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In this note we show that D C C", n > 2, is a smooth bounded
pseudoconvex domain with real analytic defining function r(z) such
that 3 ;_, zx(8r/8z;) # O holds near some xo € bD, then if g €
C“(bD), we have that the Szego projection of g, Sg, is real analytic
near Xxg . In particular if D is a smooth bounded complete Reinhardt
(or Reinhardt) pseudoconvex domain with real analytic boundary, then
the Szego projection S preserves real analyticity globally.

I. Introduction. Let D C C", n > 2, be a smooth bounded pseu-
doconvex domain. Denote by L2(bD) the space of square-integrable
functions on the boundary and by H?(bD) the closed subspace of
L%(bD) whose Poisson integrals are holomorphic in D. Then we
define the Szegd projection S to be the orthogonal projection from
L2(bD) onto HZ?(bD). It is represented by integration against the
Szegd kernel function S(w, z), i.e., for f € L?(bD), we have

Sf(w) = /bD S(w, 2)f(z)do,.

The smooth regularity of the Szegd projection for a large class of
domains has been established, for instance, see [1] [2], [3], [4], [8], [9],
[10], [12]. Hence in this paper we are going to study the real analytic
regularity of the Szegd projection on circular domains. The problems
can be formulated as follows.

1. (Global version): Suppose that the boundary of D is real an-
alytic, then does the Szegd projection S map analytic functions to
analytic functions, i.e., S: C®(bD) — C®(bD)?

2. (Local version): Suppose that the boundary of D is real analytic
near some point xo € bD, then does the Szeg6 projection S preserve
real analyticity near xy?

These problems are quite open. The only results we know so far are
due to D. Tartakoff [13]. He showed the following.
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226 SO-CHIN CHEN

THEOREM (Tartakoff). On a real, real analytic CR-manifold of di-
mension 2n — 1 whose Levi form is non-degenerate and which satisfies
Y(q), then O is locally real analytic hypoelliptic on (p, q)-forms.

For global result in this case see also Tartakoff [14].

The condition Y(q) means that the Levi form has max(g+1, n—q)
eigenvalues of the same sign or min(qg + 1, n—gq) pairs of eigenvalues
of opposite sign at each point. Therefore if one has a smooth bounded
strictly pseudoconvex domain D in C", n > 3, with real analytic
boundary, then one can apply the following formula

(1.1) S =1d-8,N,9,,

where N, is the boundary Neumann operator, to show that the Szego
projection S preserves real analyticity locally (hence globally too).
However, we must point out here that this theorem does not apply
to the domains in C2, because condition Y (1) is violated on such
domains.

Very recently M. Derridj and D. Tartakoff [7] showed that if the
defining function near 0 € bD can be expressed as

(1.2) Im w = h(|z|?)

with 4 real analytic and 4(0) = 0, then again a local theorem holds
near 0 € bD.
In this paper we prove the following main results.

THEOREM 1. Let D C C", n > 2, be a smooth bounded pseudocon-
vex circular domain with real analytic defining function r(z). Suppose
that Y j_, zx(0r/0zx) # O holds near some xy € bD and that f is
globally real analytic, i.e., f € C®(bD). Then Sf is real analytic
near X .

We remark here that (i) Theorem 1 is also true in dimension two,
(ii) it is not quite a local theorem, because we need f to be globally
real analytic. It follows from Theorem 1 that we have

COROLLARY 2. Let D C C"*, n > 2, be a smooth bounded pseudo-
convex circular domain with real analytic defining function r(z). If
ko1 Zk(0r/dzy) # 0 holds for all z € bD, then the Szego projection
preserves real analyticity globally.
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Since the transversal condition always holds on a complete Rein-
hardt domain, see Chen [6], we have

COROLLARY 3. Let D CC"*, n > 2, be a smooth bounded complete
Reinhardt pseudoconvex domain with real analytic boundary. Then the
Szegd projection preserves real analyticity globally.

Next if we drop the transversal condition, we can show

THEOREM 4. Let D C C", n > 2, be a smooth bounded Reinhardt
pseudoconvex domain with real analytic boundary. Then the Szegé
projection preserves real analyticity globally.

The author would like to thank Mei-chi Shaw for bringing this prob-
lem to his attention.

I1. Proof of the main results. A domain D in C” is called circular

if (zy,..., z,) € D implies (e!z,,...,e'%z,) € D forall 8 € R,
and D is called Reinhardt (or multi-circular) if (z;,..., z,) € D
implies (eiz(, ..., e'%z,) € D for 0;,...,0, € R. D is called
complete Reinhardt if (z,, ..., z,) € D implies (w;, ..., ®w,) € D
with |w;| < |zj| forall j=1,...,n.

First we recall that the Szeg6 kernel function S(w, z) can be repre-
sented as follows. Let {¢;}32, be an orthonormal basis for H 2(bD).
Here we have identified each element f € H?(bD) with its Poisson
integral. Then we have

(2.1) S(w,z)=)_pj(@p;(z), Yo,zeD,
j=1

and the expression is independent of the choice of the basis.
Next we prove some basic facts on circular domains. Define an
Sl-action on D as follows,

n:S'xD—D,

€, z)mw=e i9 i0

0.z2=(e%2,...,e"%2,).

Then for each fixed 6, n, = zn|,p is a CR-diffeomorphism of bD.

LEMMA 2.2. Let D C C", n > 2, be a smooth bounded circular
domain. Then for each fixed 6 we have m;do, = do,, where do
denotes the surface element on bD .
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Proof. Let r(w) be the defining function for D,,. Here we use
subscripts to emphasize the domain we consider. Then r o n(z) will
be a defining function for D,. By using the x-operator (cf. [11]), we

have
nydo, = (||d i (*Br))

where i: D — C" is the inclusion map. Then by direct computation,
we get

. 2
4% = [ om ”‘"(Zznl 7 5or "“’k/\("“’f/\d“’f))

J#k

2 "
= dGemy= " (Zznl T dwk/\<dw,Adw,>)

J#k
2 -
= ]—la(—rTn)—”lz(*a(rO 71'))
= daz.

This completes the proof of the lemma.

From Lemma 2.2 and the representation of the Szegd kernel func-
tion we obtain immediately the following transformation law for the
Szegd kernel on circular domains.

LEMMA 2.3. Under the hypotheses of Lemma 2.2, we have S(w, z) =
S(n(w), n(z)).

Now we define the crucial vector field T on bD as follows. Let z
be a point near the boundary. Define

A,:S'—-D

ezB — e10 Dz = (eiﬁzl , , ei()Zn) ,

and denote by A, . the differential mapping of A,. Then define the
vector field T at z by
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The vector field T defined in this way has many nice properties.
First of all, if (0r/0z,)(xp) # 0, then

or 0 B ar 9
0zy 0z, 0z,0z;°

L=

forms a local basis for 7! ’O(b_l_)) . Hence by assumption Xr # 0 near
xo, Ly, ..., Ly_1, Ly,...,L,_; and T form a basis for complex
tangent space on bD near Xy, and it is shown in [6] that we have

(2.4) [T, Ly =-iLy, [T,Ly=iL;,, fork=1,...,n—1.
The next lemma shows that 77 commutes with the Szegd projection

S on such domains.

LEMMA 2.5. Under the hypotheses of Theorem 1, we have TSu =
STu forall ue C®(bD).

Proof. Since Su € C®(bD), one can apply T to Su. Also by the
construction of 7', we get by writing z = e’ - 7,

2TSu(w) = % .

_d

S(eit cw, 2)u(z)da ;)=
S w, e -nu(e" -n)doyli-o

dt
d it
=77 [ Sle, mu(e®-n)doyl=
bD
=285Tu(w)
This completes the proof of the lemma.

Now we begin to prove Theorem 1. So we assume that f € C%(bD).

It follows from the smooth regularity of the Szegé projection that we
have Sf € C*(bD). Denote by L (or L) any of the L;’s (or L;’s)

with i < n -1, and by L any of L;>s or L;’s with i < n—1.

Also denote by Z either (L or T. Denote by a(;) any of the finite
collection of analytic functions that occur in commutators of L, L
and T and integration by parts. Let ag,qy = a(y - a(j) Or aginy =
Zag; . Hence there exists a constant R > 0 such that for all kK €N,
we have

(2.6) lagy| < RR*K!.
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The proof for Theorem 1 will be complete if one can show

for all ¢ € N and some open neighborhood U of x; and some M >
0 uniformly in ¢. We may assume that Xr # 0 holds on some
neighborhood of U .

Let ¢ be a cut-off function with ¢ = 1 in some neighborhood of
Xo and supp ¢ contained in U. Denote by ¢’ any first derivative of
@ . Then by Lemma 2.5 one can estimate the pure terms quite easily,

(2.8) loT?S SN = loST? | < | T° )| < ReR%pY,

for some Ry > 0. To estimate the mixed terms we use Op(k, q) to

denote any differential operator of order ¢ formed out of the (i and

T in all order with precisely k(i) ’s. Thus if k =0, by (2.8), we have
lp Op(0, 9)Sfl = llpTSf)| < RyRiq!.

Hence what remains in this note is to estimate the term Op(s, ¢)Sf
with s > 1. We will use underline to mean at most such terms are
being considered and c¢ is a constant depending only on n. First we
write

(=)
(29) Op(s,p)=T"LOp(s—1,p—-r—-1)
(=)
=LT'Op(s—1,p—r—1)

r =)
+> (®)IT /LT 'Op(s~1,p—r—1)

j=1
=) LA
=LOp(s-1,p-1) +Z(ﬂ:)10p(s,p - 1).
j=1
Define
Ip(9) =1l Op(s, p)SSl + lloT Op(s — 1, p - )SS]
n—1

+ > (l9L;iOp(s = 1, p = DS ]|
i=1
+l¢L;Op(s — 1, p — 1)SfI]).
By (2.9) we see that
n—-1
I(9) <2 (loL:iOp(s — 1, p = VSS| + l9L; Op(s — 1, p — S SY)
i=1

+l¢TOp(s—1,p~1)SfI|+(p -1l Op(s, p — DSS].
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We estimate the first term as follows:

lgLOp(s— 1, p~1)Sf]?

=(pLOp(s—~1,p~-1)Sf, 9LOp(s — 1, p—1)Sf)

= l¢LOp(s -1, p— 1)Sf|?
+(pOp(s—1,p-1)Sf, —p[L, L]1Op(s — 1, p— 1)Sf)
+2(p'Op(s—1,p-1)Sf, 9LOp(s— 1, p—1)Sf)
+2(¢p'Op(s—1,p-1)Sf, pLOp(s - 1, p - 1)Sf)
+(ay9Op(s—1,p-1)5f, pLOp(s - 1, p - 1)Sf)
+(aypOp(s—1,p-1)Sf, pLOp(s — 1, p — 1)Sf).

It shows that for C; > 0 we have

lpLOp(s—1,p—1)Sf|
<|l¢LOp(s -1, p-1DSS|
+Ci(lleOp(s—1,p—1)Sf]|+4|l¢'Op(s — 1, p — 1)Sf]|
+2llaqye Op(s — 1, p - 1)Sf]))
1 _
+ a(3II¢LOp(s —1,p-1)5f|+3|l¢LOp(s -1, p—-1)Sf]|

+lp[L, L1Op(s — 1, p = 1)SS).

Lemma 2.11. (i) [L, L] = (2n - Da)Z.
(i1)

LOp(s—1,p-1)=0Op(s—1,p-1)L
p—1

p—1
+Z 271—1 ( j )a(j)Zij+1'-'Zp_1,

where Z; denotes any Z . Hence one may choose ¢ = 2(2n —1).

Proof. (1) is trivial. For (ii) we have

[L,Op(s—1,p-1]1=I[L,Z; Zy]

p—1
=S (PN 201 202 Zo.
j:l;_

Hence the conclusion follows immediately.
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Since Sf is annihilated by L, we obtain

n—1
(2.12)  I(p) <2 {2|¢L;Op(s -1, p - 1)SS||
i=1
+ Ci(lleOp(s — 1, p - 1)SS]
+4|l¢'Op(s — 1, p — )SS]|
+2R*|pOp(s — 1, p — DSS]))

1
+ a(3”¢Li Op(s—1,p-1)Sf|

+3lloL;Op(s =1, p — 1)SS|
+cR|9ZOp(s — 1, p - DSSI)}
+ 9T Op(s — 1, p—~ D)SS|
+ (- 1)]¢Op(s,p— 1SS

Choose C; = max(24, 8ncR?); then we get

n—1p-1
@13 Lo <8 e (77 layezzn 211

i=1 j=1
+4(n—-1)C(loOp(s — 1, p = DS
+4|lp'Op(s -1, p - 1)SS]|
+2R%|p Op(s — 1, p — 1)Sf])
+2[|pTOp(s -1, p - 1)SS|
+2(p - DlleOp(s, p — 1)S S

n—lZc’( . ) RR/j!I,_i(p)

+16(n — 1)Ci1,_1(9")
+4(n—1)C (1 + 2RI, ()
+2|l¢Op(s — 1, p)SSI + 2(p — VIp-1(9).

(=)
Since the vector field L in general is defined only locally, we need
a special cut-off function which is of compact support, but behaves
like an analytic function up to certain order. :

LEMMA (Ehrenpreis). Let xo, € bD and U,, U, be two neigh-
borhoods of xo with Uy € U, € U; then there exists a constant
M > 0 such that for any integer k one can find ¢, € C(U,y) with
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0< 9 <1, g =1 on U, and satisfying
(2.14) |D%py| < M(Mk)ll for la] <k + 1.

Now one can replace ¢ by (p},b ), some derivative of ¢, of order
<b,and p by p—> in (2.13). Then we obtain

p—b-1
(215) I, p(0) < 8(n=1) S J(P071) RRIjU,__;(0}")
j=1

+16(n — l)CIIp_b—l(%(rbH))
+4(n - DCI(1+ 2R, (9f)
+2llgy” Op(s — 1, p = )]
+2(p-b- l)Ip—b—l(%(fb))-

There are five terms in (2.15). Inductively we will show that for
p>b >0, we have

(2.16) L_y(0$?) < Ri(Rop)P(R3p)P° RS,

where R;, Ry, R; and R, are some constants, i.e., we will show that
each term can be bounded by 1R;(R.p)?(R3p)?~°Rs. The initial step
s =0 or p=b is easy to check. Hence we assume that (2.16) is true
for b > by or s < sg. Then we prove the case b =by and s = s5q.

(p—by—1)!
Term 1 < 8(n—-1 - -
S8r=D 2 G-
- R(cRY jIR|(Rop)®(R3p)P~%~J . RY
= Ry(Ryp)%(R3p)P~% - R

_""”Z"" (p—bo—1)!  8(n—DR(cR)
(p—bo—j—1)p/ R}

p—b,—1

J=1

1 _
< gRl(Rzp)”°(R3p)” b.R?,

provided Rj is chosen large enough.
Term 2 < 16(n — 1)Cy R (Rop)2*! - (R3p)P~2~1. R

- 16(n —1)CiR
— Ri(Rop)P - (Rep)p - R - (1R

1 _
< §R1(R2P)b°(R3P)” b RY,
provided R3 > 80(n — 1)CyR;.
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Term 3 < 4(n — 1)Cy(1 + 2R?) - Ry(Ryp)%(Ryp)P =%~ 1. RY
n-1)C(1+ 2R2))
Rsp

= Ri(Rop)®(R3p) b - R - (4‘

< Ry (Rop)o(Rsp )~ - RY.,
provided R; > 20(n — 1)Ci(1 +2R?).
Term 4 < 2R (Rop)%o(R3p)P =% - RY™
< sRi(Rop)o(Ryp) - R,

1

provided R4 > 10.
Term 5 < 2(p — by — 1)R;(Rop)o(R3p)?~%~! . RY

- 2(1) - bo — 1)
— b, p=by RS [\ T 0 7)
= Rl(Rzp) (R3p) R4 ( R3p )

1 _
< gRl(Rzp)b"(Rw)p b . Ry,

provided R3 > 10. This completes the proof of (2.16). In particular,
we have shown that for £ <p,

(2.17) llep Op(k, P)SFIl < I(9p) < Ri(R3p)PRE
< Ri(R3R4p)?
< MMPp!,

for some large constant A/ > 0 depending only on Ry, R3; and Ry.
This also completes the proof of Theorem 1.

To prove Theorem 4 one can apply the above techniques almost
verbally with slight modification. The key point is that for every point
Xp € bD we have to choose a vector field like 7 for Theorem 1 which
is transversal to T1:9(bD)@ T9-1(bD) locally near x, and commutes

(=)
nicely with L and the Szegd projection. This can be done easily. By
rotational symmetry of the domain one can choose a direction, say »,
such that (z,(0r/8z,))(xp) # 0 holds in some neighborhood of xg.

Then define S!-action on D as follows.

n:S'xD—-D
(eiﬂ’ Z) el?. 7 = (Z1seees Zn-1, eigzn)-
Such an action will generate a vector field 7, = iz,(8/0z,) —

iZ,(0/0Z,) with the desired properties. So we are done. For more
details in this case see [5].
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