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A periodic (in ¢) free boundary problem for the one-dimensional
heat equation is examined. The existence and regularity of the
(unique) solution is established and the geometry of the free boundary
is shown to be no more complicated than the geometry of the fixed

boundary.

0. Introduction. Free boundary problems (and moving boundary
problems) arise in a large variety of contexts and have been studied
for over one hundred years. There is an extensive literature on many
aspects of free boundary problems including the existence, uniqueness,
regularity, and stability of solutions and the qualitative properties of
the free boundary ([14], [18]). Many applications, especially to con-
tinuum mechanics, have been considered since the work in the 1860’s
of Helmholtz and of Kirchhoff on fluid jets and of Neuman on the
Stefan problem ([9], [10], [12], [15], [17], [27], [30]). In addition, the
approximation of solutions and of free boundaries using numerical
methods is well established (e.g. [16]).

Among parabolic problems, Stefan problems have generated a great
deal of interest and an extensive literature (e.g. [11], [30]). We will
examine a periodic free boundary problem for the one-dimensional
heat equation which might be considered as a free boundary prob-
lem of Stefan type ([32]) in which the known (or “fixed”) boundary
varies periodically in time and the free boundary is determined by a
prescribed flux condition (rather than a phase-change condition). In
addition, this can be viewed as a model for certain processes involv-
ing chemical reactions. Alternatively, our problem might be viewed
as a model problem in which techniques which have proven useful for
certain elliptic free boundary problems (e.g. [1], [2], [S]) are applied
to a particular parabolic problem.

We will use a trial-free-boundary approach based on an operator
method to establish the existence of a solution to our free boundary
problem. Trial-free-boundary methods have been used for over 70
years with success, as illustrated, for example, by the work of Cryer
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208 ANDREW ACKER AND KIRK LANCASTER

([16]). Our solution will be obtained as the limit of the fixed points
of a sequence of contracting operators (similar to [2]) and the trial-
free-boundary method based on this limiting process can be shown to
converge (albeit slowly) to a solution as in [5].

An alternative approach for establishing the existence of a solution
is to use a variational method. A natural functional to minimize in
this case is the sum of the area and the heat flow (over one period).
However, a minimizer of this functional does not lead to a solution
of our problems. While another variational approach might be suc-
cessful, we are unaware of an existence proof for our problem based
on variational methods.

We will establish the regularity and, using (a variant of) the Lavren-
tiev principle, the uniqueness of the solution. We will then examine
geometric properties of the free boundary. For certain harmonic or
minimal surface free boundary problems, curves of constant gradient
direction have been used to relate geometric properties of the free
boundary to geometric properties of the fixed boundary (e.g. [4], [6]);
these curves are related to the “nodal lines” of the Courant nodal line
theorem ([13]) as well as to later work (e.g. [20], [25], [28]). We will
use such curves to prove that the geometry of the free boundary is
no more complicated than the geometry of the fixed boundary. To
the best of our knowledge, the only previous application of this idea
to parabolic free boundary problems is in the work of Friedman and
Jensen ([19]).

1. Preliminaries. Given periodic functions X*(¢) and X(z) with
period 7 and, say, X () > X*(¢) for each ¢ € R, let us denote
I' ={(X*(), 1) :teR},
I'={(X(t),t):teR}, and
Q={x,): X*"t)<x<X(t), teR}.
Let us define U = U™, T) € CHQ) N CYQ) to be the t-periodic
(in ¢) solution of the Dirichlet problem
Ut = U_x_x in Q )
Uux*(t),t) =1 teNR,
UX(),t)=0 teR.
We are interested in the following

Free Boundary Problem. Given I'* as above, find I" (as above) such
that if U = U™, T) then Uy € CO(QUT) and Uy(X(t),t) = 1.
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We will prove that if X*(¢) is Lipschitz continuous, then the free
boundary problem above has a solution I' = {(X(¢), ) : t € R} with
X(t) Lipschitz continuous, this solution is unique, and the “geometry”
of I" is no more complicated than that of I'*.

2. Existence. Suppose X*(¢) is a 7-periodic, Lipschitz continuous
function with Lipschitz constant a. Let K = K(a, 7) denote the
set of 7-periodic, Lipschitz continuous functions X () with Lipschitz
constant a such that X(¢) > X*(¢) for t € R.

NOTATION. At times, we will write I' € K if ' = Z(X) and X € KX,
where

(X)) = {(X(1), t): teR).

For X;, X, € K (resp. I, I, € K with I'y =2(Xy), k=1, 2), we
define the form

X1 — Xl = [Ty — 2| = max{|X,(2) - Xa(1)] : ¢ € R}

Forany X €K, e€ (0, 1), and I'=2(X), let

(x,t): Ux,t)y=¢, te R},
(x+e,t): (x,t)eTl}, and
R ACAIR

{
{

(T)
()
Te(T)

where U = U(I'™*, T). Welet ¢,, v., and ¢, be defined on K so that
@, (I') = Z(Pe(X)), Ye(I') = Z(ye(X)), and T,(I') = Z(2,(X)), where
I'=23(X) and X € K. Notice that

U:(X)(0), 1) = ¢,
We(X)(8) = X(£) + ¢, and 1,(X) = ¥s(ds(X)) for X € K.

lI

LEMMA 1. ¢,: K — K.

Proof. Let X € K and I' = Z(X). Clearly ¢.(X) is t-periodic,
since U is t-periodic in ¢, and ¢.(X)(¢) > X*(t), since X(¢) >
X*(t), UX*(@t),t)=1,and U(X(¢),t)=0. Let |ag| >2a, >0,

I'y=T+ (aoh, h)={(x+aoh,t+h): (x,t) €T},
I‘;:F*+(aoh,h), Qh=Q+(aoh,h), and
Uyx,t)=U(x —agh,t—h)



210 ANDREW ACKER AND KIRK LANCASTER

for (x,t) € Q. Notice that U,(x,t) > U(x,t) in QN Q,, since
Uy=12Uon T}, U,>20=U on I',and U and U, both satisfy
U = Uy, in Qp N Q. This means that U is (weakly) decreasing on
rays x = Xg + apt, X > xo (and strictly decreasing if |ag| > «). It
follows that if (xg, t3) € ®(I'), then @, (I') lies to the left of the
cone {{(x +xp,t+12): |t| <|aox|, x >0}, since otherwise U could
not be monotonic on the ray x = xg+ag(t—1ty), X > Xxo. Thus ¢g(x)
is Lipschitz continuous with Lipschitz constant o« . ]

REMARK. If VU were continuous on §, we could simply have

considered 2Y with v = (ap, 1)/(y/ed + 1).

LEMMA 2. Suppose I'* is a Lipschitz-continuously differentiable
curve. Then U, <0 on T™*.

Proof. This follows from the Hopf boundary point lemma for para-
bolic equations (e.g. [29], p. 170).

For two curves I'y and Iy with Iy = {(X,(¢),1): t € R}, let us
say I'y < T if X((¢) < X3(¢) for all ¢ € fR.

LEMMA 3. There exist curves I';, I', € K with T’y < T'y such that
T.(T'y) >T'y and T,(I';) < T, for € € (0, 1) sufficiently small.

Proof. Choose I'y =T+ (g, 0) = {(x*(t)+0,t): t € R} with g >
0 small enough that [0U;/dx| > 1| on I'y, where U; = U(I™*, I'),
and let I'; = {(xp, t): t € R} for x; sufficiently large. ]

We define IZ:I?(I"*,I],FZ) by
K={XeK: T, <IX)<Ty}

and write T' € K if I'=X(X) and X € K. Notice that if & € (0, 1)
is sufficiently small, Lemma 3 implies that 7 : K—K.We may now
state an existence theorem for fixed points of Tg.

THEOREM 1. Let T* be a Lipschitz-continuously differentiable curve
and suppose U = U(I'*, T) is continuously differentiable in QUTI™.
Then, for ¢ € (0, 1) sufficiently small, t: K — K is a contraction.
Thus, for each small ¢ > 0, there exists a unique “fixed point” I'; € K

of T,.
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Proof. Using Lemma 2 and the maximum principle, ®, can be
shown to be contracting as in [2]. Since ®, is contracting, so
1s Tg. |

LEMMA 4 (Uniform Modulus of Continuity near I'). Suppose I' € K
and V € C*(Q)N C%Q) is a solution of V; = Vyx in Q=QI™*,T),
V=0onT,and V=1 onI'*. If V is periodic in t with period t,
then

Vix,y) < Cdist((x, t), I')

Jor (x,t) € Q, where C = C(I'*,I'1, T, a) > 0 is independent
of T.

Proof. Let a > 0 denote the Lipschitz constant of K. Let (X(¢p),
tp) € I' and set

y={(X(tp) —a(t—-ty), t): teR}.

Let y* =y + (X*(tp) — X (%), 0) and let w = w(ty, o) be the region
between y* and y. Since the Lipschitz constant of X*(z) and X(¢) is
(L) a, I'n{(x,t): t<t} liestotheleftof y and I™*N{(x,?): t<
to} lies to the left of p*. Let w(x, t) be the solution of w; = wy, in
w, w=0o0n y,and w =1 on y*. Using the factthat 0 < V' < 1 in
Q and 0 < w < 1 in w, it is easily seen that ¥ < w on the parabolic
boundary of the region QNw N {(x,¢) : ¢ < t}. Therefore, the
maximum principle implies that ¥V <w in Qnawn{(x,t): t<t}.
Now
w(x, t) = ¢(x + af)

for some ¢ € C2([X*(to) + aty, X(ty)+ atp]). Then
¢"(s) = ag'(s)

and so ¢(s) = Ae*+B. Since ¢(X*(ty)+aty) =1 and ¢(X(fy)+aty)
= 0, we see that ¢(s) = (e* —e*)/(e*1 —e*%), where 5o = X*(¢p) +
aty and s; = X(ty) + aty. Thus

ea(xl+ato) _ ea(x+at)
w(x,t)= P

a(x,+at,) _ ea(x0+at0) ?

where xo = X*(¢p) and x; = X(Zy), and, in particular,
%%, — pox
’LU(X , to) = m
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for x € [xg, x1]. Then V(x; —h, tg) < w(x; — h, ty) and

eaxl

w(x =k, 1) = —r——gw(1— ™)
eaxl 2
= mah + 0((ah) )
< Cih

for 2 > 0 sufficiently small and C; = e**/(e* — e*%) + 1, for
example. Now

dist((x, #p), I') > dist((x, %), »)

and
1

h,
l+a

dist((x; — &, tp), 7) =

SO
V(x—h, ty) < Cdist((x, t), I,

where C = (1 4+ o?)"!/2C;. Notice that x; > xo + o (recall Iy
= I™*+ (6,0)) and so C; has a finite upper bound independent
of T'. m]

Construction of a candidate for a solution. For some ¢y > 0, T
has a “fixed point” I, € K forall 0 < ¢ < gy provided I'* is suffi-
ciently regular (Theorem 1). Since each I' € K satisfies I’y <T"' < I
and X;(¢) < X(¢) < X5(2), t € R, where I' = X(X), the Arzela-
Ascoli Theorem implies that there exists a sequence {&,} converging
to 0 and X° € K such that X, — X° in C/®) and T, — I
uniformly as n — oo, where I = 2(X?) and T, = Z(X, ). Let us
denote U(I™, I by U, Q(I'*, I'% by Q°, U™, T,) by U,, and
QI, Ty by Q,.

THEOREM 2. Suppose I'* is sufficiently regular that the hypotheses
of Theorem 1 hold. Then U? € CO(Q) and U® = —1 on TO. In
particular, TO solves the free boundary problem. Further, this solution
is unique.

Proof. Notice that [T, —I?le = max{| X, (1)—X°(t)| : 1 € R} goes
to zero as n — oo. Using Lemma 4 and the fact that U, = U =1 on
I'™*, we see that U, — U° uniformly on compact subsets of QO NT*.

Let
Un(x,t) — Up(x — €y, t)

&n

V;1(x: 1) =
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in Q, = QI™* + (64, 0), ). Then ¥, = (0 - €,)/en = —1 on
I, since T¢(I) = I'; and so ¢.(X:)(¢) = Xe(t) — €. Also notice
(Vu)t = (Vn)xx in Q, and, from the mean-value theorem,

0
Va(x, 1) = 2= (Un(An(0), 1))
for some A,(t) € (x—é&n, x). Now suppose (x, ) € Q0 and n is large
enough that (x, t) € Q,. Since, as n — oo, U, converges uniformly
on compact subsets of Q0 to U?, we see that

S (Un(nlt), 1)) = 5=(U°(x, 1)) a5 n— oo

(e.g. [29]) and hence

alx, 1) = 2 (U0, 1)

as n— oo.

Let Q0 ={(x,)eQ: U%x,t) < %} and let T; denote the left
boundary of Q9. Let ¥ € C2(Q0)N CO(Qy) satisfy ¥; = ¥, in QO,
V=-1onI% V=U;onT;, and V(x,1) is 7-periodic in ¢.
Since ¥V, = —1 on I',, a result analogous to Lemma 4 implies

|V(x9 t)— Vn(X, t)l Skn

for (x, t) an element of the right boundary of Q°NQ,,, where k, — 0
as n — oo. Since V(x,t) = U%x, ) and Vy(x,t) —» U%(x,t) as
n— oo, for (x, t) €I, we see that V,(x,¢t) = V(x,?) as n— oo,
for (x,1t) e I'; . Thus

Vo=V

uniformly on compacta in Q) and so ¥ = UY. Since V(x, 1) - —1
as (x,t) € Q0 approaches I, U, = -1 on I'?.

Turning to the uniqueness question, we will show, using an adap-
tation of the Lavrentiev principle ([23], [24]) that the existence of
two distinct solutions I'?, I'! € K leads to a contradiction. As-
suming I'? > I'! is false, let ¢ > O be the least number such that
I''<I?2=T1%+ (0, 0). Then two applications of the maximum prin-
ciple show that

Ur, I < UT*, M) < UT* + (a, 0), I+ (a, 0)

throughout Q(I™+(a, 0), I'!), where the inequalities reduce to equal-
ity at any point py € I''NI"2. Using the regularity results of §3 (which
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apply to both I and I'!) and the Hopf boundary point lemma, we
see that
~1 = Ux(T*, T (po) > Ux(T* + (a, 0), ' + (a, 0))(p0)
= U, (I, T%(po - (g, 0)) = —1. o

From now on, we will write I? as I".

3. Regularity of the free boundary. In this section, we will let I™* =
{(X*(t), t): t e R}, where X* is a t-periodic, Lipschitz continuous
function with Lipschitz constant a and we will let I' € K be the
solution of the free boundary problem, whose existence follows from
Theorem 2. We willlet U=U(I™*,T) and Q=QI™,T).

LEMMA 5. The level curves of U are Lipschitz continuous with Lip-
schitz constant «.

Proof. This follows from Lemma 1. O

LeEMMA 6. U; and Uyy are uniformly bounded in Q.

Proof. Recall U(X,(t), t) =¢ forall 0 < ¢ < ¢y. If we differentiate
with respect to ¢, we obtain

Ux(Xe(2), )X3(8) + Ur(X,(2), £) =0
and so
|Ui(Xe(2), 0)| = 'Xé(t)l |Ux(Xe(2), 8)] < a|Ux(Xe(2), 2)|.

Now Ux(x,t) — —1 as (x,t) =T and U, is bounded in Q, so |Uj|

is bounded in Q. Since U,y = U;, Uyx is also bounded. O

LeMMA 7. Uy, is uniformly bounded in Q, = {(x,t): U(x, t) <
3}

Proof. We will assume that I'* is as regular as we wish, and prove
the lemma in Q, since otherwise we could replace U by V(x, ¢) =
2U(x, t) and Q by Q, and notice that the left boundary of €, is
smooth. Let us define

Vi(x,t)=Ux(x,t+h)—Ux(x, t)
in Q, =QnNn((Q- (0, h)). Notice that Q, — Q as 4 — 0+. Let
Iy = Z(X,) and T} = Z(Xj), where X,(f) = min{X(¢), X(t + h)}
and Xj;(t) = max{X*(¢), X*(t+ h)}. Then
[Va(Xn(2), )] = |Ux(Xp(2), £+ h) — Ux(Xy(2), 2)|.
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Suppose, say, that X(¢+ &) > X(¢) and so X, (¢) = X(t). Then
Vu(Xn(2), )] = |Ux(X(2), 1+ h) = Ux(X(2), 1)
= |Ux(X(2), t+h)+ 1]
=|Ux(X(), t+h)—U(X(t+h), t+h)
= |Usxx(A(2), t+ B)[ | X (£ + h) — X (2)]

< Malh|
where |Uxx| < M in Q and A(¢) € (X(¢), X(t+h)). If X(t+h) <
X (¢), a similar argument yields the same estimate. Now U is smooth
in QUI™ (by our assumption of regularity of I™*) and so there exists
M, such that |Uy| < M; on {(x,f):} < U(x, ) < 1}. Since
Vi(x, t)/h is the difference quotient for Uy (x, t), we see that for
M, > M; and h > 0 sufficiently small,

[Va(X5(2), 1)] < Malhl.
Since (V},): = (Vi)xx in Q4 and |V,(x, t)| < M3|h| ond(L2,), where
M5 = max{Ma«a, M,}, we obtain
Ux(x,t+h)—Ux(x,t)
h
for any /4 small enough. It follows that |Uy/| < M3 in Q. O

SM3 in Qh

LEMMA 8. U; is continuous on QUT .

Proof. Let us begin by defining U; on I'". Set f, = U(X(t) — ¢, ©)
for & > 0 small. Notice that f; € CO(R) and
|fe(t) = fp(O)] = |U(X(2) — &, 1) — U(X(2) — B, 1)]
< |Uxi(4e, p(0)l e — Bl < Msle — B,
where X(f) — & < Az p(t) < X(t) — B if € > f. Then f;(f) con-
verges uniformly as ¢ — 0+ to a function f € C°(R). Let us define
U X (1), 1) = f(2).
Now we wish to show that U; € COQUT). Let (x,%) =
(X(tg), to) €T and let (x, t) € Q. Then
|Ui(x , ) = Ur(x0, to)|
<|Ui(xo, to) = U(X(8), O)] + [U(X(2), t) = Us(x, 1)]
< [ f(to) = f(O)] + Malx — X ()]
< &(t = to) + Ms(|x — xo| + [x0 — X(1)])
< &(t - to) + Ms|x — xo| + M3alt — to| — 0
as t —ty, x — xp, where (1) - 0 as 71— 0. |
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LEMMA 9. T is C! (ie. X € CI(R)).

Proof. Since U(Xg(t),t) =€, Xi(t) = —Ui(Xe(t), 1)/ Ux(Xe(2), 2).
Since Uy, € COQUT), Uy = -1 on I', and U, is bounded and
continuous, we have

X, — -U(X(1), 1)
uniformly in ¢ as ¢ — 0+. Now
X(t+h)—X(t) = giné(Xg(t + h) — X.(1))

t+h t+h
= lim Xi(s)ds = - Ui(X(s), s)ds
8—?0+ t
and so

X'(t) = lim —% i Ui(X(s), s)ds = ~U(X(2), 0.

—

Since U; € COQuUT), X' € COR). O
THEOREM 3. T" is C*® and U € C*(QUT).

Proof. This follows from Lemma 9 and [22]. O

4. Geometry of the free boundary. As in the previous section, we let
I'*={(x*(t),t): teR} and I'={(X(¢), t): t € R} be the solution
of the free boundary problem, U = U(I*,T"), and Q = Q(I'™*, T).
We will compare the geometry of I" to that of IT™*.

Let v = ai + bj with a > 0 and suppose that py = (x0, t0) =
(X (%), to) €T is a v-minimum of I' (i.e. A(t) = (X(¢),t)-v hasa
strict local minimum at ¢, or, for some J > 0, if |t — #y] < J, then

h(t) > h(ty) and for some ¢y, t, € (tg —J, tg+J) with £ < o< ty,
h(t;) > h(to), and h(ty) > h(t)). Then Upg) =0 if A= —bi+aj.
Also U;(X(t),t) >0 if ¢t >ty isnear tg and U; <0 if ¢t < ¢y is
near fy. Here U;(x,t) =VU - -A=-bUx(x,t)+aUyx,t).

LeMMA 10. For any direction A and any compact M C Q, there are
only a finite number of points in M at which U, =0 and (Uy), =0
simultaneously.

Proof. Let ¢(x,t) = Up(x,t). Then ¢; = ¢xx in Q. Now let
Do = (xp, tg) € M . Suppose first that ¢(pg) # 0 or ¢x(po) # 0. Then
we can find a (closed) rectangle N centered at py such that either
d(x,t)#0 or ¢x(x,t)#0 for each (x, ) € N. Suppose now that
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d(po) = dx(po) = 0. Let N be the rectangle given in Theorem B of
[8], where J, ¢ > 0. Let z(¢) denote the number of zeros of ¢(-, ?)
in the interval I = [xo—¢&, xp+¢] and let k(¢) denote the number of
common zeros of ¢(-, t) and ¢x(-, t) in I,for t € J =[ty—0, to+4].
Using [8], we see that z(¢) is nonincreasing and z(¢) > z(t;) + k(t,)
when t,,¢t, € J with t; < t,. Since z(f{y — d) is finite, a simple
counting argument, together with the maximum principle, shows that
S =3 ,sk(t) < co; in fact, S < 1z(tp — J). Hence, the number of
points in N at which ¢ = ¢, = 0 is finite. Since M can be covered
by a finite number of rectangles of the two types above, which have
either none or a finite number of points at which ¢ = ¢, =0, we are
done. O

LEMMA 11. Let py € Q be a point of the set ¢ = {(x,t) € Q :
Uy(x, t) =0} at which VU, # 0. Then o is (or can be extended to
be) a smooth (i.e. C*®) arc near pg.

Proof. The proof follows from the implicit function theorem. 0O

LEMMA 12. Let o be any directed arc such that U, =0 on o and
U, > 0 locally to the right of . Then the map f(p) = —bU(p) +
aU,(p) is strictly increasing on o .

Proof. Let o be parametrized by p(s) = (x(s), t(s)) with |p'(s)| #
0 (except possibly at a finite number of points). Let s; € R and
(x1,t) =p(s;) € y. Let us set F(s) = f(x(s), t(s)). Then F'(s) =
(=bUi(p(s)) + aUx(p(s)))t'(s). If ¢(s;) > 0, then (—bUy + alU;)x
>0 and so —bU; + aUy; = —bUyxx + aUy, > 0. If ¢'(s1) < 0, then
(=bUx +alU;)y <0 and so —bU;+aUy; < 0. In either case, F'(s;) >
0. Since s, was arbitrary, we see that F(s) is (weakly) increasing.
To see that F(s) is strictly increasing, suppose F'(s) = 0 for s in
an open interval I. There are only a finite number of points in any
compact subset of Q at which U, = (U;)x = 0. We may thus assume
that U; # 0 on p(I); this implies ¥ =0 on I. Then o is horizontal
(near p(I)) and so (U;)x =0 on p(I), a contradiction. O

Let us now define a directed arc y = y(v, pg) from py into Q
such that U; = 0 on y and U, > 0 locally to the right of y. Let
D= {x,t) e Q: Uyfx,t) >0} and let D° be the component
of D whose boundary contains the upper portion (i.e. ¢ > ty) of
some neighborhood of py in I'. Let y(v, py) be the component of
DN (QuU{(x,t) eT: Uyx, t) = 0}) which contains p,. We give
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y = (v, pg) the direction which keeps D° locally to the right of
at every point of y N Q. In a neighborhood of each point p € y with
VU,(p) # 0, y is a smooth arc with U; < 0 to the left of y. ]

LEMMA 13. The set y = y(v, po) is a Jordan arc.

Proof. Since y cannot intersect itself (Lemma 12 or the maximum
principle, since U, cannot vanish identically on an open subset of
Q), the only possible difficulty would have to occur at a point p; =
(x3,t3) € y with VUy(p;) = 0. By Theorem B of [8] and Lemma
10, we may assume that in the rectangle N = [x3 — &, X3+ ¢&] X
[t3 —J, t3 + &] (for some ¢, > 0), U;(-, t3 + J) has at most one
zero in [x3 — ¢, x3+ €], U,(-, t3 —J) has at least two zeros in [x3 —
e, x3+¢],and Uyp(p) # 0 if p3 # p € Nny. Either Uj(-, t3)
changes signs at x3 or it does not. First if, say, U,(x, t3) > 0 for
x # x3 with (x,t3) € N, then Uj(x,t) > 0 if (x,t) € N with
t > t3 and there exist (unique) xz, xg € C%([t3 — J, 3]) such that
xp(t3) = xgp(t3) = x3, x3—€ < xp(t) < xgr(t) < x3+¢ forall t €
[t3—0,1t3), Up(xr(t), t) = Uy(xr(t),t) =0 for t €[t3 -7, t3], and
U(x,t) >0 1if (x,t) e N, t < t3, and x & [xz(¢), xg(¢)]. Then
yNN = {(xr(2), )} U{(xL(?), t)}. Second, if U;(x, t3) < 0 when
x3—e < x < x3 and U,(x, t3) > 0 when x3 < X < x3+¢, for example,
then there exists xg € CO([t3 —J, t3 + 8]) such that U;(xg(f), ) =0
for te[t3-0, t3+0] and U(x,t) <0 if (x,?) € N and x > xg(t).
Then yN N = {(xr(?),t)}. In each case, y is a Jordan arc in a
neighborhood of pj3. o

REMARK. (a) y is double-point free.
(b) If y enters Q at a point py € I', then y can never return to
I', since f(p)=-a on T.

LEMMA 14. Let y be as above. Then

(a) y cannot have a strict local (0, 1)-minimum in Q.

(b) y cannot have more than one strict local (0, 1)-maximum
in Q.

Proof. Notice that ¢ = —bU, + aU; satisfies ¢; = ¢, in Q and
¢ =0 on y. Suppose y has a strict local (0, 1)-minimum at (xg, f).
Then, for some sufficiently small ¢ > 0, there is a connected, simply
connected region « bounded below by an arc of y and above by
an interval of ¢ = ty + ¢ such that (xg, fy) € dw. Since ¢ = 0
on dw N y, which is the parabolic boundary of w, the maximum
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principle implies that ¢ = 0 and so ¢ = 0 in Q, a contradiction.
Conclusion (b) follows immediately from (a). o

COROLLARY. Let (x(s), t(s)) be a parametrization of y. Then t(s)
is monotonic or there exists sy such that t(s) is increasing on s < s
and decreasing on s > s;.

LeEMMA 15. Suppose T* is not a vertical line, pg = (xg, tg) €T is
a v-minimum of I', where v = ai+ bj, and y = y(v, py) begins at
Do. Then, for some k >0, v lies between t =to+k and t =1ty —k.

Proof. Let (x(s), t(s)) be an arclength parametrization of y and
suppose t(s) — oo as § — oo. From the corollary above, we see that
t(s) is an increasing function and y can be represented as x = y(?),
t > to. For each natural number », let

Vn={(xat—n7)3(X,t)€V}
and notice that y, is represented by
x=y,(t) = y(t+n1), t>tyg—nrt.

Now the y, do not intersect, since if (x, ) € ,Nym, then (x, t+n7)
and (x, t+mrt) arein y and Lemma 12 implies m = n. This implies
m = n. This implies y,,(¢) < ¥,(¢) in the domain ¢ > 3. For any
fixed ¢ > ty, (w,(¢)) is a decreasing sequence bounded below by X*(¢)
(since y, C Q for each n) and so ¥ (t) = lim,_,o Ww,(t) exists. Now
w(t) = X*(¢t) for all ¢t > ty by Theorem A of [8] and so y, — I'™* as
n — oo. Since —bU +aU, is increasing on y, for each », it must be
nondecreasing on I'™*. Since I'*, U, and U, are all 7-periodic in ¢,
we see that —bU + aU, is constanton I'*. Now U =1 on I'* and
so U, is constant on I'*. Thus the t-periodic function g = U, isa
solution of the boundary value problem

8 = gux InQ
g=-1 onTl
g=C onlI™

Then Uy(x, ) =(C+1)U-=1 in Q and so U, = Uy = (C + 1)Uy
in Q. Thus I" and I'* are straight lines and, since they are periodic
in ¢, they are vertical. This contradiction implies that #(s) does not
approach +oco. A similar argument shows that #(s) does not approach
—00. O
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REMARK. It does not follow from the 7-periodicity of U, Uy, U;,
etc. that maximal connected sets of the form y = {-bU, + aU; = 0}
are 7-periodic. There are no 7-periodic connected sets y = {-bU, +
aU; = 0}, since —bU + aU, would be monotonic and 7-periodic
on y.

LEMMA 16. Suppose the hypotheses of Lemma 15 are satisfied. Then
y must terminate at a point p; € I'* with the same normal vector

(toT) v=ai+bj.

Proof. Suppose py = (Xp, tp) € I' is a v-minimum and y begins
at po. Let (x(s), t(s)) be an arclength parametrization of y and
let f = —-bU +aU,. Now y remains in a bounded subset of Q.
Further, once it leaves a neighborhood of py, y remains bounded
away from I'. Moreover, it can be shown using Lemmas 10, 11, and
14 that y has no accumulation points in €. Since y does not end
at a point of , there must be a terminal point or an accumulation
point p} = (x5, #3) € T* of y. Since VU is continuous on Q and
U, = 0 at each point of y, U,;(pj) = 0; thus the normal to I'"* at
pjis v = ai+ bJj (recall A = —bi + aj). Since #(s) is monotonic
(at least for s > s59), #(s) — £ as s — |y| (|y| may be oco). If x(s)
does not have a limit as s — oo, then there exists 6 — 0 such that
each point of [x;, x5+ J] x {¢5} is an accumulation point of y and
hence U; = 0 on this interval, a horizontal line segment in I'*. This
is not possible, since I'* = {(x, ) : x = X*(¢)}, and so x(s) — x; as
s — |yl ul

REMARK. Everything above carries over when py € I' is a v-maxi-
mum except that ~bU + aU, is decreasing on 7.

LEMMA 17. Suppose T™* is not a vertical line. Suppose a > 0, Q >0,
and py = (xg, to) €T is a v-minimum of T, where v = ai +bj. Let
v be the curve of constant gradient direction beginning at po as in
Lemma 16 and let y terminate at py = (X1, t;) € I'*. Suppose that
x > x; for every point (x,t)€y. Then v-(pg—p1) > a.

Proof. Let us consider the path independent integral

P,
I= (=bU +aUy)dx + (-bUx + aU;) dt.
Dy

If we integrate along y from py to p; and integrate by parts, we see
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that
p,
I= / (=bU + aUy) dx
P,
and so

P,
I = (x = x;)(~bU +aUy)% - / (x = x1)d(=bU + aly).
4
Since —bU + aU, is increasing along y and x — x; > 0, we see that
I <a(xg—xy).

On the other hand, I = af"' Uedx + U, dt — bfp‘ Udx + Udt,
and the first integral equals a. If we integrate the second integral first
along I from pg to g9 = (x3, ;) and then along the horizontal line
from gy to p;, we see that 7 > a+ b(t; — ty) . If we combine the two
inequalities for I, we obtain v - (pg — p;) > a. O

LEMMA 18. Suppose o is any curve from a point ps = (X4, t4) € Q
to a point p1 = (X1, t;) € I'* with x4 > x; along which U; =0 and
U; > 0 locally to the right of . Then x > xy for all points (x,t)€ 0.

Proof. Suppose first that the curve o stays to the right of the vertical
line x = x; near p;. Suppose o crosses the line x = x; at a point
D3 = (x1, t3) and stays to the right of the vertical line between p;
and p;. Let p, = (x;, t;) € g be the furthest point to the right on @
between p3 and p;. From the monotonicity of U —x on g, we see
that for some number D > 0, U, < —D on ¢ between p; and p;
and U, > —D on ¢ between p, and p;. Then

D P
Ups) - Ulpy) .—_/ Uedx+ Updt = [ Updx > 0.
p, b,
Thus U(p3) > U(p;) =1 in violation of the maximum principle.
Suppose next that o lies to the left of the line x = x; near p;.
Let us assume that in a neighborhood of p;, o stays above ¢ = ¢;
and betweenI™ and x = x;. Then for some ¢ >0, U/ (X*(t),t) <0
for t; <t <ty +e¢. Since U; > 0 to the right of g, there must be a
curve ¢ which begins at p; and lies between I'™* and o along which
U, =0 and U, increases as points move away from p;. This curve
& must either terminate at a point ps of I'* or cross the line x = x;
at a point pg. If we argue in a similar manner to the first paragraph,
we obtain either U(ps) > U(p;) or U(pg) > U(p;); in either case, a
contradiction results.
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Finally, if neither case holds, then ¢ intersects the line x = Xx;
infinitely often. An argument similar to the argument of the first
paragraph implies that there is a sequence (g,) (of “every other point
of intersection of ¢ and x = x; ”) such that g, converges to p; as
n — oo and U(g,) < U(gu4+1) for each n. Since U is continuous,
this contradicts the maximum principle. O

REMARK. Using a similar (but more complicated) proof, it can be
shown that a curve ¢ as above with U; =0 on ¢ and U; > 0 locally
to the right of g cannot cross the tangent line a(x—x;)+b(¢—¢) =0

THEOREM 4. (a) If T" has v-minima (v-maxima) in one period (i.e.
in TN(Mx[ty, to+7))), then I'* has at least n v-minima (v-maxima)
in one period.

(b) The total curvature of I' in a single period cannot exceed the
total curvature of T* in one period.

(c) The x-variation of T in one period (i.e. [;|x'(t)|dt, where
(X(t), t) is a parametrization of T') cannot exceed that of T* in one
period.

Proof. Suppose p = (x), ) e, k=1,...,n,with ) <<

- <13 < 19+ 7 such that p? is a v-minimumof ', k=1, ..., n,
and, for some ¢ € (¢, txy1), Up(X(¢), t) #0,foreach 1 <k <n-1.
Foreach k=1, ..., n, there is a curve y, starting at p,? and ending
at a point p; € I'* such that U; = 0 on y; and U; > 0 locally to
the right of y,. Then v is a normal to I'™* at p;, k =1,...,n,
and the curves y, do not intersect in Q. To see this, let g € T lie
between p, and pj,; such that g is a v*-minimum of I', where v*
is not parallel to v . Let o; be the curve of constant gradient direction
beginning at ¢ and ending at a point ¢; € I'*. If o; intersects y;, for
example, at p, then VU(p) = 0. From Lemma 2 and the maximum
principle, we see that U, # 0 in Q and so g; Ny, = &. Since g,
separates ¥, and y;,; near I', the y; cannot intersect in Q. Notice
then that p; #p;.,, 1<k<n-1.

Next, let us fix k € {1,...,n}. Let q; € I' with g; between p;
and Dic+1 and g, €T’ w1th qz between Dr—1 and p; such that vy =
ai+b,j and v, = ai + b,J are (exterior) normals to I at ¢; and
q, respectively with b; < b < b, and ¢, and ¢, are strict local
minima of I" with respect to their normals v, (where p,.; = p, +
(0, 1) and py = p, — (0, 7)). Let $; and $, be curves of constant
gradient direction beginning at ¢; and ¢, respectively. Then §; and
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9, terminate at points ¢{ and g; of I'* respectively and v; and v,
are (interior) normals to I'* at gf and g; respectively. Since I'™* is
C! and py; lies between ¢; and g5, there must be a point p;* € I'* at
which I'™ has a v-minimum (in the sense mentioned at the beginning
of this section). The proof of (a) and (b) follows.

Suppose pg = (xp, tp) € I' is a (1, 0)-minimum of I' and p; =
(x2, tp) €T is the next (1, 0)-maximum of I'. Suppose that y and
7 are curves of constant gradient direction starting from py and p,
respectively as in Lemma 16 and let these curves terminate at points
p1 = (x1, t;) and p3 = (x3, t3) of I'"* respectively. Notice that U, > 0
locally to the left of 7. Let a=1 and b = 0. From Lemmas 17 and
18, we see that xy — x; > 1. If we apply the first part of the proof
of Lemma 17 to $, we see that I > x, — x3. (An argument similar
to that of Lemma 18 shows that $ cannot cross the line x = x3.)
Since I =a =1, we obtain x; — x3 < 1. Thus the x -variation of
I' between py and p, is less than the x-variation of I'™ between p,
and p;. The last part follows from this. |

REMARK. Results similar, for example, to Theorem 4 of [4] and
Theorem 5 of [6] for this problem follow from our methods.

REMARK. The results in §§2 and 3 were obtained by the first author
(Acker) while he was a guest of SFB 123, University of Heidelberg, in
summer, 1987. Section 4 represents joint work.
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