebra. In particular this proves statement (b) of the theorem.

In general with the notation of 4.2, we have A = 4/T and (4) =
P(A)/J . Since J and Z(A) are Noetherian as right 2 (4)-modules
by Theorem 2.2 and Theorem C, & (A) is right Noetherian.

Let J =A4(7,0) and N =JNJ;. We know Z(A)/J = D(A)
is a finitely generated k-algebra. Also J/N embeds in & (4)/J; and
hence in Z4(I) which is finite dimensional. It follows that & (4)/N
is a finitely generated algebra. Now N isa & (A)-submodule of J and
so of finite length and since J;J =0, N is a right 2(4)/N-module.
Let X be a finite set of elements of 2 (A4) whose images generate
D(A)/N as a k-algebra and Y a finite set of generators for N as a
right 2(4)/N module. If S is the subalgebra of 2 (A4) generated by
XUY, then (S+ N)/N = Z(A)/N. Thus given d € Z(A4), there
exists d' € S suchthat d—d' e N=Y(Z(4)/N)C S,s0 S=2(A4).
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REMARK. A similar proof shows that if A is a finitely generated
k-algebra with Krull dimension at most one, and M is a maximal
ideal of A4, then the rings & (A4y,) and Z(Ay,) are right Noetherian.

5. Examples.

5.1. In this section we indicate how Z(4) may be calculated ex-
plicitly in certain cases. We write 4 in the form 4 = B/K where
K is an ideal in the polynomial algebra B, and use the fact that
9(1‘1) = Hg(B)(K@(B))/K@(B) where HQ(B)(KQ(B)) = AB(K, K)
is the idealiser of KZ'(B), see [11, 1.3.]. As a first illustration let B =
kix,yl, M=(x,y), P=(x), K=PM =PnM?=(x*,xy), and
A= B/K . In the notation of 4.2 we have I = P/K and A = B/P =
k[y]. We note that y2(k[y]) C D(4), (x8/9x — 1)(8/0y)'(K) C
K and this last operator induces the operator —(8/8y)’ on k[y].
Hence S = y2 (k[y]) + (x8/8x — 1)k[0/8y] maps onto Z(A4) un-
der the natural map Z(4) — 2Z(A). The kernel of this map is
J =A(4,I) = 2(A,I). Since x € I and xM C K we have
x € soc42(A,I), and by Corollary 3.4, soc, 2 (A4, I) is simple.
Thus by Corollary 3.5, J = xannp K where D = k[0/dx, 8/dy].
Now annp K = annp P + annp M? = k[0 /0y] + k8 /0x . The justifi-
cation for this statement will be given later. Putting the pieces together
we obtain

2A4)=(S+J+KZ(B))/KD(B)
= (yZ(k[y]) + (x0/0x — 1)k[0/0y]
+ xk[0/0y]+ kx0/0x + KZ(B))/KZ(B).

We also note that A4(I, 0) = J; is equal to the image of yZ (k[y]) +
(x8/0x — 1)k[8/0y] + xk[0/Oy] in 2(A), and the prime radical
N =JnJ; of Z(A) is the image of xk[0/8y], see [11, Theorem B].

A calculation of the algebra Z(4) in this example is carried out by
Muhasky in [10, Example 7.2}, and Muhasky uses his calculation to
show that Z(A) is right but not left Noetherian.

5.2. We explain how the above calculation may be extended to
cover other examples. Let 4,1 and 4 = A/I be as in 4.2 and

write 4 = B/K where K is an ideal in B = k[x;, ..., x,] con-
tained in m = (x;,...,X,). Let 0, = 0/0x; for 1 < i < n and
D = k[d;, ..., 0,]. There seems to be no description known in gen-

eral for 2(A), even when A is a domain, and we say nothing further
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about this problem here. Instead we assume 2/ (A4) is known, as for
example in the case A is the coordinate ring of a non-singular curve.
Since the map 2 (4) — 2(A) is surjective we can find a subset S of
2(A) which maps onto Z(A). (The proof of Lemma 4.1 gives an
algorithm for doing this, but as in Example 5.1, it is often easier to
find S directly.) By [15, 1.3d)] we have (B, I) = [Z(B). Thus
identifying & (A4) with (K2 (B))/KZ(B), we have J = A(4, 7~) =
{8 S I@(B)|8(K) - K}/K.@(B) = ann,_@(BL/Kg(B)K. let J =
{0 € IZ(B)|0(K) C K}; then Z(4) = (S+J + KZ(B))/KZ(B).
By Corollary 3.5, J = (soc4 J)annp K so the problem of describing
J falls into two parts; the calculation of cos,(J) and that of annp K .
We discuss these two parts in 5.3 and 5.4.

5.3. Asin the proof of Theorem 3.4 we have I = D I1(M) where the
sum ranges over maximal ideals M of A4 and this yields a correspond-
ing decomposition of J. Thus we may assume that ann, I is M-
primary, where M = m/K and m = (x;, ..., X,). Hence socy J =
ann; M = ann;y )y M = socg(IZ(B)/KZ(B)). For arbitrary
ideals K C I of the polynomial algebra B such that anng I/K is m-
primary, we give a description of the module /2 (B)/KZ(B) and its
socle. We remark that 12 (B)/KZ(B) is isomorphic to Z (B, I/K)
as a right 2(B)-module by [15, 1.3e)] so we also obtain a description

of (B, I/K).
Assume Imst! C K for some s > 0. For t € N" write x! =
xi‘mx,t," and |t|=>_¢t;. Fori=1,..., n, define
s
=[x -J) ifs>1
j=1
and d;=1if s=0,and d =1]_,d;. Let I =(f1,..., fp). Each

factor in the series
IDIm+K2---D2Im+K 2K

is spanned by elements of the form f;x! for 1 < i < p and
t € N*. Hence we can choose subsets 7; € N*, 1 < i < p,
such that {fix'+ K|l < i < p,t € T;} forms a basis for I/K and
the images of those f;x! which lie in Im’/ + K form a basis of
(Im/ + K)/(Im/*' + K). For each i and ¢t € T; set J; , = fix'd
and let 0: IZ(B) — IZ(B)/KZ(B) be the natural map.
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LEMMA. (a) IZ(B)/K2Z(B) = @®"_, ®cr 09: D andeach aé; ;D
is a simple right & (B)-module isomorphic to Dg g .
(b) soc(IZ(B)/KZ(B)) =®,; D, kod; ;.

Proof. Clearly 12/(B) = K (B)+Y_ fix'Z(B) . Also d;x; = x{*183
by induction on s and hence fix'dx; € fix'xi"'2(B) C K2 (B)
for all i. Therefore 06, , € soc(IZ(B)/KZ(B)). Since d; =
(—1)’s! mod MZ(B) we have fix'=Ad;, mod fix' MZ(B) where
A € k\ {0}. Using this, we can show by reverse induction on |
that ofix' € )2, ,06; D for all i,t. Hence 12(B)/KZ(B) =
>.i,109i D . Therefore soc(IZ(B)/KZ(B)) is spanned by {dd; /|
1 <i<p,teT;} and so [(soc(IZ(B)/KZ(B))) < >;|Ti|.
Corollary 3.4 we have equality, so the elements {gd; ;} are linearly
independent. This proves (b) and (a) follows from Lemma 3.3.

5.4. We indicate a method which may be used to calculate annp K
in some cases. By Corollary 3.1 we have D = Eg(B/M) as a B-
module. Also D can be regarded as a EM =k[[x;, ..., xn]]-module.
It is easily seen that annDK = annDI? where K = KEM Also if
I =1,Nn1I, are ideals of BM then annp I = annp I| +annp I, by [12
Theorem 5.21]. Let K= N K; be a primary decomposition in By .
It suffices to calculate annp K; for the primary ideals K; of By . We
give several examples.

(a) For any s > lannp M*t! = V}, the space of all polynomials
in 8,...,08, of degree at most s. Let n: B — E/M\ = k be the
natural map. For any M-primary ideal Q, choose s with M**1 C Q.
Define Q+ = {0 € V;|n(0(f)) =0 for f € Q}. Then (Ms+1)L =V,
and annp Q = Q1. This can be calculated simply using vector space
duality.

b)) If P=(xy,..., xm)EM, with m < n then as is easily verified,
annp P = k[0p41, ..., On].

(c) For other primary ideals K, annp K may be harder to calculate.
For example, let n =2 and K = (x} —xz)B Ifd= za,,alaz , then
d(x? - x3)xkxl = (k + 2 @y — k([ + 3)! ag;p3 mod M. Thus
annp K = {3 a,;;00)|(*3*)ay 21 = 3(’ tay,s forall I, k > 0}.

5.5. ExaMpLE. Let B = k[x;, x», x3], P = (x1, X2), M = (x,
Xy, x3), V=kxpxs+k(xixs+xt)+k(x}+x3), Q=M3+V, K=
PNQ and 4 = B/K. We compute Z(A4) in this case. In the notation
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of 42, I = P and I = P/K. We have chosen this example because 1
is a noncyclic indecomposable 4-module. We have P = kx; + kx; +
kx12+k.x1)C2+K. Let dy = (%10, —1)(x20,—1), d» = d;(x10,—-2) and
S = x32(k[x3]) + da2(x3k[05]1+ k[05]) € 2(B) . Then since 03(P) C P
and d,(P) C K it is easily checked that S(K) C K ; thus S induces
differential operators on A. Clearly S (or rather its image in 2 (4))
maps onto Z(A) = Z(k[x3]) under the map ¢: D (A) — Z(A). The
kernel of ¢ is A4(A4, T) whose socle is spanned by the images in 2 (A4)
of the elements x?, x;x;, x;d; and x,d;. Let D = k[0, 6,, 65]
and D' = annp K = annp P + annp O = k[03] + kb1 + kO + kD10, +
k(20,05 + 87 — 0}). Let T = x?D' + x3D' + x1d\D' + x,d,D'. Then

AyA,T)=(T +K2(B))/KZ(B) and
D(A) = (S+T+K2(B))/KZ(B).

6. A generalisation of Nakai’s conjecture. It seems reasonable to
conjecture that if 4 is a finitely generated algebra such that Z'(A4)
is generated by 2!(4) then A4 is a regular ring. If 4 = @(X) is
the coordinate ring of an irreducible variety X this is a well-known
conjecture of Nakai. It is known that Nakai’s conjecture holds when
X is a curve [9]. Also if 2(A4) is generated by 2!(4) then 4 is
reduced [11, Theorem 4.2]. Here we prove

THEOREM. Let A be a finitely generated k-algebra with dimA < 1.
If 2(A) is generated by 2'(A), then A is regular.

To prove this we need the following result which may be of inde-
pendent interest.

PROPOSITION. Let A be a finitely generated k-algebra with dim(A)
< 1. If gr(2(A)) is Noetherian, then Z(A) is a direct sum of simple
rings.

Proof. The proof in [15] for domains works with some small changes.
We sketch the argument. If gr(2(A4)) is Noetherian, then so is Z(4)
and hence A has an artinian quotient ring F by [11, Theorem A]. Let
B be a subalgebra of F such that B is a finitely generated A-module,
and B/N(B) is the integral closure of 4/N(A). We can assume that
dim(A4/Q) =1 for all minimal primes Q of A and similarly for B.
Therefore since 2 (B) is Morita equivalent to & (B/N(B)), Z(B)
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is a direct sum of simple Noetherian hereditary rings of infinite di-
mension over k. Now, consider P = {0 € Z(F)|0(B) C A}. Then
P contains a regular element ¢ of A, Pyp is a progenerator and
E = End(P) is Morita equivalent to 2 (B). We have

Pc(A) CcECI(F)

SO
gr(P) C gr(2(4)) C gr(E) C gr(Z(F)).

If 9(A) =FE, then 9(A) and Z(B/N(B)) are Morita equivalent
and the result follows. If 2(A4) # E, then J = PP (A4) is an ideal
of Z(A), which is a proper left ideal of E. As in [15] we have
dimy (gr(E)/ gr(J)) = oo and dimy(gr(2(4))/ gr(J)) < oo, so gr(E)
cannot be finitely generated as a gr(2(4))-module. However gr(E)
is isomorphic to cgr(E) which is an ideal of gr(Z(4)). So gr(Z(4))
is not Noetherian.

6.2. Proof of Theorem 6.1. If dim(4) <1 and Z(A) is generated
by 2!(A4), then A is reduced by [11]. Also gr(2(A4)) is finitely
generated, so by the Proposition, and Theorem B, A is a direct sum
of domains, so the result follows from the case where A is a domain,

[9].
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