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A Gauss parametrization of a minimal surface in R3 is well known.
We prove a generalization.

THEOREM A. Let U be an open set of SN(l) and f a function on
U such that

AsN{ι)f=-Nf

and 0 is an eigenvalue ofΉess/+/( , ) of multiplicity N—2, where
( , ) is the metric of SN{1) and ASN{1) is the Laplacian of SN(l).
Then the map of U into RN+ι defined by

(*) fη + grzdf

is of rank 2 and gives a minimal surface, where η is the identity map on
SN(l). Conversely, for a minimal surface M in RN+ι, a neighborhood
of each point of M without geodesic points has this representation.

If M is a complete orientable minimal surface of finite total curva-
ture, then there is a global representation (*) of M. Using this idea,
we obtain the following.

THEOREM B. Let M be a complete orientable minimal surface of
finite total curvature in RN+X. Then there exist a positive real number
c(N) depending on N such that

index(M) < c(JV) f(-K)*lM9

where K is the Gauss curvature of M and * 1 M is the area form of
M.

Theorem B gives an answer for an open question posed by Cheng
and Tysk in [CY1]. After this paper was submitted, the author learned
that Cheng and Tysk in [CT2] obtained a similar result as Theorem B
by using another Gauss map (generalized Gauss map).
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Finally we consider a generalization of minimal herissons [RT].
Γd like to thank Professors J. Eells, J. Rawnsley, M. Micallef and

K. Ohshika for their hospitality while visiting at the University of
Warwick.

2. Second variation formula. Let M be a minimal surface in i? i V + 1

and χ the immersion. Let U(M) be the unit normal bundle of the
normal bundle N(M). Then we define a Gauss map G of U(M) into
the iV-dimensional unit sphere SN(l) by G(x9 η) = η for (x, η) e
U{M). G induces a degenerate Riemannian metric of constant curva-
ture 1 on U(M). Let ζ be a section of N(M) with compact support.
Then a function Fξ on U(M) is defined by

where (x, η) G U{M). Let I(ζ, ζ) be the second variation of the
area functional in the direction of ξ. Then we get

PROPOSITION 2.1.

I(ξ,ξ) = ((N-l)/ω)J(\VFξ\
2 - NFξ

2)

where ω is the volume of SN 2(1) and *\u(M) is the volume form of
U(M).

This is well known in the case of N = 2.

Proof. Let x be a point of M and £α for a = 3, . . . , N + 1 be a
local orthonormal framing of N(M) such that

S/χea = 0 for all tangent vectors J a t x ,

where V-1 is the normal connection of N(M). Furthermore we may
consider that the second fundamental form Aη in the direction of η
is diagonal and given by

'λ 0
0 -λ,

Then we get G*(<?i) = -λe\, G*(^2) = ^ 2 and G*(C) = C, where
έ\, 2̂ ^Γ^ horizontal lifts of principal vectors e\, 2̂ at Λ: to the
tangent space of £/(M) at (x, η) and C is a normal vector with
(η, ζ) = 0 m Thus the induced metric is given by

ίλ2 \
λ2

1
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and the volume form is λ2 * \M * ^sN(i) Note that λ2 is (l/2)\Aη\
2.

Since
iιFζ = ̂ ξtη) and ζFξ = (ξ, ζ),

we have
\VFξ\

2 = ( (1/Λ) 2 Σ<V^, η)2) + \ζ\2-F2,

which implies

/ |V^|2 * \U(M) = f{\l2)\VFζ\
2\Aη\

2 * \M

Now we have the integral over the fibre at x as follows:

* V-(1)

f{\l2)\VF2\\A\

,|2|^|2-(l/2)M,|2if|*V-2(1).

When we put η = Σyaea, we have

* V-2(0

It follows from

that we obtain

and

f{l/2)\Aη\
2\ξγ

* ^s"-2^)

= {ω/2{N-\))\σ\2\ξ\2,

where hfj = {Aeei, ej) and |σ | 2 = Σ hfjhfj. On the other hand, since

J(l/2)\Aη\
2F2 *V- 2 ( 1 )

. 0}* ls w - 2 ( i )
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holds and we may consider e3 = ξ/\ξ\, by

3 ) 2 * V-( i) = (ω/(N+ l)(N-l))(δaβ + 2δ3aδ3β),

we obtain

{l/2)J\Aη\
2F**ls»->(ι)

= (ω/2(N+l)(N-l))\σ\2\ζ\2

where σ/; = J2h?iea Thus we have

, σij){ξ, σtjΫj * ίM- a

PROPOSITION 2.2. Let ξ be a normal vector field of N(M). Then ξ
is a Jacobi field if and only if

Δu{M)Fξ = -NFζ.

Proof, We fix a point (x, η) of U(M). Let 7(5) be a geodesic
with arc length parameter s such that y(0) = x . We denote by X
the tangent of γ(s) at x . Let e\ and ̂ 2 be the principal vectors
of Aη such that Aηe\ = λe\ and Aηe2 = -λei and e\(s) and ^2(5)
the parallel vector fields along γ(s) with respect to the connection of
T(M) such that e\ (0) = ex and ^(0) = e2 . Let ̂ α , a = 3, . . . , ̂ + 1
be an orthonormal basis of NX(M) and eα(s) the parallel vector fields
along γ(s) with respect to V 1 such that ea(0) = ^ α . We may set
e3(0) = η. Then (7(5), £3(5)) is the horizontal lift of y(s) through
(JC , η) in U(M). By the definition of G, we obtain

Let V be the covariant difFerentiation with respect to the degenerate
metric induced by G. Then we have

5)) = the component of [—dAe(S)γ*(s)/ds]s=Q

orthogonal to η.
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It follows that

%Λ0)%(s) = ((η, {Vχσ){X, eι))/λ)eι

-((η,(yxσ)(X,e2))/λ)e2

N-\ 2

- Σ Σ ^ ' σ(X> eκ))(ea,σ(X, eκ))a.
<*=4 k=\

It is easy to extend ea for a = 4, . . . , N - 1 to the vertical vector
fields ea on U(M) such that

%Ja = 0 at (*,»/).

Furthermore, for the horizontal lift Y of a vector field Y defined on
a neighborhood at x, we have

VέY = {{AeY,ex)lλ)ex - ((AeY, e2)/λ)e2 at (x, η).

Using these vector fields, we obtain the following for each point (x, η)
e U{M).

Hessi^ΛΓ, X) = (η, Hess£(X, X) + ̂ (σ(X, ek),ξ)σ(X, ek))

-Σ(η,σ{X,ek))2Fξ,

HessFξ(ea , ea) = -Fξ for a = 4, . . . , N - 1

Thus we have

Δu(M)Fξ = -(l/λ)2{η,J(ξ))-NFξ,

where / is the Jacobi operator of N(M). D

We know that χL — Σ(X> ea)ea is a Jacobi field, where χ is the
position vector of M . By the calculation as in Proposition 2.2, we
obtain

LEMMA 2.1. Hess F^- + Fχ ( , ) has an eigenvalue 0 of multiplicity
N - 2 at {x, η) e U(M) such that detAη φ 0.
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Now we may consider that F^- is locally a function on an open set

U of SN(l). Then we define a map of U into RN+ι such that

By a simple calculation, it is just χ. Conversely let / be an eigen-
function of eigenvalue N on an open set U in SN(l) such that the
eigenvalue of the Hess f + f{, ) has 0 of multiplicity N - 2. Then

fη + gradf

is a map of rank 2 and hence gives a minimal surface. Thus we obtain
a Gauss parametrization of a minimal surface in RN+ι.

As a generalization of Theorem A, we easily obtain the following.

PROPOSITION 2.3. Let U be an open set of SN(1) and f a function
on U such that Hess / + /( , ) has an eigenvalue 0 of multiplic-
ity N - m. Then fη + grad/ is a map of U into RN+ι of rank
m and furthermore gives an m-dimensional submanifold such that the
(m - l)st mean curvature vector vanishes. We call the representation
the Gauss parametrization by an eigenfunction. Conversely let M be
an m-dimensional submanifold in RN+l such that the (m-l)st mean
curvature vector vanishes, then a neighborhood of each point such that
detAη Φ 0 for some normal vector η the Gauss parametrization by an
eigenfunction.

REMARK. In [DG], similar constructions are presented.

COROLLARY 2.1. Let M be a complex m-dimensional Kaehler sub-
manifold in CN+ι. Then a neighborhood of each point such that
detAη Φ 0 for some normal vector η admits the Gauss parametri-
zation by an eigenfunction.

Proof. It is well known that the (2m - l)st mean curvature vector
vanishes on M.

Let M be a minimal surface in RN+ι and ζ a Jacobi field. Then
Proposition 2.2 implies that Fξ is an eigenfunction of eigenvalue N.
We define the rank γζ of Jacobi field by N - μ, where μ is the_
multiplicity of eigenvalue 0 of

By Proposition 2.3, we have a jξ-dimensional submanifold with zero
(γξ - l)st mean curvature vector. For example, let M be a minimal
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surface in R3. Then γξ = 0 or 2 holds for a Jacobi field ξ and if
γζ = 2 holds, then we obtain a minimal surface

which gives a minimal deformation of Λf - {geodesic points} whose
normal variation vector field is ξ. In fact

is a one parameter family of minimal surfaces, where χ is the immer-
sion of M into R3.

Next let M be a minimal surface in i?4 and £ a Jacobi field. Then
γζ is 0, 2 or 3. In the case of γξ = 3, we have a hypersurface of zero
second mean curvature in R4, which implies zero scalar curvature.
Thus the first given minimal surface is a limit of deformation of hy-
persurfaces of zero scalar curvature in R4 .

3. The index of minimal surfaces. Let M be a complete orientable
minimal surface of finite total curvature in RN+ι. Then there exists a
compact orientable Riemann surface M and finite points p\, . . . , pq

G M such that M is conformally equivalent to M-{p\, . . . , pq} and
the generalized Gauss map of M into Gι(RN+x) is extendable over
Λf. Let L be the tautological vector bundle over G2{RN+X) with rank
N - 1. Then the restriction of the induced bundle over Λf to M is
the normal bundle iV(Af). So the unit sphere bundle U(M) over M
gives a compactification of U(M) such that the ends are fibres at pi.
It is clear that the map G is extendable on U(M) and we denote by
G the map. Note that G is real analytic.

LEMMA 3.1. The degenerate set S for G is an analytic set ofcodi-
mension > 2 if M is not in some R?.

Proof. It is clear that S is an analytic set. Assume that S has an
open set of U(M). Then as analytic function \Aη\

2 on U(M) is zero
on some open set, which implies that M is plane. Assume that S has
codimension 1. Then we note that the rank of θ\s is 1 or 2, where
θ is the projection of U(M) onto M. If the rank is 2, there is an
open set U of M such that each fibre at x e U has an (N - 3)-
dimensional submanifold where \Aη\ = 0. For each x e U, we have
an orthonormal basis e^, . . . , e^+\ such that, for all a > 5,

) Λ ) A e ° -
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and hence, for any unit normal vector η = ae$+be$+ others, det Aη =
0 holds if and only if a2λ2 + b2μ2 = 0, which implies that if λ φ 0
and μφO, then the set where d e t ^ = 0 is an (N - 4)-dimensional
sphere. It is a contradiction and hence λ or μ = 0, which implies the
first normal space on U is at most 1-dimensional. It is easy to see
that M is in some R3. Next assume that the rank of θ\s is 1. Then,
on the image Θ(S), the second fundamental form of M vanishes.
On the other hand, it is well known that totally geodesic points are
isolated. It is contradiction. D

By the result in [H], we can have a stratification of S such that if
a stratum T satisfies TnS Φ 0 , then S D T. So ~G(S) has a strat-
ification and G~ (G(S)) is a sum of finite stratums of codimension
> 2. By a simple argument, we get

LEMMA 3.2.

G: U(M)\G~l(G(S)) -+ SN(1)\G(S)

is a k-sheeted covering map, where k is the total curvature of Mjlπ.

From Proposition 2.1, we obtain the following:

index(M) < the number of eigenvalues of Δ ^ , ^ that are

strictly less than N.

Let {λi}Jl0 and {μ/}^0 ^ e eigenvalues of ASNW and Av^ , respec-
tively. A theorem in [5], together with Lemma 3.2 implies

Thus we conclude that

(index(M))e-Nt <
μ,<N

Hence
index(M) < eNt

Note that if M is not in some R3, then c(N) is given by

4. A generalization of minimal herissons. Recently Rosenberg and
Toubiana [RT] give some results on complete minimal finite branched
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surfaces in i?3 of finite total curvature 4π, which are called minimal
herissons and parametrized by their Gauss image.

Let M be an m-dimensional submanifold of zero (m— l)st mean
curvature vector in RN+ι. We consider the following condition (**).

(**) There exist finite stratum S of U(M) and S' of SN{\)
such that codimensions of elements of S and S1 > 2
and
G:U(M)\S^SN(l)\Sf

is a k-sheeted covering.

Let 9Jΐ denote the space of m (2 < m < TV)-dimensional submani-
folds of zero (m — l)st mean curvature vector in RN+ι which satisfy
(**). Following as in [RT], we can define a sum operation in Wl:

G-2 \z) = {yi}, where z e SN(l)\S\ U

where G\ and Gi are the Gauss map of M\ and Mi, respectively
and S[ and S'2 satisfy (**) for G\ and Gι. Note that the equality
of dimensions of M\ and M^ is not necessary. This operation may
be considered as follows: for z e 5'Λ'(1)\5<'1 U ^ , we define a function
/by

where χ\ and X2 are immersions of M\ and Mi into RN+ι, respec-
tively. It is clear that

ASN(i)f=-Nf

on U = SN(l)\S[ uSf

2 and hence / is analytic on U. By the analytic-
ity of / on U, the multiplicity of the eigenvalue 0 of Hess/+/( , )
is constant TV - m on some open dense set of U. Thus we get an
m-dimensional submanifold of zero (m - l)st mean curvature vector
in RN+ι which gives M1+M2.

PROPOSITION 4.1. Assume that M\ + Mi is of dimension m. Then
M\ +M2 is of zero (m- l)st mean curvature vector and parametrized
by Gauss image. In particular, the total absolute curvature is the volume
ofSN{\).

REMARK. The study of / which satisfies AsN^f = -Nf has a re-
lation to TV-dimensional space-like minimal submanifolds of constant
curvature 1 in an (N + 2)-dimensional deSitter space time [K].
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In [N], Nayatani proves that, if M be a complete orientable mini-
mal surface of finite total curvature, then M has a finite index. But it
does not imply the existence of c(N).
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