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We define and analyse the concept of a crossed product of a C*-
algebra 4 by a semigroup. For a large class of semigroups we show
that the crossed product is primitive if 4 is, and our constructions
also give rise to simple C*-algebras. Conditions are given for when
the crossed product is type I or nuclear, and when covariant rep-
resentations of a C*-dynamical system give rise to faithful and/or
irreducible representations of the crossed product.

Introduction. The theory of crossed products of C*-algebras by au-
tomorphism groups is a deep and interesting area of the modern the-
ory of operator algebras, as well as being a rich source of examples.
It is natural to try to extend the ideas of this area to a more gen-
eral setting. One way to do this is to consider crossed products by
semigroups, and this paper develops some aspects of the theory. Sur-
prisingly (or perhaps not) if the semigroup does not look much like
a group the results turn out to be radically different in many respects
from the classical case. For instance, the group C*-algebra of an
abelian group is of course itself abelian, and so, from the point of
view of C*-theory, not very interesting. But for a large and natu-
ral class of semigroups (namely the positive cones of abelian ordered
groups) their C*-algebras are not only non-abelian but actually primi-
tive. This is useful because the primitive (and the simple) C*-algebras
are in a sense the building blocks of C*-theory.

If we come down to very concrete detail, and look at the additive
semigroup N of natural numbers, we find that its C*-algebra is the
Toeplitz algebra, i.e. the C*-algebra generated by all Toeplitz op-
erators with continuous symbol on the unit circle. Indeed, for any
cone as above, its C*-algebra can be faithfully represented as a C*-
algebra of Toeplitz operators in a generalized sense (see [12]). For the
related situation of C*-algebras generated by multivariable Wiener-
Hopf operators see [11] and [15]. The papers [4], [10] and [21] are
also relevant. Indeed a very interesting theory of crossed products by
semigroups is developed in [10]. This theory is quite different from
ours however as the crossed product in [10] is in general a non-self-
adjoint algebra. If (4, a, G) is a separable C*-dynamical system with
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G a discrete abelian group, then a special case of the Olesen-Pedersen
spectral theory ([16], [17]) asserts that the cross product 4 x, G 1is
simple (respectively prime) if and only if 4 is G-simple (respectively
G-prime) and the Connes spectrum I'(a) is equal to the dual group
G . If we now suppose that G is totally ordered by some positive cone
G* then the results for the crossed product Ax,G* are very different.
Firstly, A x, G* can never be simple if G is not trivial, and secondly
A X, G is primitive provided only that A4 itself is primitive. In this
case therefore one is spared the often quite difficult task of having to
compute the Connes spectrum. In fact, however, we give necessary
and sufficient conditions that 4 x, G* be prime which are similar to
the Olesen-Pedersen conditions above, but which require one to com-
pute the Connes spectrum not of o but of a certain action y of G on
a C*-algebra O(G)® A. Here O(G) is a certain C*-algebra reflecting
the order structure of G.

Although A x, G* is usually not simple (except where the order
on G is trivial), we do get new simple C*-algebras arising from these
constructions. There is a canonical map ¢ from A x,G* to Ax, G,
and in the case where G is an ordered subgroup of R and A4 is simple
the kernel of ¢ is simple. In the special case where A = C the class of
simple C*-algebras that one gets was first investigated by Douglas in
[4]. Recently the K-theory of these algebras has been computed (see
[7], and for a simple special case [13]}).

It is of interest to observe that a certain class of the algebras we
study in this paper have already been used in K-theory. If a is
an automorphism on a unital C*-algebra 4 then one can show that
A x4 N 1is isomorphic to the generalized Toeplitz algebra of « (in the
sense of Pimsner-Voiculescu). An important step in deriving the
six-term exact sequence for the K-theory of A x, Z is showing that
K;j(A x4 N) = K;(A). The computation of the K-theory of the alge-
bras 4 x, G* in general would seem to be an interesting question.

We now give a brief section-by-section guide to this paper.

In §1 we construct the crossed product and induced covariant repre-
sentations. The results here are basic to the rest of the paper, but this
section is most like the classical theory. In §2 we introduce pre-ordered
groups, and associate with each such group a certain C*-algebra which
reflects its order and group structure. In §3 we use this algebra, and
a dilation theorem of McAsey and Mubhly, to represent 4 x, G* as
a full hereditary subalgebra of a certain crossed product by G, and
from this in turn we derive conditions on when A4 x, G* is type I or
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nuclear and some other of the results already mentioned in this intro-
duction. In §4 we analyse the covariant representations for ordered
groups in detail, and from this deduce that 4 x,G™ is primitive when
A 1is, and the results on simple algebras stated earlier.

1. Construction of the crossed product. Let M denote a monoid,
with unit e, and let B be a unital C*-algebra. We call a map
W: M — B, x — W, an isometric homomorphism if each W, is
an isometry and Wy, = WyW, for all x,y € M (necessarily then
W, =1). If B = B(H) for a Hilbert space H we call (H, W) an
isometric representation of M .

If M isleft-cancellative, then isometric representations exist. To be
specific, let H be a non-zero Hilbert space and let />(M, H) denote
the Hilbert space of all norm-square-summable maps f from M to H
(-e. Yyep If(X)]> < +00) with the norm and scalar product given
by 111 = (Sear IFCOIDY2, and (f, &) = Tyepr(f(x), £(x)) . For
each x € M we define an isometry W, on [2(M , H) by the equation:

fy), iifz=xy,
0, if z¢ xM.

The map W: M — B(l*(M, H)), x — Wy, is an isometric homo-
morphism. We call (/2(M, H), W) the canonical isometric represen-
tation of M on [2(M, H). It is clear that W is injective.

If a monoid M admits an injective homomorphism into a C*-
algebra, then obviously M is left-cancellative.

A C*-dynamical system will refer in this paper to a triple (4, a, M)
where A is a C*-algebra, M is a left-cancellative monoid, and « is
a homomorphism from M to AutAd (so o, = id). We shall say
(A, a, M) is nontrivial if A is non-zero and M is not a singleton,
separable if A is separable and M countable, and classical if M
is a group. If B is a C*-algebra with multiplier algebra M (B), a
covariant homomorphism from (A, a, M) to B is a pair (¢, W)
where ¢: A — B is a x-homomorphism and W: M — M(B) is an
isometric homomorphism, and ¢, W interact via the equation

(%) pax(a)Wy = Wyp(a) (xeM,ac A).

weh) = {

If B=B(H) for H a Hilbert space we call (H, ¢, W) a covariant
representation of (4, a, M). If (4, a, M) is classical then (x) is
equivalent to the equation

(%*) pax(a) = Wyo(a)Wy
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(as all W, are then necessarily unitary), but for monoids which are
not groups (*) and (%) may be inequivalent. This will be apparent
in examples we shall be considering later.

As in the classical case each representation of 4 induces a covari-
ant representation of (4, a, M). Its construction is similar to the
classical case, but its theory is radically different for monoids which
are not groups. Let (H, ¢) be a representation of A4, and suppose
the Hilbert space H is nonzero. Let (/2(M , H), W) be the canoni-
cal isometric representation of M on [?(M, H). For a € A define
?(a) € B(I*(M , H)) by the formula:

@(a)f)(x) = pay (@) f(x)
forall fel*(M, H) and all x € M. The map
?. A— B(’(M, H)), a~79(a),

isa *-homomorphism, and it is readily verified that (I2(M ,H), ¢, W)
is a covariant representation of (4, o, M), said to be induced by
(H, ¢). Notethatif (H, ¢) is a faithful (respectively non-degenerate)
representation of 4 then (/2(M, H), ®) is also a faithful (respec-
tively non-degenerate) representation of A.

Let (A, a, M) be a C*-dynamical system where 4 is non-zero to
avoid trivialities, an assumption we shall make tacitly henceforth. If
F is the free *-algebra on the set AU M, let I be the smallest self-
adjoint ideal of F for which F/I 1is unital, the map p:4 — F/I,
ar a+1,1is a x-homomorphism, the map Vi M — F/I,xw—x+1,
is an isometry-valued homomorphism, and pax(a)f/x = Nxb(a) (a e
A, x € M). That such an ideal I exists follows from the fact that
(A, a, M) admits a covariant representation (H, ¢, W) where ¢ is
non-zero (use the induced covariant representation corresponding to
a faithful representation of A).

Note that j(4)U V), generates F/I, where Vi = {V; | x € M}. If
y is any C*-seminorm on F /I, then a — y(p(a)) is a C*-seminorm
on A4, s0 y(p(a)) < lall. Also, y(Vx)? = p(VgVe) =»(1) < 1. It
follows that F /I admits a greatest C*-seminorm, y, say. Hence
J = {c € F/I| y(c) =0} is a self-adjoint ideal of F/I, and the
quotient *-algebra Dy is a normed x-algebra with C*-norm given:
by |lc + J|| = p(c) (c € F/I). Let D be the C*-completion of
Dy and & the canonical *-homomorphism from F/I to D given by
n(c) =c+J. Any x-homomorphism from F /I to a C*-algebra can
be factored uniquely through D via «.
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For a € A let p(a) = np(a), and for x € M let W]} = V.
We denote by A x, M the C*-subalgebra of D generated by all
p(a)yW, (a € A, x € M). Clearly the map p: 4 — A x, M,
a +— p(a),is a *-homomorphism. One easily verifies that if (u;) is an
approximate unit for 4, then (p(u;)) is one for A4 x, M. Hence if
be Ax M, sois bW)] (=1lim; bp(u;)W)). Similarly Wb e Ax, M .
Thus we can define a multiplier Vy € M (4 xo M) by Vib = Wb,
bVx=bW)]. Themap V: M — M(A Xq M), x —Vyx, is an isomet-
ric homomorphism, and (p, V') is a covariant homomorphism from
(A,a, M) to Ax, M.

We call Ax,M the crossed product of A by M under the action «,
or the covariance algebra of the C*-dynamical system (4, a, M), and
we call p and V the canonical maps. We summarize the important
universal property of 4 x, M in the following result:

ProposITION 1.1. Let (A, a, M) be a C*-dynamical system. The
canonical maps p and V are injective, and the C*-algebra Ax, M is
generated by all p(a)Vy (a€ A, x € M). If (9, W) is any covariant
homomorphism from (A, o, M) to a C*-algebra B there exists a
unique *-homomorphism ¢ x W: A xo, M — B such that

(o x W)(p(a)Vx) =p(@)Wx  (acd,xeM).

Proof. Let F,1,D, p, V,r, W, be as above. Let (p, W) be a
covariant homomorphism from (4, o, M) to B. There is a unique
x-homomorphism y: F — B such that y(a) = ¢(a) (a € 4) and
w(x) =W, (xe M). Since y(I) =0 we get an induced *-homomor-
phism ¥:F/I — B, and hence a *-homomorphism y:D — B such
that ym = . Observe that

wpla)=vynp(a)=ypla)=vy(a)=9(a) (acd),
and
W) =yr(V) =9V =w(x)=Wx  (x€M).
Hence y(p(a)Vx) = y(p(a)Wy) = p(a)Wx, so the map
PpXW: AxXqyM — B, b~ y(b),

is the unique *-homomorphism such that (¢ x W)(p(a)Vx) = p(a) W5
forall ae A and xe M.

Now let (H, ¢) be a faithful non-degenerate representation of A
and (/2(M,H),9,W) the induced covariant representation of
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(A, a, M). Since ¢ is injective so is . If 0 = p(a) then 0 =
(@ x W)p(a) = @(a), so 0 = a. Thus p is injective. If Vi =V
then G(a)Wx = (7 x W)(p(a)Vx) = (@ x W)(p(a)V;) = F(@)W,, for
all a € 4, so by non-degeneracy of the representation (/2(M, H), )
of 4 we have W, = W,, and therefore x = y. Thus V is injec-
tive. ]

If (4, a, M) .is a C*-dynamical system we can, and do henceforth,
regard p as an embedding of 4 in A x, M . Thus we identify a and
p(a), and view A as a C*-subalgebra of 4 x, M . Any approximate
unit for A4 is one for 4 x, M also. In particular if A is unital so is
Ax, M.

In the classical situation where M is a group, 4 X, M is the usual
crossed product (as defined in [18] for example). In this case A x, M
is the closed linear span of all aV, (a € 4, x € M), as the linear
span is a x-subalgebra. This is not true for our more general crossed
products. We shall give a counter-example presently.

If M is any left-cancellative monoid and a: M — AutC the trivial
homomorphism we set C*(M) = C x, M. This algebra is unital
and the canonical map V:M — C*(M) is the universal isometric
homomorphism: if W:M — B is an isometric homomorphism into
a unital C*-algebra B then there exists a unique *-homomorphism
¢p: C*(M) — B such that oV =W . (Set ¢ = w x W where y is
the unital homomorphism from C to B.)

Note that V), generates C*(M).

If M is the additive monoid N then C*(N) is generated by the
nonunitary isometry V;, so we can identify C*(N) with the Toeplitz
algebra, the C*-algebra on the Hardy space H? generated by all
Toeplitz operators with continuous symbol. This is in fact the mo-
tivating example for our more general theory. The element V}* is not
in the closed linear span of all V,, = V" (n > 0), as V'V; # "V},
so C*(N) is not this closed linear span. Thus C*(N) is the counter-
example we promised a moment ago.

We close this section with some trivial but useful remarks. Sup-
pose that (4, a, M) is a C*-dynamical system and that (¢, W) isa
covariant homomorphism from (A4, a, M) toa C*-algebra B. Thert

(0 x W)(bVx) = (9 x W)(b) Wy

and
(p x W)(Vxb) = Wx(p x W)(b)
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forall b€ A x, M and all x € M. These equations hold because if
(u;) is an approximate unit for 4 then

(¢ x W)(bVx) = lim(p x W)(bu, Vz)
= tim(p x W) (b)p () W
= 1i?l((0 x W) (bu;) Wy
= (p x W)(b)Wx,
and similarly
(9 x W)(Vib) = lim(p x W)(Veuzb)

= lim(p x W)(ax(:)Vb)

=lim pax (1) We(p x W)(b)

=lim Wp(u;)(p x W)(b)

= li/{n Wi(p x W)(u;b)

= Wx(p x W)(b).

If (4,a, M) is a C*-dynamical system and y: A X, M — B is
a surjective *-homomorphism onto a C*-algebra B then there exists
a unique covariant homomorphism (¢, W) from (4, a, M) to B
such that ¢ x W = y . Uniqueness is obvious by the preceding remark.
To see existence, set ¢(a) = y(a) (a € 4), and set Wy (b) = w(Vyb),
w(b YW, =w(bVy) if be Ax, M and x € M.

2. Ordered groups. In this paper a pre-ordered group is a pair (G, <)
consisting of a discrete group G and a pre-order < on G (that is,
a reflexive transitive relation) such that if e is the unit of G and
Gt ={xeG|e<x} then

(a) The inequality x < y implies zx¢ < zyt forall x,y, z,t€ G;

(b) The cone G* generates G.

Note that Condition (b) is equivalent to the assertion that every
element x of G can be written in the form x = u~!v for some
u,veGt.

If < is a partial order (respectively a total order) we call (G, <)
a partially ordered group (respectively an ordered group). We shall
be principally interested in the latter, as it is the case in which the
strongest results can be obtained.

Pre-ordered groups exist in great abundance. We list a few examples
here.
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The additive group R is of course an ordered group with its usual
order, as are all its subgroups. We shall always assume subgroups of
R are endowed with the usual order.

All free groups can be made into ordered groups [1].

An abelian group can be made into an ordered group if and only if
it is torsion-free [9]. It is well-known that a discrete abelian group is
torsion-free if and only if its Pontryagin dual group G is connected
[20, p. 47]. In general a group can admit many translation-invariant
total orderings for which the corresponding ordered groups are not
isomorphic (as ordered groups).

If P is a cone in R” such that R” = P — P and we define x <p y
to mean y —x € P then (R", <p) is a partially ordered group with
positive cone R"t = P,

If (G3);en 1s a family of pre-ordered groups the product group
G is a pre-ordered group where for (x;) and (y;) in G we define
(x3) <(y;) tomean x; <y, forall A€ A.

In particular Z" is a partially ordered group with positive cone N”.

REMARK 2.1. If X, ..., x, are arbitrary elements of a pre-ordered
group G then there is a positive element # in G such that x; < u
for all j. To see this write x; = u;'v; where u;, v; belong to G*,
set u=v;---vy,, and observe that x; <v; <u.

We shall need some results from a paper of McAsey and Muhly
[10], so we introduce some of their terminology. If W is a map from
a discrete group G to B(H) where H is a Hilbert space we say W is
positive definite if W, = 1 and for every finite set x;, ..., X, in G the
matrix (W,-, );; is positive in M,(B(H)) = B(H™) . If moreover
(4, a, G) is a C*-dynamical system and (H, ¢) is a representation
of A then (H, ¢, W) is a positive definite covariant triple if (W is
positive definite and)

pax(a)Wy = Wyp(a) (ac A, x€Qq).

The key fact concerning (H, ¢, W) is that it can be dilated to get a
covariant representation of (4, a, G):

THEOREM 2.1 (McAsey-Muhly [10]). Let (A, o, G) be a C*-dynams
ical system where G is a discrete group, and let (H, ¢ , W) be a pos:
itive definite covariant triple for (A, o, G). Then there is a covariant
representation (H', ¢', W') of (A, a, G) and an isometry V: H —
H' such that p(a) = V*¢'(a)V forall a€ A and Wy = V*W]V for
all x € G.
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The result is asserted and proved in [10] in considerably more gen-
erality than we have stated it here. (The blanket second-countability
assumption in [10] is irrelevant to Theorem 2.1.) For related material
on dilations see [2], [6] and [8].

ProposITION 2.2. Let G be a pre-ordered group, and W: Gt — B
an isometric homomorphism into a unital C*-algebra B. Then there
is a unique extension W: G — B such that W ., = W;Wy for all
ue€ Gt and x € G. Moreover if x1,...,Xxn € G then the matrix
(le—lxj)jj is positive in M,(B).

Proof. Uniqueness is clear from Condition (b) of the definition of
a pre-ordered group.

Suppose that #, v and uv~! belongto G*. Then W, =W, W,
so Wy = W;W,, -1. Now suppose that an element x of G has two
expressions of the form x = uj'v; = u;'v, where u;,v; € G*.
Then Wu*l Wy, = W;z Wy, . This follows from our preceding observa-
tion and Remark 2.1, since there exists ¥ € G* such that uul‘1 and
uu,’ belong to G* and then Wi Wo, = WiW, oWy = Wil =
W} Wuuz_l Wy, = Wu*2 Wy, . It is therefore clear that we can extend W
to G in such a way that W -, = W;W, forall ue G* and x€G.

If x;,...,x, is an arbitrary finite set in G use Remark 2.1 to
choose u € G* such that y; = ux; € G* for 1 < j < n. Then
(Wxi_lxj)ij = (Wyi_lyj),.j = (Wytm’j)ij’ SO (le_lx]),-j 1s positive. a

Suppose that (4, a, G) is a C*-dynamical system where G is a
preordered group, that (H, ¢, W) is a covariant representation of
the C*-dynamical system (A4, o, G*), and that (to avoid ambiguity
here) W denotes the canonical extension of W to G. Then as we
have just seen W is positive definite, and it is easy to check that

(%) ¢ax(a)ﬁ7x = Wx(p(a) (ae A, x €G).

Thus (H, ¢, W) is a positive definite covariant triple for (4, a, G)
and therefore by Theorem 2.1 has a dilation to a covariant represen-
tation (H', ¢’, W') of (4, a, G). This will be of crucial importance
for the sequel.

We shall use V' to identify H as a closed vector subspace of H'.
If T € B(H') we denote its compression to H by Ty. It is easy to
verify that H is invariant for ¢’(4) from the fact that ¢'(a)y = ¢(a)
and therefore ¢'(a)yo'(b)y = ¢'(ab)y forall a, b € A. Similarly H
is invariant for all the unitaries W} (x € G*) since the compression
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of a unitary to H is an isometry implies that H is invariant for the
unitary., .

We make a few further observations on the extension W of W to
G: Firstly, Wx_l = Wx* for all x € G, and secondly, it is easy
to see using equation (x) that the linear span of all the elements
p(a)Wx Wy - Wy (a € A, X1, ...,Xn € G) is a subalgebra of
im(p x W), so its closure is im(p x W), since the elements ¢(a)W,
(ae A4, x € G") generate im(p x W).

In particular, 4 x,G™ is the closed linear span of all aVy Vi ---Vx
(ae A, x1,...,x,€G).

We shall be using these elementary observations frequently and tac-
itly.

To avoid ambiguity, having denoted the canonical map from G*
to M(A xo, GT) by V, let us denote the canonical map from G
to M(4x,G) by U. If Ut is the restriction of U to G* and
p: A — M(A4 x, G) the inclusion map, then (p, U*) is a covariant
homomorphism from (4, a, G*) to 4 X, G. Weset e = px U™,
so & A x, Gt — A X, G is the unique *-homomorphism such that
e(aVy) =alUy (a € A, x € GT). Since ¢ is surjective we call it the
quotient map. It gives us a means of relating the representations of
A x, G with some of those of 4 x, G . Far more important for our
purposes is to relate all of the covariant representations of (4, a, G*)
with covariant representations of (4, a, G), as we shall do using The-
orem 2.1.

We need to introduce a certain “universal” C*-algebra O(G) which
reflects the order structure of G, and indirectly, the group structure
also.

Suppose that (G, <) is a pair consisting of a non-empty set G and a
pre-order < on G. Let F be the free x-algebraon G andlet I be the
smallest self-adjoint ideal containing the elements x — x* and y — xy
for all x,y € G such that x < y. Set p, = x + [, and denote by
S’ the x-subalgebra of F/I generated by the projections p. (x € G).
If y isa C*-seminorm on S’ then y(p.)? = y(p.),so y(p.) < 1. It
follows from this observation that S’ admits a greatest C*-seminorm
vo. Theset J of all b € S’ such that yy(b) = 0 is a self-adjoint ideal
of S’, and we can define a C*-norm on the x-algebra S’/J by setting
16+ J|| = po(b) for all b € §'. We denote the C*-completion of
S’'/J by O(G, <) or O(G). Let P, =p) +J. Itisclear that P, isa
projection and that the C*-algebra O(G) is generated by the elements
P, (x € G). Note also that the map x — P, is decreasing.

2
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The universal property of O(G) is given by the following:

ProrosITION 2.3. Let G be a non-empty set and < a pre-order on
G. If 0: G — B is a decreasing map from G into the projections on a
C*-algebra B then there is a unique x-homomorphism ¢: O(G) — B
such that ¢(Py) =6(x) forall x€G.

Proof. Uniqueness is clear since the projections generate O(G).
To see existence let F, I, S, yo, J be as above. There exists a x-
homomorphism y: F — B such that y(x) = 6(x) for all x € G,
and since f(x) = 6(x)* and 0(x)8(y) = 6(y) if x < y we have
w(x —x*) and w(xy —y) = 0. Hence I C ker(y), so there is an
induced *-homomorphism : S’ — B. The map

S'—RY, by,

is a C*-seminorm on §’, so it is dominated by yg, that is, ||i7(d)]] <
v0(b). Hence (J) = 0, and we obtain a norm-decreasing *-homo-
morphism ¢: S’/J — B such that ¢(P;) = 0(x) for all x € G. By
density of S’/J in O(G) and continuity of ¢ we can extend ¢ to
obtain a x-homomorphism on O(G). O

Observe that O(G) can be badly behaved in general. For example,
let H be an infinite-dimensional Hilbert space and let G denote the
set of projections on H. Let < be the reverse of the usual partial
order on B(H),, restricted to G. Then the inclusion map G — B(H)
is decreasing, and therefore induces a *-homomorphism ¢: O(G) —
B(H) such that ¢(P;) = x for all x € G. Since the closed linear
span of the projections is B(H), ¢ is surjective. Hence O(G) is not
nuclear, since B(H) is not.

Now suppose that G is an arbitrary pre-ordered group. For each
x € G the map

G — 0(G), Y Py,

is decreasing, and therefore by the universal property of O(G) there
is a unique *-homomorphism fy: O(G) — O(G) such that fx(P,) =
Py, forall y € G. It is easily checked that B, € AutO(G) and that
the map

B: G— AutO(G), X = By,

is a homomorphism. We shall call f the canonical action of G on
0(G).
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In the next section we shall represent 4 X, G* in terms of the
algebras O(G) and A4 and the actions £ and a of G.

The algebra O(G) is abelian if G is a totally ordered set. This
implies that O(G) is nuclear in this case, and this will be important for
some results in the sequel. We can realize O(G) in a more “concrete”
fashion in this situation. Let Q(G)~ denote the set of decreasing
functions from G to {0, 1}. We define a linear order on Q(G)~
by setting w < o' if w(x) < &'(x) (x € G). Denote by +o00, —00
the functions on G that are constantly 1, O respectively, so oo €
Q(G)~ and —o0 < w < +oo for all w € Q(G)~. For x € G define
X € Q(G)~ by
1, ify<x,

x(y):{o’ if y > x.

The map G — Q(G)™~, x — X, is strictly increasing.

We endow Q(G)~ with the relative topology from the product space
{0, 1}9, and as the product is compact Hausdorff, it follows that
Q(G)~ is also a compact Hausdorff space (as it is a closed subset).
Hence Q(G) = Q(G)~\{—o0} is a locally compact Hausdorff space.

For x € G let P, € Cy(Q(G)) be the projection defined by Py (w) =

w(x). Clearly x < y if and only if P, > P If x vy =max{x, y}
we therefore have PxPy = vay for all x,y € G. This implies
the linear span of all P, (x € G) is a (separating) *-subalgebra of
Co(€2(G)), and therefore by the Stone-Weierstrass theorem, it is dense
in Co(Q(G)).

PROPOSITION 2.4. Suppose that < is a total order on a non-empty set
G . Then there is a unique *-isomorphism ¢ from O(G) to Co(Q(G))
such that ¢(Py) = Py forall x€G.

Proof. Since the map G — Cyp(Q(G)), x +— P, is decreasing there
is a unique *-homomorphism from O(G) to Cy(2(G)) such that
o(P,) = P, for all x € G. We shall construct an inverse for ¢.
First observe that O(G) is abelian since PxP, = Pxy, = P,Px, for
all x, y € G (this uses the fact that G is totally ordered). If 7 is a
character on O(G) define 7' € Q(G)~ by setting 7/(x) = t(Py). Thus
for x1,...,x,€G and A, ..., A, € C we have

n n
T(ZAI'PXI>I= ) SI if'x
i=1 =1
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Hence
n

2 Aibx,

i=1

S l

n
D iPy,
i=1

We therefore have a well-defined linear map y frgm the linear span
of all B (x € G) to O(G) given by w(X7, 4:Px) = Y0 AiPx .
Clearly y is a *-homomorphism, and norm-decreasing by the in-
equalities above. Therefore we can extend it to a *-homomorphism
from Cy(2(G)) to O(G). Since y(Py) = Py forall x € G, the maps
v and ¢ are inverse to each other, and so the result is proved. O

If G is not a singleton then Q(G)\{+oo0} is non-empty. For x, y €
Gset[X,7) ={weQ(G)|X<w<7¥}. Thesesets [X,y) (x,y €
G) form a base of compact open sets for the topology of Q(G)\{+o0},
so Q(G)™~ is totally disconnected, as can also be seen by noting that
{0, 1}9 is totally disconnected. If G admits no greatest or least ele-
ment then {X | x € G} is dense in Q(G)™.

Observe that even if G is only a pre-ordered group (that is, < may
not be a partial order) the algebra O(G) is still abelian if every pair
of elements of G can be compared (x <y or y < x). For example
if Z2? is endowed with the pre-order defined by (m, n) < (m’, n') if
n < n',then O(Z?) is abelian.

The algebra O(G) is not abelian for all partially ordered groups. In
particular, if G = Z? is endowed with the product partial order, so
Z?+ = N2, then O(G) is non-abelian. To see thislet u, v be a pair of
commuting isometries on a Hilbert space H whose range projections
uu* and vv* do not commute. (For instance, take H = H? the
Hardy space on the circle, and let u, v be the Toeplitz operators on
H with symbols z and (A—z)/(1—Az) where A is a non-zero number
of modulus less than 1, and z is the inclusion map of the circle in
the plane.) If (m, n) € Z? define the projection Pin,ny to be 1 if
(m,n) ¢ N? and to be u™v"u™v" if (m,n) € N>. Then the
decreasing map G — B(H), x — P, induces a *-homomorphism
¢: O(G) — B(H) whose range is not abelian since it contains uu*
and vv*. Hence O(G) is non-abelian as claimed.

3. The corner crossed product representation. If 4 and B are C*-
algebras we denote the maximal C*-tensor product by 4 ® B. We
shall need to use the universal property this enjoys, namely, if C is
a C*-algebra and ¢: 4 — C and y: B — C are *-homomorphisms
whose ranges commute then there exists a unique *-homomorphism
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n: A B — C such that n(a ® b) = ¢(a)w(b) for all a € A and
beB.

Suppose (A, a, G) is a C*-dynamical system where G is a pre-
ordered group. If Zy = O(G) ® A we have a C*-dynamical system
(Zy, 7, G) where y. = By ® ayx (x € G). Let Z denote the crossed
product Zy x, G and let U: G — M(Z) be the canonical homomor-
phism.

Choose an approximate unit for Z; (and hence for Z) of the form
(f ® u;) where (f;) is an approximate unit for O(G) and (u;) is
one for 4. If x € G and b € Z one readily verifies that the nets
((Pcf, ®u;)b) and (b(f,Px ® u;)) are convergent in Z . One way to
see this is to show that the set B of all b € Z for which these nets
converge isa C*-subalgebra of Z containingall (f®a)U, (f € O(G),
a€A, yeG),andso B =Z, as the elements (f ® a)U, generate
Z . We can thus define P, € M(Z) by the equations

Pyb = li?l(Pxﬁl ®u;)b,
bP, = li/{n b(fiPx ® uy).

It is easily checked that P, is a projection, that the map x — P, is
decreasing, and that P,(f®a) =P, f®a,and (f®a)Px = fPr®a
for all f € O(G) and a € 4. We have U,P,U; = P), (x,y € G).
To see this it suffices to show that if f € O(G) and a € 4 then
Uy Py U-(f®a)= Py (f ®a), and this follows from the equations

UyPxU,-(f®a) = UyPx(B,-1(f) ® a)-1(a)) U,
= Uy(PeB,- (/) ® a1 (a)U, -
=By(Px)f®a
=Pf®a
= -PJ’x(f ® a).

For x € Gt set W = pU,p where p = P,, and observe that
pUypU; = PP, = fx = UxpUy, so pUwp = Uyp. Hence for all
x,y € G* we have W Wy =p, W, =p, and Wny—ny We,
define Wy € M(pZp) for x € G* by setting Wyb = be and bW, =
bWy, if b € pZp. The map W: G+ — M(pZp), x — Wy, is an
1sometric homomorphism.

If ¢ denotes the *-homomorphism 4 — pZp, a — P.®a, it
is easily checked that (¢, W) is a covariant homomorphism from
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(A, a, G*) to pZp. We call the *-homomorphism ¢ x W the canon-
ical map from A x, Gt to pZp. It is useful also to give p a name:
it is the distinguished projection of M(Z).

THEOREM 3.1. Let (A, o, G) be a C*-dynamical system where G
is a preordered group, let Z = (O(G) ® A) x, G, and let p be the
distinguished projection of M(Z). Then the canonical map from A X,
G* to pZp is a x-isomorphism.

Proof. We retain our previous notation.

We show first that ¢ x W is surjective. The algebra Z is the closed
linear span of the elements bU, (b € Zy, x € (), and therefore the
closed linear span of the elements of the form

(*) (le®a1)"'(Pxn®an)Ux (x,x]'EG,aJ'EA),

since the products Py --- Py have closed linear span O(G). If b is
an element of the form in (%) we claim that pbp € im(p x W), and
this will show that ¢ x W is surjective. To prove the claim observe
that we can write b in the form

b == U;l Uzl (0(61’1)(];2 Uzzw(alz) crt U_];; Uzn¢(a;’)U;ﬂ+l UZ

n+l

for some y;, z; € G* and a} € A, where we use the facts that
Py®a = Ux(P.®a,(a))U_ - and that every element of G can be

X
written in the form y~!z for some y, z € G*. Hence

pbp = Wy W: 9(a)) Wy W 9(ay) - W) W; p(ap) Wy W, |,

since pp(a)p = ¢(a) forall ae€ A, and Uyp =W, if xe GT. It
follows that pbp € im(p x W) and the claim is proved.

Now we show that ¢ x W is injective. Represent M (A x, GT)
as a C*-subalgebra of B(H) for some Hilbert space H with idy €
M(A x, GT). Let p: A — B(H) be the inclusion map. The triple
(H, p, V) is a covariant representation of (4, a, G*), where V' de-
notes the canonical map from G* to M (A4 x, G*), so by the dilation
theorem of §2 there exists a covariant representation (H', p’, V') of
(A, a, G) dilating (H, p, V), where H is a closed vector subspace
of H' invariant for p'(a) (a € A) and V] (x € G*).

Let Q € B(H') be the projection onto H. Then of course the
invariance properties of H mean that Qp'(a) = p'(a)Q forall a € 4
and QV/Q = V]/Q for all x € G*, and the dilation property means
that p'(a)y = p(a) forall ae 4 and (V])y =V, forall x € G*.
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For an arbitrary element x of G set Qx = V/QV/*. Then Q, isa
projection, Q, = @, and the map x — Q is decreasing since if x <y
then QxQ, = VZQV! WyQV;" = ViQV!., QV;* = ViVl QV;" (as
x~ly € G* implies that QV;_,yQ = V;_,yQ). Hence QxQ0) = Q).
It follows from Proposition 2.3 that there exists a *-homomorphism
wo: O(G) — B(H') such that yy(Py) = QOx (x € G).

If x€ G and a € 4 then p'(a) commutes with yy(Px), since

Wo(Px)p'(a) = VQV -.p'(a)
= ViQp' (a,-(a)V]
= Vyp'(a,-1(a))QV]
= P,(a)V;QV;~1
= p'(a)yo(Px)-

!
-1
-1

This implies that p'(a) commutes with all yo(f) (f € O(G)). Hence
there is a unique *-homomorphism y: Z, — B(H') such that

wvi(f®a)=wo(f)p'(a) forall f€O(G) and ac 4.
If x,ye G and a € 4 then

Y1(7x(Py ® a)) = y1(Pxy ® ax(a))
= Qxyp'(ax(a))
— VKOV VL (ax(a)
— ViwoP)P @)V,
= Vayi(Py ® a)Vy™.

Hence for all b € Zy, wi(yx(b)) = Viyi(D)V})*, so (H', y;, V') is
a covariant representation of (Z,, y, G). Observe that if f € O(G)
and a € A then we have (y; X V') ((f ® a)p) = wo(fP)p'(a) =
wo(f)@p'(a) = wo(f)p'(@)Q = ((v1 x V')(f ®a))Q. Hence

(y1 x V')(bp) = (w1 x V')(b)Q forallbe Z.
It follows that

w2: pZp— B(H), b (w1 x V'),
is a *-homomorphism.

The composition y»(¢ x W): AX, Gt — B(H) is just the inclusion.
To see this we need only show this map leaves al, fixed for each
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a€ A and x € G*, and this follows from the equations

va(p x W)(aVy) = ya(e(a)Wy)
= (y1 x V')(@(@)Wx)u
= (W1 X V')((Pe ® @)UxPe)
= (y1 X V')((Pe ® a)Ux)Qu

=W (Pe®a)V{)u
= (@ (@)V)u
= alx.
Since w,(p x W) is injective, so is ¢ x W, and this means we have
shown ¢ x W is a *-isomorphism. O

It is well known that if (4, a, G) is a classical C*-dynamical sys-
tem where A4 is nuclear and G is amenable, then 4 x, G is nuclear
also.

THEOREM 3.2. Let (A, o, G) be a C*-dynamical system where G
is an amenable ordered group and A a nuclear C*-algebra. Then
A xo Gt is nuclear.

Proof. Since O(G) is abelian, and A is nuclear, the algebra O(G)®
A is nuclear. Hence Z = (O(G) ® 4) x, G is nuclear, as G is
amenable. It follows that the hereditary C*-subalgebra pZp is nu-
clear, and therefore so is 4 x, G*. O

Of course, using the same proof, Theorem 3.2 is true if G is only
assumed to be a pre-ordered amenable group for which O(G) is nu-
clear.

Some of the deepest results of the theory of C*-algebras are con-
cerned with giving conditions on a C*-dynamical system which en-
sure the crossed product is simple or prime. This is important as the
simple and the prime C*-algebras play a role in the C*-theory analo-
gous to that played by factors in the theory of von Neumann algebras.
Incidentally there are some indications which suggest that prime C*-
algebras (i.e. those in which every pair of non-zero closed ideals have
a non-zero intersection) are the more appropriate analogue of factors,
rather than simple C*-algebras. It turns out that while it is “hard” for
A X, G to be simple it is impossible for 4 x, G* to be so if G is
non-trivial and partially ordered. However, while it is still “hard” for
A x, G to be prime, it seems to be “easier” for 4 x, G* to be prime
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(compare C*(Z) which is not prime, with C*(N) which is). More
evidence for this claim will be given in §4.

ProrosITION 3.3. Let (A, a, G) be a non-trivial C*-dynamical sys-
tem where G is a partially ordered group. Then Ax,G™" is not simple.

Proof. Suppose that 4 x, G* is simple, and suppose that the maps
V: Gt - M(AX,GY), U: G- M(AX,G),and &: AX,Gt — AX,G
are canonical. If x € G* and b, b, € A xo GT with b Vy = bV
then ¢&(b;)Uyx = €(by)Uyx, so €(b;) = €(by) (as Uy 1is unitary). Hence
by = by, as ¢ is injective (its kernel must be zero by simplicity of
A Xy, GY).

Suppose that (H, ¢) is a faithful non-degenerate representation
of A and (I?(G*, H), $, W) is the induced covariant representa-
tion of (4, a, G*). Then (/2(G*, H), 9) is also faithful and non-
degenerate. If b € 4 x, Gt then (bVyV)Vx =bVx,s0 vByVy =b,
and therefore @(b)WxWy = 9(b). By non-degeneracy W W} =1,
that is, W, is a unitary for all x € G*.

Now choose a non-zero element # of H, and let f be the element
of I?(G*, H) such that f(e) = n and f(y) = 0, y > e. Choose
x > e. Then there exists g € [?(G*, H) such that W, g = f, so
(Wxg)(e) = n # 0, implying e € xG*, a contradiction since G is
partially ordered. This proves the projection.

REMARK 3.1. The partial order assumption cannot be dropped in
the preceding proposition. For example let G be a group endowed
with the trivial pre-order such that Gt = G. Then of course 4 X,
Gt = A x, G is just a classical crossed product, and therefore it may
be simple.

Let (4, a, G) be a C*-dynamical system where G is a pre-ordered
group, and let 7 be a G-invariant closed ideal of 4. The closed linear
span J of all aVy Vy ---Vy (a€l,xy,...,x, €G) is an ideal of
A x, G*, and any approximate unit for 7 is one for J also. Hence
ANJ =1I. In fact J is the closed ideal of 4 x, G* generated by I.

Recall that a classical C*-dynamical system (A4, a, G) is G-prime
if for every pair of non-zero G-invariant closed ideals of A thegr
intersection is non-zero.

ProPoOsSITION 3.4. Let (A, a, G) be a C*-dynamical system where
G is a pre-ordered group and the crossed product A x, Gt is prime.
Then (A, a, G) is G-prime.
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Proof. Let I, I, be non-zero G-invariant closed ideals of 4 gen-
erating the closed ideals J;, J, respectively in 4 x, G*. As J;, J,
are non-zero, J; N J, contains a non-zero element, b say. Let (u;)
and (v,) be approximate units in I; and I, respectively. Then
b = lim; ,bu;v,, so for some indices 4 and u the product u;v,
is non-zero, and since u#,v, € I} NI, this shows that I; N/, is non-
zero. ]

We recall some definitions and results of the classical theory. Sup-
pose that (4, a, G) is a non-trivial separable C*-dynamical system
where G is an abelian group. The Arveson spectrum Sp(a) of a is
the set of all y € G (where G is the dual group of the discrete group
G) such that there exist unit vectors a, € A for which

Jim [lax(an) — 7(X)an|| =0  (x € G).

The set Sp(a) is closed in G and its annihilator Sp(a)! is the set of
all elements x of G for which a, =id. If B is a G-invariant C*-
subalgebra of 4 we get a new C*-dynamical system (B, o|B, G) by
restricting a to B. The Connes spectrum of «a is a closed subgroup
of G defined by the equation

I(a) = ()Sp(a| B)
B

where B runs over all non-zero G-invariant hereditary C*-subalgebras
of A. The following conditions are equivalent.

(a) The crossed product 4 x, G is prime (respectively simple);
~ (b) The algebra A4 is G-prime (respectively G-simple) and I'(a) =
G.

These results can be found in [16] and [17].

If G is a pre-ordered group, the corresponding equivalences for the
C*-dynamical system (4, o, G*) do not hold. This is not surprising,
as Condition (b) makes no reference to the order structure of G. For
example, consider the C*-dynamical system (C, a, Z) (a trivial, of
course). The algebra C x, Z* = C*(N) is prime (it is the Toeplitz
algebra, as we saw already), but I'(a) # Z. If instead o is the usual
action by an irrational rotation of angle 6 on the circle group T,
then (C(T), a, Z) is G-simple and I'(a) = Z, as is well known, but
C(T) x4 Z* is not simple (Proposition 3.3).

THEOREM 3.5. Let (A, o, G) be a non-trivial separable C*-dynami-
cal system where G is an abelian pre-ordered group. The following are
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equivalent conditions:

(a) The crossed product A x, G* is prime;

(b) The tensor product O(G)®A is G-prime for the action y = f®a,
and T(y)=G.

Proof. Let Zy = O(G)® A and Z = Z) x, G, and let p be the
distinguished projection of M(Z).

Suppose J is a closed ideal of Z containing pZp. Then J con-
tains p(P,®a)p = P, ®a forall a € A. Hence if U:G —» M(Z)
is the canonical map, J contains Uy (P, ® @)Uy = Bx(Pg) @ ax(a) =
P, ® ax(a). It follows that Zo C J,andso Z =J. Thus pZp isa
full hereditary C*-subalgebra of Z .

If C is a non-zero C*-algebra let Prim(C) denote its primitive
ideal space. Then C is prime iff every two non-empty open sets of
Prim(C) have non-empty intersection.

As pZp is full and hereditary in Z , the map

Prim(Z) — Prim(pZp), J—=JnNnpZp,

is a homeomorphism, and therefore Z is prime iff pZp is prime.
The theorem now follows using the Pedersen-Olesen results applied to
(Zy, 7, G), and the *-isomorphism of A x, G* with pZp. o

If G is an abelian partially ordered group the Toeplitz algebra T(G)
of G as defined in [12] is just the algebra C*(G*). It was shown in
[12] that C*(G™) is primitive if G is totally ordered. The central
idea of the proof is essentially a use of the special case of Theorem
3.5when A=C.

If (4, a, G) is a non-trivial C*-dynamical system where G is a
preordered group, then as we saw in the proof of Theorem 3.5, pZp
is a full hereditary C*-subalgebra of Z . Hence Z is type I iff pZp
is type I. Otherwise put, Z is type I iff 4 x, G* is type L.

Incidentally, if (4, a, G) is separable then A4 X, G* (= pZp) is
stably isomorphic to Z by a well-known result of Brown [3] on full
hereditary subalgebras.

We are now going to need the following result:

THEOREM 3.6 (Zeller-Meier [22]). Let (4, a, G) be a classical sep*
arable C*-dynamical system, where G acts freely on n (the spectrum
of A). The following conditions are equivalent:

(a) Axo, G is type 1

(b) A is type 1 and every G-orbit in A is discrete.
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If a group G acts on sets Q;, Q, we get an action of G on Q; xQ,
by setting x(w;, W) = (xw;, Xw,).

THEOREM 3.7. Let (A, a, G) be a non-trivial separable C*-dynami-
cal system where G is an ordered group acting freely on Q(G) x 4.
Then the following conditions are equivalent:

(a) A %o Gt of type I,

(b) A is type 1 and the G-orbits in Q(G) x A are discrete.

Proof. By [5] there is a canonical homeomorphism 6: Zo — Q(G) x
A where as usual Z; = O(G)®A. One easily checks that 0(xw, xt) =
x0(w, 1) (weQ(G), te A, xe€G). Also 4 is type 1 iff O(G)® 4
is type 1. The result is now immediate from Theorem 3.6. o

4. Covariant representations. The theory that we develop in this
section is concerned only with the totally ordered case. Although some
fragments can probably be done in greater generality, we shall give
counter-examples to show that the principal results do not extend to
the partially ordered case. Thus for ease of exposition we shall confine
our attention to totally ordered groups throughout.

We shall be principally concerned with the question of what con-
ditions on a covariant representation (H, ¢, W) ensure the corre-
sponding representation (H, ¢ x W) is faithful. However we begin
with a result on irreducible representations.

THEOREM 4.1. Let (A, o, G) be a C*-dynamical system where G
is an ordered group. Let (H, ¢) be a non-zero irreducible representa-
tion of A and suppose that (1*(G*, H), @, W) is the induced covari-
ant representation of (A, o, G*). Then (I*(G*,H), 9 x W) is an
irreducible representation of (A, o, G*).

Proof. Let P be a projection in the commutant of im(@ x W), so
that Pp(a)Wy = 9(a)WyP (a € A, x € G*). Since (I3(Gt, H), 9)
is nondegenerate we have PW, = W, P. (To see this choose an ap-
proximate unit (u;) for 4 and note that (@(u;)) converges strongly
to 1 on [2(G*, H).)

For x € G* and n € H define n, € I*(G*, H) by

n, ify=x,

nx(y)={0, if y 4 x.
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If x,z € G* we have W,n, = 1,5, and if x < z, then W}n, =
0. It follows that if n,n' € H and y, z € G+ with y # z then
{(Pny, n;) = 0 (for example, if y < z, then (Pny, 1) = (W} Pny, n,)
= (PW}ny, n,) = 0). In particular, if z > e we have 0 = (P, 1})
= ((Pne)(z), n'), for all ' € H. Hence (Pn,)(z) = 0. Thus there is
a unique element Qn € H such that Py, = (Qn).. Clearly the map
Q: H— H, n+— Qn, is continuous and linear.

Let S € B(/3(Gt, H)) be the diagonal operator given by (Sf)(y) =
Qf(y) (fel*(G*,H),y e G"). If n€ H we have Py, = PWyn, =
W,(Qn)e = (Qn)y = Sny. Hence P = §. It follows that Q is a
projection. Now if a € 4 then P@(a) = p(a)P, so if n € H we have
Py(a)n. = 9(a)Pn. implies Q¢(a)n = ¢(a)Qn. Hence Q € (imp)’,
and therefore Q = 0 or 1 by irreducibility of (H, ¢). Thus P =0
or 1, and hence (/2(G*, H), @ x W) is irreducible. O

Let (4, a, G) be a non-trivial C*-dynamical system where G is
an ordered group. We say a covariant representation (H, ¢, W)
of (A, a,G*t) is skew if for a € A and x € G, the equality
p(ax(a)) = Wyp(a)W; impliesthat a=0 or x=e. If (H, 9, W)
is skew then ¢ is injective, and W, is non-unitary for x > e. If
(H, ) is a faithful representation of A then (I2(G*,H), 9, W),
the induced covariant representation of (4, «, G*), is skew. For if
x >e and a € 4 are such that poy(a) = Wyp(a)W;, then given any
f € IX(G*, H) we have (Pax(a)f)(e) = (Wxp(a)W; f)(e) = 0 (as
e ¢ xG*), so pax(a)f(e) = 0. Hence pax(a) =0, so ax(a) =0,
and therefore a = 0.

It follows that ax(a) = VxaVy =a=0 or x=e, for a€ A and
x € G*. (Take a faithful representation of 4 and apply the induced
covariant representation to the above equation.) Hence if (H, ¢, W)
is any covariant representation of (A4, «, G*) where ¢ x W is in-
jective we must have (H, ¢, W) skew, for if gax(a) = Wxp(a)Wy;
we have (¢ x W)(ax(a)) = (p x W)(VxaVy), so ax(a) = Vialy,
implying that a=0 or x =e.

Now suppose that (4, a, G) is a C*-dynamical system where G is
an abelian ordered group. Let G _denote the Pontryagin dual group o of
G . Of course, as G is discrete, G is compact. If y € G then the map
VY: Gt — M(Ax,G*), x — y(x)Vy, is an isometric homomorphism.
Letting p: A — Ax,G* be the inclusion map, (p, V'?) is a covariant
homomorphism from (4, a, G*) to A X, G*,s0 dy =px V7 isa
s-homomorphism from A4 x, Gt to itself. Since J, is the unique
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*-homomorphism such that d,(aVy) = y(x)aVy (a€ 4, x € GY), itis
clear that 4,6, =9,, forall y, '€ G. Thus oy € Aut(4x,G"), and
5: G — Aut(4 xq G*), y — J,, is a homomorphism. We call J the
(dual) action of G on A x,G*, and we say a subset S of 4 x, G*
is G-invariant if 0,(S)=8(ye G).

Let us say that a covariant representation (H, ¢, W) of (4, a, G%)
is amenable if there is a homomorphism J: G — Aut(im(p x W),
y = 6y, such that &,(p(@)Ws) = y(X)p(@Ws (a € 4,x € G*,
y € @). Clearly J is unique. We call it the action of G on
im(g x W). We shall use the same symbol ¢ for this action, and for
the action on A x, GT—there should no risk of confusion. The reason
for the terminology amenable will be apparent shortly. We shall see
that 6 plays a crucial role in analysing the covariant representation
(H,p, W).

A routine argument shows that a covariant representation (H, ¢,
W) of (4, a, G*) is amenable if and only if ker(p x W) is G-
invariant. If there exist unitaries U, € ¢(4)’ such that the Weyl
commutation relations

UyWe = p(x)WeU,  (x€Gt,yeG)
hold, then it is clear that im(¢ x W) is invariant under Ad U, . Letting
J, be the restriction of AdU, to im(¢ x W) we get an action J of
G on im(g x W),so (H, ¢, W) is amenable.

If (H, ¢) is a representation of 4 then the induced covariant rep-
resentation (/2(G*, H), @, W) of (4, o, GT) is amenable. (De-
fine unitaries U, € @(4)" by setting (U,f)(x) = y(x)f(x) (f €
I2(G*, H), x € G*). Then U,Wy = y(x)W, U, (x € G*,y € G).
Hence (I2(G*, H), @, W) is amenable by the remarks above.)

Not all covariant representations are amenable. We present an easy
counter-example. Let G be non-trivial. If ¢: C —» B(C), A — A1,
and W: G — B(C), x — 1, then (C, ¢, W) is a non-amenable
covariant representation of (C, o, G*) (of course a is the trivial
action on C).

Again suppose that (4, a, G) is a C*-dynamical system where G
is an abelian ordered group. Let (H, ¢, W) be an amenable covariant
representation of (4, o, G*). Then for each b € B =im(¢ x W) the
map G — B, y — 6,(b), is continuous. This is so because the set
of all b € B for which the above map is continuous is a C*-algebra
containing the generators ¢(a)W, (a € A, x € G*) of B, and hence
this algebra is B itself.
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Let dy denote normalized Haar measure on G. For be B we set

b) = /aayw)dy.

We call the map u: B — B, b — u(b), the mean associated to the
covariant representation (H, ¢, W). Clearly u is linear and norm-
decreasing. We define

B’ ={be B|6,(b)=b(y€G)}.

This isa C*-algebra of B, which we call the fixed-point algebra of B.
Clearly d,(u(b)) = u(d) (y € G), so uu(b) = u(b) (b € B). Hence
u* = p and u(B) = BY. Itisclear thatif b € Bt, then u(b) >0, and
if additionally u(b) = 0 then b = 0. This strict positivity of u will be
a key point in our result on skew covariant representations. We now
need to identify the algebra B’ more closely. Set Q, = W, W} for
x € G. Then Qy isaprojection, Ox =1 if x <e,and Q,Q0x = Q)v:
for y,zeG.
If be B and x € G it is easily checked that

5, (BWx) = y(x)8,(8) Wi

Hence if b = p(a)Wy ---Wy with a€ 4 and x,...,x, € G we
have

/7 cXn)p(@) Wy - Wy dy

(L soi)oiam, -,

_{(o(a)le---Wx”, if ;.- xp=e,
~lo, if xp - x, # e

A simple induction argument on n shows that W, --- W is of the
form Q, for some x € G if x;---x, =e. Hence u(b) (p(a)Qx or
u(b) = 0. In either case u(b) is in the closed linear span C of all the
elements ¢(a)0x (a € A, x € G). As B is the closed linear span of
all elements g(a)Wy --- Wy (a€ A4, x;1,..., X, €G),s0 u(B)CC,
and obviously C C u(B),so C = u(B).

Explicitly, we have just shown that B? is the closure of the hnear
span Cp of all ¢p(a)Qx (@ € A, x € G*). Note also that Cj is
obviously a *-subalgebra of B?, as ¢(a)Qx = Qx¢(a).

If we regard M (A4, x,, G*) asa C*-algebra on some Hilbert space
K with idy € M(A x, G*) and let p:4 — B(K) be the inclu-
sion map then (K, p, V') is an amenable covariant representation of
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(A, a, G*) and pxV: Ax,G* — B(K) is the inclusion map. We call
(K, p, V) the identity covariant representation of (4, a, G*). We
therefore have a mean u: Ax,G* — Ax,G* and fixed-point algebra
(A xq GT). Also, (K, p, V) is skew if (4, a, G) is non-trivial.

A few general remarks are needed before the next lemma. Let C

be a C*-algebra. If p;, ..., p, are pairwise orthogonal projections in
C then

n

;picpi = max [lpicpll  (c€0).
If g1,...,q, are projections in C such that ¢4 > ¢, > -+ > ¢y
then ¢, — g2, ..., gu—1 — qn, qn are pairwise orthogonal projections.
Moreover, if ¢;,...,c, € C andweset by=ci+---+¢; (1<i<n)
then

n n—1
Y cigi =) bi(di — dit1) + bndn.
i=1

i=1

LEMMA 4.2. Let (A, a, G) be a non-trivial C*-dynamical system
where G is an abelian ordered group, and suppose that (H, ¢, W) is
an amenable skew covariant representation of (A, o, G*). Then there
exists a unique x-isomorphism 6: (A x, G*)® — (im(p x W))? such
that 0(aViVy) = p(a)WWr (a€ A, x€G).

Proof. Uniqueness of 0 is obvious. Put P, = V, V' and Qy =
W Wy . To see existence of 6 it suffices to show

‘ ) ’ )
i=1 i=1

for a;,...,a,€ 4 and x;, ..., x, € G. We may even suppose that
e<Xxy<:-<Xp,sothat Py >--->Px and QOx >--->QOx .

. Pxi

Cram. |lo(a)Qx|| = llal] = |lg(@)(@x — Qy)I| if e < x <y and
acA.
The result follows easily from the claim, because

n—1

> (Zmaj))(Qx, 0..)+ Zq)(aj)Qx
=1 “j=
Za,

= max Px

1<i<n
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by the remarks preceding this lemma. To prove the claim, let us
first note that for e < x < y the maps from A to B(H) given by
aw ¢(a)Qx and by a — ¢(a)(Qx—0Qy) are *-homomorphisms, so the
claim is proved if we show they are injective. Now if ¢(a)Qy = 0 then
Wipa, 1 (a)Wy =0,s0 pa -i(a) =0, implying that a = 0, by injec-
tivity of ¢ . On the other hand if ¢(a)(Qx—Q,) =0,set z=x"'y (so
z > e), and observe that Wyga, -1(a)W;} = WiW, a3 (a)W; Wy, so
for b = a;}(a) we have ga,(b)W,p(b)W;, implying that b = 0 by
skewness of (H, ¢, W). Hence a=0. ]

THEOREM 4.3. Let (A, a, G) be a non-trivial C*-dynamical sys-
tem where G is an abelian ordered group, and let (H, ¢, W) be a
covariant representation of (A, a, G1). The following statements are
equivalent:

(a) @ x W is injective,

(b) (H, ¢, W) is amenable and skew.

Proof. We have already seen that (a) = (b). Assume therefore that
(b) holds. Let x4 and v be the means associated to the identity covari-
ant representation of (4, a, G*) and to the covariant representation
(H, ¢, W) respectively. Let P, = V, V¥ and Qx = Wy W} (x € G).
By Lemma 4.2 there is a *-isomorphism

6: (A xq GH)? — (im(p x W))°

such that 0(aPy) = ¢(a)Qx (@ € A, x € G). We claim that
v(p x W) =0u. To see this it suffices to show that

(*) v(p x W)(aVy, - V) = 0u(aVy - Vx)

forall x;,...,x, € G and a € A. Butif x;---x, # e then both
sides of (*) are obviously zero. So we may suppose that x;---x, = e
in which case aVy ---V; is of the form aPy for some x € G. Then
v(p x W)(aPy) = v(p(@)Q:) = p(a)Qx = f(aPy) = Ou(aPy). Thus
() holds and the claim that v(p x W) = 6u is proved.

Now suppose that b € ker(p x W). Then v(p x W)(b*b) = 0,
so Qu(b*b) = 0. Hence u(b*b) = 0 (as 6 is a x-isomorphism),
from which b*b = 0 (by strict positivity of u), and so b = 0. Thus
ker(p x W) =0 and we have shown that (b) = (a). 0

REMARK 4.1. If G is an abelian partially ordered group recall that
the algebra C*(B*) = C x, G*, where the action « is (necessar-
ily) trivial. Let H?(G) be the closed linear span in the Hilbert space
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Lz(@) of the elements (ex),cs+ Where for x € G the map &y: G-T
is defined by setting e,(y) = y(x). For x € G* let Wy be the isome-
try in B(H?(G)) defined by setting Wy(f) = &xf (f € H*(G)). The
map W: G+ — B(H*(G)), x — Wy, is an isometric homomorphism,
and it is easy to check that (y, W) is an amenable skew covariant
homomorphism of (C, o, G*), where y: C — B(H?(G)) is the uni-
tal homomorphism. However if G is not totally ordered then y x W
is not necessarily injective. For example, take G = Z, with the pos-
itive cone G* = N\{1}. Then G is a partially ordered group and it
is shown in [12] that in this case ¥ x W is not injective. Thus the
totally ordered assumption in Theorem 4.3 cannot be weakened to a
partially ordered condition.

THEOREM 4.4. Let (A, o, G) be a non-trivial C*-dynamical sys-
tem where G is an abelian ordered group. If (H, ¢) is a faithful
representation of A and (I*(G*, H), @, W) is the induced covariant
representation of (A, a, G) then @ x W is injective.

Proof. The triple (I*(G*, H), 9, W) is skew and amenable, so
@ x W is injective, by Theorem 4.3. O

THEOREM 4.5. Let (A, a, G) be a non-trivial C*-dynamical system
where A is primitive and G is an abelian ordered group. Then Ax,G*
is primitive.

Proof. Let (H, ¢) be a faithful irreducible representation for A.
Note that ¢ # 0 as 4 # 0. If (I%(G*, H), 9§, W) is the induced
covariant representation of (4, a, G*) then by Theorems 4.1 and
4.4 (I*(G*t, H), % x W) is a faithful irreducible representation of
A x, G*, and therefore 4 x, G* is primitive. o

If G is any abelian ordered group it follows from Theorem 4.5 that
C*(G™*) is primitive. This was shown also in [12] by quite different
means, using the results of [16] and [17] on Connes spectra that were
already mentioned in §3.

We can strengthen some of the results of this section in the case of
subgroups of R. First a definition: If (4, a, G) is a C*-dynamical
system where G is an ordered group, we call a covariant represen-
tation (H, ¢, W) of (4,a, G") pure if o+ Wx(H) = 0. If
(H, ¢, W) is arbitrary we can split it up into a pure and a “unitary”
part. To see this, set Hy =(,+ Wx(H) and H; = Ho H, . Clearly,
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Hy, H, are closed vector subspaces of H and Hy & H; = H, and
it is a routine exercise to show they are reducing spaces for all W,
(x € G*) and all ¢(a) (a € A). If both Hy, H, are non-zero we can
define the maps ¢p): 4 — B(H;), a ~ ¢(a)n , and WU): G* —
B(Hj), x v (Wx)g , and get covariant representations (Hj, o),
wi) (j=0,1) of (4, a, G*). The triple (H;, 1), W) is pure
sine e+ WiV (Hy) = 0. Clearly each W” is unitary (x € G*).
We thus have an analogue of the Wold-von Neumann decomposition
of an isometlry into its pure and unitary parts. Observe that g x W =
(0O x W)@ (p(V) x W), Thus ¢ x W is injective if one of these
summands is.

THEOREM 4.6. Let (A, o, G*) be a C*-dynamical system where G
is a subgroup of R. Then any pure covariant representation (H, ¢, W)
of (A, o, G*) is amenable.

Proof. In Douglas’ terminology the map x — W, is a pure one-
parameter semigroup of isometries, so by his results in [4] there exists
for each ¢ € R a unitary U, € B(H) such that UW, = e W, U; (x €
G*),and U, € (W, W} | x € Gt}'. Thus AdU,(Wy) = e W, (x €
G*) and AdUi(¢(a)) = ¢(a) (a € A), so im(¢ x W) is invariant
under AdU,. Denote by J; the *-isomorphism of im(p x W) got
by restricting Ad U;. Now define y; € G by y(x) = e’*!. For & the
action of G on A x, G* we have therefore &;(p x W) = (p x W), .
Hence J = ker(p x W) satisties J,(J) C J for all £ € R. But
I'={y; | t € R} is a subgroup of G with annihilator Tt =0, so I is
dense in G. By the continuity of the map G — Ax, G+, 7+ Jy(b)
for each b € 4 x,, G*, we conclude that be J = d,(b) e J (y € G).
Thus J is G-invariant and so (H, ¢, W) is amenable. o

THEOREM 4.7. Let (A, a, G) be a non-trivial C*-dynamical sys-
tem where G is a subgroup of R. If (H, ¢, W) is a skew covariant
representation of (A, a, GT) then ¢ x W is injective.

Proof. If (H, ¢, W) is pure the result follows immediately from
Theorems 4.3 and 4.6. If (H, ¢, W) is not pure then for Hy =
Nxeg* Wx(H) and H; = HoHy we have Hy and H; are non-zero, so
(H, ¢, W) splits into its “unitary” and pure parts (Hp, 9@, w(©)
and (Hy, oV, W) respectively. Now (H;, oV, W) is easily



ORDERED GROUPS AND CROSSED PRODUCTS OF C*-ALGEBRAS 347

seen to be skew as (H, ¢, W) is, so again by Theorems 4.3 and 4.6,
(Hy, oV, W) is injective, and therefore ¢ x W is injective. O

If (4, a, G) is a C*-dynamical system with G an ordered group
and if e: 4 xo Gt — A4 X, G is the quotient map, set K(4, a, G) =
ker(e). We therefore have a short exact sequence

0—-K(A4,a,G) = AX, Gt > Ax,G—0.

LEMMA 4.8. Let (A, a, G) be a C*-dynamical system where G is
an ordered group. Then K(A, a, G) is the closed ideal in A x, G*
generated by all a —aV,V} (a€ A, x € GY).

Proof. Let the elements a — aViVy (a € A, x € G*) generate the
closed ideal J. If U: G — M(AXx,G) is canonical and &: Ax,GT —
A x4 G is the quotient map then e(a — aVyVy) = a—aUyUz =0,
so J € K(4,a,G). Thus if B = (4 x, G*)/J we get an induced
x-homomorphism & B — A x, G given by é(b+ J) =¢(d).

Let ¢ be the *-homomorphism from 4 to B given by ¢(a) =
a+J,andlet W: Gt — M(B), x — W, be the homomorphism into
the unitary group given by defining W, (b+J) = Vib+J, (b+J)Wy =
bVy+J for b € Ax,G*, x € G*. (That W, are isometries is
obvious. To see they are unitaries it suffices to show that b—V, Vb €
J if b € A x, G*. But this is clear, for if (u;) is an approximate
unit for 4 then we have b — V, Vb = limy(uy — u; Vi V¥)b.) We can
obviously extend W to a unitary-valued homomorphism W: G —
M(B), and it is easy to check (¢, W) is a covariant homomorphism
from (A, o, G) to B. The *-homomorphism ¢ x W: A x, G — B
satisfies (p x W)é(aVy +J) = (p x W)(aUyx) = @)Wy = aVy + J
for ae A and x € G*. Hence (p x W)é = id, so € is injective. It
follows that K(4,a, G)=J. O

THEOREM 4.9. Let (A, o, G*) be a non-trivial C*-dynamical sys-
tem where A is simple and G is a subgroup of R. Then (4, a, G) is
simple.

Proof. Let J be a closed ideal in K(4, a, G), J # K(4, a, G),
and let y: 4 x, Gt — (4 X, G)/J be the quotient map. As we saw
in §1, there exists a unique covariant homomorphism (¢, W) from
(A,a,G") to (Ax,G*)/J suchthat p x W =y .

For x € G* define

I,={acA|a-aV,V;eJ}.
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Then I, is a closed ideal in A4, so if it contains a non-zero element
it is equal to 4 (by simplicity of 4). Let Ry = 1 — VxV,*. This
is a projection and Rxa = aRy (a € A). Also aRy.y = aRy +
Viaz!(a)R,Vy . Using this equation one easily checks that the set

L={xeGT" | I = 4}

is closed under addition, and it is even easier to see that 0 < y <
xe€eL=yeL (y,x € G"). By the archimedean property of G we
therefore have L = {0} or L = G*.

Suppose that ae 4 and xeG* are such that pa,(a) = Wip(a) W .
Then y(ax(a) — ViaVy) =0, 50 ax(a) —ax(@)VxVyeJ. If x>0
and a # 0 then I, =4 and L = G*. Hence b-bV,V e J (be
A,y € G*) so by Lemma 4.8, J = K(4, a, G), a contradiction.
Thus either x = 0 or a = 0, and so (¢, W) is skew. By Theo-
rem 4.7, w = ¢ x W is injective, so J = 0. Thus K(4, a, G) is
simple. O

REMARK 4.2. The above result does not hold for arbitrary ordered
groups. If one takes 4 = C and takes G to be the lexicographic prod-
uct of Z with itself then it follows from Theorems 2.2 and 2.3 of [14]
that K(A4, o, G) contains the C*-algebra K of compact operators on
a separable infinite-dimensional Hilbert space as a closed ideal such
that the quotient algebra C*(G*)/K is isomorphic to C*(N)® C(T),
and therefore K # K(4, o, G), since C*(G*)/K(4, a, G) = C(T?).
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