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Denote by X° ! the space of all continuous maps from the circle
into a simply connected finite CW complex, X . THEOREM: Let k
be a field and suppose that either chark > dim X or that X is k-

formal. Then the betti numbers b, = dim H,(X ; k) are uniformly
bounded above if and only if the k-algebra H*(X; k) is generated
by a single cohomology class. CorROLLARY: If, in addition, X is a
smooth closed manifold and k is as in the theorem, and if H*(X ; k)
is not generated by a single class then X has infinitely many distinct
closed geodesics in any Riemannian metric.

1. Introduction. In this paper (co)homology is always singular and
be(—; k) = dim Hy;(—; k) denotes the qth betti number with respect
to a field k. The free loop space, X° l , of a simply connected space,
X, 1s the space of all continuous maps from the circle into X .

The study of the homology of X S' is motivated by the following
result of Gromoll and Meyer:

THEOREM [16]. Assume that X is a simply connected, closed smooth
manifold, and that for some field k the betti numbers by(X st k) are
unbounded. Then X has infinitely many distinct closed geodesics in
any Riemannian metric.

(The proof in [16] is for k = R, but the arguments work in general.)

The Gromoll-Meyer theorem raises the problem of finding simple
criteria on a topological space X which imply that the b,(X s' k)
are unbounded for some k. This problem was solved for k = Q by
Sullivan and Vigué-Poirrier [28]. They considered simply connected
spaces X such that dim H*(X; Q) was finite, and they showed that
then the by(X5 ' ; Q) were unbounded if and only if the cohomology
algebra H*(X ; Q) was not generated by a single class. And they drew
the obvious corollary following from the Gromoll-Meyer theorem.
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It is generally conjectured that the same phenomenon should hold
in any characteristic; explicitly:

Conjecture. Suppose X is simply connected and, for some field k,
H*(X; k) is finite dimensional. Then the b,(X5 ; k) are unbounded
if and only if the k-algebra H*(X ; k) is not generated by a single
class.

One direction of the conjecture is trivial:

REMARK. If H*(X; k) is generated by a single class then the

by(X s ; k) are uniformly bounded. Indeed, consider the Eilenberg-
Moore spectral sequence [12], [25] for the fibre square

xS — x!

l l” . nf=(f(0), f(1)), Ax=(x, x).
X TXXX

It converges from Tor’®¥(H 6 H) to H*(XS ;k), where H =
H*(X; k) is considered as a module over H® H via (a® B) -y =
(_1)degﬂdegyaﬂy .

Now if H is generated by a single class then it is easy to compute
Tor™H (H | H) explicitly and to see that b, (XS ;k)<2,all ¢. O

In this paper we establish the conjecture under an additional hy-
pothesis; in particular we prove it for any X if H'(X;k) =0 for all
i > chark. It was already known in some cases: for instance it was
shown by L. Smith [26] in characteristic two when H*(X; Z;) has
the form Q); Z[x;] /x;" and Sq! = 0. And McCleary and Ziller [20]
and Ziller [30] have proved it for homogeneous spaces in all charac-
teristics. Results have also been obtained by Anick [4] and Roos [24].
And McCleary [19] has established a weaker form of the conjecture: if
QX denotes the classical loop space of based maps S! — X then the
bs(QX ; k) are unbounded if and only if H*(X; k) is not generated
by a single class.

To state our theorem we first set (for a given field k)

ry +1 =inf{i > 2|H'(X; k) # 0} and
ny = sup{i|H'(X ; k) # 0} .

Then we have
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THEOREM 1. Let X be a simply connected space and let k be a field
such that H*(X ; k) is finite dimensional. Then the conjecture holds
for X and for k if either:

(A) chark > ny/ry or (B) X is k-formal ([3], [13]).
The Gromoll-Meyer theorem then implies the

COROLLARY. Let X be a simply connected closed manifold and let
p > 0 be a prime. If H*(X ; Z,) is not generated by a single class,
and if either p > ny/ry or X is p-formal then X has infinitely many
distinct closed geodesics in any Riemannian metric.

The definition of k-formal will be recalled in §3. Here we limit
ourselves to giving:

Examples of k-formal spaces. The class of k-formal spaces includes
suspensions, and those spaces X for which H;(X; k) is zero if i
is outside an interval of the form [k + 1, 3k + 1], and this class is
closed under products and wedges—for all this see [3]. Manifolds
X are k-formal if H;(X; k) is zero outside an interval of the form
[k+1, 4k+2] ([13]) if chark # 2, 3. And if X is a simply connected
finite complex such that H;(X, k) is zero outside an interval of the
form [k+ 1, 2k] then the boundary of a regular neighbourhood of X
(embedded in a large RV) is a k-formal manifold. ]

We turn now to the proof of Theorem I, which we shall outline here,
the details following in §§2, 3, 4. We work henceforth over a fixed field
k and denote @, and Hom, simply by @ and Hom. The tensor
algebra on a vector space, V', is denoted by 7T(V). We adopt the
convention “V* = V_,” to raise and lower degrees in graded vector
spaces, V' ; in a differential graded vector space (DGV) the differen-
tial maps V; — Vi_, (and hence V* — Vk+l)  Differential graded
algebras are called DGA’s and a DGA morphism which induces an
isomorphism of cohomology is called a DGA quism and denoted by

~

—_

Recall now that the Hochschild homology HH.(A) of an algebra,
A, is given by HH,(A4) = Tor?®4 l”)(A ,A). If 4 is a DGA we shall
use the same terminology:

HH, (4) = Tor*®4™ (4, 4)
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denotes the Hochschild homology of A, where now Tor is the differ-
ential tor of Eilenberg-Moore [21]. When we want to emphasize that
we are in the DGA case we write HH.(A4, d). (Some authors call this
Hochschild hyperhomology.)

The starting point for the proof of Theorem I is a result of Burghelea-
Fiedorowicz [8] and Cohen [11] which asserts that

(1.1) H.(XS ; k) = HH.(C.(QX ; k), d),

where C.(QX ; k) is the DGA of singular chains on the Moore loop
space of X. Thus if (T(V),d) = (C.(QX;k), d) is an Adams-
Hilton model [2] for X then we have

(1.2) H.(XS ;%) = HH.(T(V), d),

because DGA quisms induce isomorphisms of Hochschild homology,
as follows from the Eilenberg-Moore comparison theorem [21; Theo-
rem 2.3].

Let (Q*, d) be the DGA obtained by dualizing the bar construc-
tion on (7T(V), d)—we recall the definition in §2. The main result
(Theorem II) of §2 will show that

(1.3) HH*(Q*, d) = Hom(HH.(T(V), d), k).

In §3, on the other hand, we observe that either of conditions (A)
and (B) gives a DGA quism (Q*,d) — (A4, d), where (4,d) is
a commutative differential graded algebra (CDGA). In the case of
condition (A) this follows from a deep theorem of Anick [4]; in the
case of condition (B) it is a consequence of one of the equivalent
definitions of k-formal ([3], [13]). In either case we again apply the
comparison theorem of [21] to obtain

(1.4) HH*(Q*, d) = HH*(4, d).
The isomorphisms (1.1), (1.2), (1.3) and (1.4) combine to yield
(1.5) H*(XS ; k) = HH*(4, d).

As we note in §3, the CDGA (A4, d) satisfies H(4) = H*(X; k).

Indeed when X is k-formal (4,d) = (H*(X;k),0) and so (1.5)

becomes . '
H*(X® ; k) = HH*(H*(X ; k) ,

in this case. This answers a question of Anick [3] in positive char-

acteristic; in characteristic zero it has been proved by Vigué-Poirrier
[29] and Anick [3].
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The last step in the proof of Theorem I is the proof, in §4 of

THEOREM III. Let (A,d) be a CDGA such that H<O(4) = 0,
H%A) = kx, HY(A) = 0 and H(A) is finite dimensional. Then the
integers b, = dimHHY(A4, d) are unbounded if and only if H(A) is
not generated by a single class.

The proof of Theorem III follows the lines of the proof in [28] when
k = Q via the construction of a Sullivan model for (4, d), but with
additions and modifications to cover the problems caused by positive
characteristic.

2. Hochschild homology. In this section we prove a result which
implies (1.3), namely

THEOREM II. Suppose (R, d) is an augmented DGA such that
H_o(R) = 0, Hy(R) = k and each H;(R) is finite dimensional. If
(Q*(R), d) is the DGA dual to the bar construction on (R, d) then

HH*(Q*(R), d) = Hom(HH, (R, d), k).

Before starting the proof, however, we recall some definitions and
facts from or about:

(a) differential homological algebra, (b), the opposite of a DGA, (c)
differential coalgebras and comodules and (d) bar constructions.

(a) Differential homological algebra ([21], [5], [14]). An (R, d)-
module is a DGV, (V, d), together with an R-module structure on
V such that d(r-v) = dr-v + (=1)%"r . dv. It is semi-free if it
is the increasing union of submodules V' (0) C V(1) C --- such that
V' (0) and each V(i + 1)/V (i) is R-free on a basis of cycles. For any
(R, d)-module, (M, d) there is a morphism ¢: (V,d) — (M, d)
from a semi-free module (7', d) such that H(¢) is an isomorphism,;
such a morphism is called a semi-free resolution of (M, d). Given
any such resolution and any second (R, d)-module, (N, d), we have

TorR(M, N) = H(V @ N).

(b) The opposite DGA. The opposite DGA, (R°PP, d), has the same
underlying differential graded vector space as (R, d), but the product
“o” is given by: r o ¥ = (—1)derdeery/y  The enveloping DGA
(R¢, d), is then defined by (R¢, d) = (R, d)® (R°PP, d) so that

(ry ® 1) (r3 @ rq) = (—1)%8nARn+dL ) p 3 @ ryry .
Notice that multiplication makes (R, d) into a left (R¢, d)-module:
(ry®ry) - r=(—1)d¢&rdeery rp, . similarly we can make (R, d) into a
right (R¢, d)-module.
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(c) Differential comodules [21, §6). A comodule over a differential
graded coalgebra (DGC), (C, d) is a DGV, (W, d), together with
a DGV morphism (W,d) - (W,d)® (C,d) which makes W
into a graded C-comodule. If (W, d) is also an (R, d)-module via
a: (R,d)®(W,d)— (W, d) then these structures are compatible if
y is an R-module map (equivalently « is a C-comodule map).

If M and N are respectively a right and left (C, d)-comodule then
their cotensor product, M O N is the kernel of the DGV morphism
MR -1)v: MON > M®C®N. If M has a compatible left
(R, d)-module structure and if Q is any right (R, d)-module then a
natural DGV map

(2.1) w: QRr(MOcN)—> (Q®r M)Oc N

is constructed as follows:

Observe that M O N isasub (R, d)-module of M®N , so that the
inclusion induces ¢: Q®gr (M Oc N) —» Q®r (M ® N). Since clearly
Y0e,M®1—1®yy vanishes on Im ¢, we have Im¢ C (QRrM)Oc N,
and so (2.2) is defined by ¢.

(d) Bar constructions. Denote the augmentation ideal of R by R
and define a graded vector space sR by (sR), = R,_;. The bar
construction ([21], [29]) on (R, d), denoted by (BR, J), is the DGC
defined (modulo signs) by: BR is the tensor coalgebra on sR (as
usual s7| @ --- @ sr, is written [sry|---|sr;]) and

n
Slsril---|sral = Y £lsn|---|sdri| -+ |sra]
i=1

n—1
+ Y sry| - Is(ririe)] - Isra).
i=1

The dual DGA, Hom((BR, d); k), is denoted by (Q*(R), d).
From the bar construction one builds the classic acyclic construction
(R®BR,V) givenby V=d®1+1®3J +t with

T(rQ[sry|---|srn]) = xrry @ [sra| - - |sra].

It is in an obvious way a left (R, d)-module and a right (BR, d)-
comodule. Finally, we have the two-sided bar construction (R BR®
RoPP D) with D=d®1®1+19601+1®1®d+6, and

O(r@[sri|---|sm]@r)= £rr @[sr| - |sr]® "
£rQ[sr| - |sra_1]® rar’.
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It is straightforward ([21; §6]) that the augmentation &: BR — k, to-
gether with the multiplication map R® R°P? — R defines an (R¢, d)-
semi-free resolution (R® BR® R°’?, D) — (R, d). Thus

(2.2). H(R ®g (R ® BR® R%)) = Tor®®*” (R, R) = HH.(R, d),

and indeed this was the original definition of Hochschild homology.

These constructions may also be applied to (R°PP, d) to yield the
DGC (B(R°P?, d), 6) and the acyclic construction (R°PP® B(RO°PP),
V). Moreover a DGC isomorphism, w: (B(R°PP), §)— ((BR)°PP, §),
onto the opposite DGC is defined by

wlsri|---|sra]l = (=1)¥[sra| -+ Isr1], k=) _(degsr;)(degsr;).
i<j

Thus 1 ® w converts (R°PP @ B(R°PP), V) into a DGV, (R°PP ®
(BR)°PP | V'), which is both an (R°PP | d)-module and an ((BR°PP, §)-
comodule.

We come now to the

Proof of Theorem 1I. As in [6] there is DGA quism of the form
(T(V),d) — (R, d) with v; =0, i <0, and each V; finite dimen-
sional. By the Eilenberg-Moore comparison theorem [21; Theorem

2.3] Q* preserves quisms and HH* converts quisms to isomorphisms.
We may thus replace (R, d) by (T(V), d) and assume that

(2.3) R = R5(, Ry =k and each R; is finite dimensional.
Now let ((BR)¢, d) denote the DGC (BR, J) ® ((BR)°PP, §) and

set
M(R)=(R®BRQR® @ (BR)®®, V®1+1@V').

Evidently M(R) has compatible left (R°, d)-module and right
((BR)¢, 6)-comodule structures. Moreover, we have
LEMMA 2.4. For any right (R°,d)-module, Q, and any left
((BR)¢, 0)-comodule N the natural DGV map
w: Q ®pe (M(R)Oggy N) — (Q ®r M(R))Opry N
is an isomorphism.
Proof of (2.4). We may ignore differentials and write M(R) = R ®

(BR)¢. The standard isomorphism (BR)*Uggye N = N gives an
1somorphism

(2.5) M(R)Oppe NERC@N
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of R® modules. Analogously, we have a (BR)¢-comodule isomor-
phism

(2.6) Q®r M(R)=Q® (BR)".
Using (2.5) and (2.6) one easily identifies @ with the identity of
O®N. 0

We apply Lemma 2.4 with Q = (R,d) and N = (BR, J), the
module (resp., comodule) structures being defined by multiplication
(resp., comultiplication) as described in (b) above. Notice that (2.5)
becomes

M(R)Ogry BR= R°® BR= R® BR® R%;

according to [17; Lemma 2.01] the differential induced thereby in R®
BR ® R°PP is that of the two-sided bar construction. Thus (cf. (2.2))

H(R ®g (M(R)O gy BR)) = Tor®®%™ (R, R).

For simplicity denote the graded dual of a graded vector space by
V# = Hom(V, k). Thus (Q*(R), d) = (BR, 6)*. Because of our as-
sumption (2.3) both R and BR are concentrated in degrees > 0, and
are finite dimensional in each degree. For such spaces # commutes

with ® so that, for instance, ([Q*(R)]¢, d) = ((BR)¢, 6)*. Thus we
deduce from Lemma 2.4 that

(2.7) HH.(R, d)* = H*{[(R ®g M(R)) O gy BRI"}.
Write ¥ = [R®g M(R)]*. We shall show that Y isan (Q*(R)¢, d)
semi-free resolution of Q*(R). Since
[(R®g M(R))Opry BRI" = Y ®q+(ry Q*(R),

it will then follow from (2.7) that HH.(R, d)* = HH*(Q*(R), d), as
desired.

That Y is (Q*(R)¢, d)-semi-free can be seen by filtering it by the
spaces F; of functions vanishing on [R>; + d(R;)] ®g M(R). And
a homology isomorphism Y — Q*(R) of (Q*(R)¢, d)-modules is de-
fined by dualizing the diagonal BR — BR® BR, regarded as a map

BR - 1®(BR)° C RQge M(R).

3. Reduction to the commutative case. Let

(T(V), d) = (C.(QX ; k), d)

be an Adams-Hilton model [2] for a space X satisfying the conditiéms
of the conjecture, and denote the dual of the bar construction on
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(T(V),d) by (Q*, d). In this section we prove

ProrosiTION 3.1. If X satisfies condition (A) or condition (B) of
Theorem 1 then there is a DGA quism (Q*,d) — (A, d) with (A, d)
a CDGA and H(A) = H*(X; k). If condition (B) holds, (A, d) =
(H*(X; k), 0).

Proof. The main result of [4] asserts that if (A) holds then the dif-
ferential in the Adams-Hilton model may be chosen so as to map V'
into the sub Lie algebra L C T(V) generated by V. This identifies
(T(V), d) as the universal enveloping algebra, U(L, d) of the DGL
(differential graded Lie algebra) (L, d).

Recall that the bar construction is a tensor coalgebra, and in partic-
ular contains the sub-coalgebra, .S, of symmetric (in the graded sense)
tensors. In particular, we have S(sL) C S(s(UL,)) ¢ B(UL). As in
the case of characteristic zero ([23; Appendix B], [10]), S(sL) is a
sub DGC of B(UL) and the inclusion S(sL) — B(UL) is a homol-
ogy isomorphism [22]. Dualizing this gives a quism from (Q*, d) to
the CDGA S(sL)*. On the other hand [1] (C.(QX; k), d) is con-
nected by DGA quisms to the cobar construction on (C.(X; k), d),
and hence to Q*(C*(X; k), d). Thus Q*(T'(V), d) is connected by
quisms to Q*Q*(C*(X; k), d), and so by [21; Theorem 6.2] we have
HA)=HQT(V),d)=H*(X;k).

Now suppose X satisfies condition (B); i.e., X is k-formal. One
of the equivalent definitions of this is ([3], [13]) that X have an
Adams-Hilton model which is the dual of the bar construction
on H*(X;k): (T(V),d) = Q*(H*(X;k),0). Thus (Q*,d) =
Q*(Q*(H*(X ; k), 0)) and by [21; Theorem 6.2] this maps by a quism
to (H*(X; k), 0): (Q*,d) — (H*(X;k), 0).

4. The commutative case. In this section we prove

TueoreM III. Let (A,d) be a CDGA such that H<°(4) = 0,
H%(A) =k, H'(A) = 0 and H(A) is finite dimensional. Then the
integers by = dAim HHY(A, d) are unbounded if and only if H(A) is
not generated by a single class.

Proof. As in the rational case ([27], [7], [18]) it is straightforward
to construct a DGA quism of the form

(AV,d) = (4, D)
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in which: ¥V = V'2? is a graded vector space, AV = exterior algebra
(Vodd)® symmetric algebra (V¢'*") and Imd c (AV)* - (AV)*. Us-
ing the Eilenberg-Moore comparison theorem [21; Theorem 2.3] we
replace (4, d) by (AV,d).

The same argument as given in [28] for k = Q now establishes

LEMMA 4.1. The algebra H(AV) is generated by a single class if
and only if dimVe°d < 1.

If, moreover, H(AV') is generated by a single class then the hy-
pothesis dim H(AV) < oo implies, in view of (4.1) that the only
possibilities for (AV,d) are: V =0, V = (x) with degx odd, or
V = (x,y) with dy = x* and degy odd. In all these cases there is
an obvious quism (AV,d) — (H(AV), 0), which induces an iso-
morphism of Hochschild homology. Now a direct calculation shows
dimHH?Y(H(AV), 0) <2 forall q.

It remains to show that the HHY(AV , d) have unbounded dimen-
sions if dim V4 > 2 Recall that sV is the graded space given by
(V)41 = Vi; thus (sV)k = Vk+1 | Denote by I'(sV) the free di-
vided powers algebra on sV, [9], and denote the ith divided power
of sx by pi(sx).

Consider the multiplication homomorphism,

¢ (AV,d)® (AV,d)— (AV,d).
According to [15; Proposition 1.9], ¢ extends to a DGA quism of the
form

(4.2) ¢: (AV @AV ®T(sV), D) = (AV, d)
in which

(4.3) p(I(sV)*) =0,

(4.4) ImD c (AV®AV)* @T(sV) and
(4.5) D(yi(sx)) = D(sx) - yi-1(sX).

For ease of notation denote the algebra AVQAVQI'(sV) by Z(V),
and for ® € AV write ¥ =PR1®1 and ®"=19P® 1. Then
the model (4.2) also satisfies:

(4.6) For xeV", Dsx—(x'—-x")eXZ(V<").
Now choose abasis X, X2, ..., Xm, Vs Xmils -+ Xis ... in Which
degx; <---<degx, <degy <---<degx; <---, and y is the first

basis element of odd degree. (All other basis elements are denoted: by
Xj,some j.) ’
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LEMMA 4.7. The differential D in (V') can be chosen so that Dsy—
V' =y") e Z(x1,...,xm) and for all i, Dsx; — (x; — x]') is in the
ideal generated by the x;- , x}’ and T'(sx;)*, j<i.

Proof. D is constructed inductively on #; if it has already been
defined in s(V'<") then there is always a linear map of degree zero,
f: Vvl S Z(VS") nker ¢

such that dv’' — dv”" — Df(v) = 0 and given any such f, D may be
extended to X(V'<"*1) by setting

D(sv) =v' —v" - f(v), vepyrtt,
Now notice that because V! = 0 and Imd c (AV)* - (AV)* it

follows that dy € A(x;, ..., Xm) and dx; is in the ideal generated
by the x;, j < i. Moreover, that Dsy — (y' —y") € Z(x1, ..., Xm)
is immediate from (4.6) as is Dsx; — (x} — x]) € Z(xy, ..., x;—1) for
i<m.

Suppose then that the lemma is proved for some x;, ..., x;, [ >
m. Let I CZ(xy,...,Xm,Y,...,X;) be the ideal generated by the
Z(xj)*, j<1i. Since

dx;je A" (x1,y, ..., xj-1) AT(X1, ..., ¥, oo, Xjo1)

it follows from our induction hypothesis on Dsx; and from (4.5)
that D maps [ to itself. Dividing by / gives us a CDGA of the form
(Z(y), D) and a commutative diagram of CDGA morphisms

(Z(XLs eevs Vyenes Xi), D) —z—> (AX1s eees Vyenns xi), d)
I I
(Zy, D) —:—» (Ay, 0)
in which
¢(y') =9o(0") =y, #(yi(sy)) =0 and

D(yi(sy)) = (V' = ¥")vi-1(sy).
As described at the start of the proof, there is always an element

weX(xy,...,¥,..., xj)Nker¢ such that dxj, , —dx/ ,—Dw =0,
and D may be extended to X(x;,..., X;y1) by setting Dsx;,; =
X, —Xi, —w. And for any such w,

Dpw = pDw = pldxf,; — dxly) = 0,
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since dxj, , and dxj | arein I. Moreover ¢pw = ppw = 0. Since
o: (2y, D) — (Ay, 0) is a surjective quism it follows that pw = Du,
some u € keropny.

Regard u as an element of ker¢ N Z(x;, ..., y, x;) via the inclu-
sion of Xy. Then p(w — Du) 0, ¢(w Du) = Dgpu = 0 and

so we may define Dsx;. = xj,| — X,; —w + Du. Now we have
p(w — Du) = pw — Du = 0 and so Dsx; — (x},, —x/',) €1, as
desired. O

We now return to the proof of Theorem III. It follows from (4.5)
and (4.6) that the quism ¢: (AV QAV QI'(sV), D) — (AV,d) isa
(AV, d)® (AV, d)-semi-free resolution. Hence

HH*(AV, d) = HAV®pony (AVRAVRI(sV))) = HAVSI(sV)).

Denote the differential in AV ® I'(sV) by 6. Lemma 4.7 shows
that J(sx;) is in the ideal generated by the x; and I'(sx;), j < i.
Let z = x,41 (n > m) be the first x; of odd degree and divide
AV @ I'(sV) by the ideal generated by the x;, j < n.

This produces a CDGA of the form (A(y, z, Xp42, ... )QL(sV), 6).
The same argument as given in [28] shows that if this CDGA has un-
bounded betti numbers then so does (AV ® I'(sV), d), as desired.
But by Lemma 4.7, dsx; is in the ideal generated by sxi, ..., SXj_|,
for i < n. Moreover I'(sx;) =the exterior algebra A(sx;) because
degsx; is odd. Hence sx; A--- Asx, is a cycle.

And since d(sy) and J(sz) are also in the ideal generated by
SX1, ..., 58X, it follows from (4.5) that the elements sx; A---Asx, A
7i(sy) Ayj(sz) are all d-cycles. Under the projection AV @ I'(sV) —
I'(sV) these elements map to linearly independent homology classes,
since the differential included in I'(sV) is zero, by (4.4). Thus they
represent linearly independent classes in H(A(y, z, ...)®L(sV), d),
and hence the betti numbers of (A(y, z,...)®I(sV), é) are indeed
unbounded. O
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