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For a subharmonic function u defined on a cone or on a cylinder
which is dominated on the boundary by a certain function, we gener-
alize the classical Phragmén-Lindelof theorem by making a harmonic
majorant of u and show that if u is non-negative in addition, our
harmonic majorant is the least harmonic majorant. As an application,
we give a result concerning the classical Dirichlet problem on a cone
or on a cylinder with an unbounded function defined on the boundary.

1. Introduction. Let R and R, be the sets of all real numbers and
all positive real numbers, respectively. The m-dimensional Euclidean
space is denoted by R™ (m > 2) and O denote the origin of it. By
S and S, we denote the boundary and the closure of a set S in
R™. Let |P — Q| denote the Euclidean distance between two points
P, QeR™. Apointon R™ (m > 2) is represented by (X, y), X =

(x1, X2, ..., Xm—1). We introduce the spherical coordinates (r, ©),
©=(0,,0,,...,0,_1),1in R™ which are related to the coordinates
(X,y) by

x1=r( ;”;llsin 0,-), y=rcos 0,

Xt 1—k =r( f;llsin 9,-) cosf, (m>23, 2<k<m-1),

Xy =rcos b, y =rsin 6, (m=2),

where 0 <7 < +oo and ~$n < 0,1 <3n (M>2),0<60;<n
(m >3, 1< j< m-2). The unit sphere and the surface area
2n™/2{T(m/2)}~! of it are denoted by "~ ! and s, (m > 2), re-
spectively. The upper half unit sphere {(1,0) e s™1; 0< 6, < z
(if m = 2, then 0 < 6; < m)} is also denoted by s”~! (m > 2).
For simplicity, a point (1, ©) on §”! and aset S, S c§™!, are
often identified with ® and {©; (1, ©) € S}, respectively. For two

369



370 H. YOSHIDA

sets E; CR, and E, C " !, the set
{(r,®)eR™; rekE, (1, 0) € E}

in R” is denoted by E; x E; . Given a domain Q on §”~! (m > 2),
the set R, x Q 1is called a cone and denoted by C(Q). The special
cone C(S™1) (m >2) called the half-space will be denoted by T, .
For a positive number 7, the set {r} x $™~! is denoted by S,,(r) and
Sm(r)NTy by S;h(r).

In our previous paper [12, Theorem 5.1], we gave a harmonic majo-
rant of a certain subharmonic function #(P) defined on a cone C(Q)
with a domain Q having smooth boundary, such that
(1.1) PeC(lél)l,lP—»Q u(P)<o0
for every Q € 0C(Q)—{0}. It can be regarded as one of the general-
izations of the classical Phragmén-Lindelof theorem. We also showed
in [12, Corollary 5.2] that if the function u(P) is non-negative in ad-
dition, our harmonic majorant is the least harmonic majorant. In this
paper, we shall consider generalizations of these results, by replacing
0 of (1.1) with a general function g(Q) on dC(Q)—{O}. They were
motivated by the following Theorems A, B, C and D, which are special
cases of our results (see Remark 5).

Nevanlinna [10] proved

THEOREM A. Let g(t) be a continuous function on R such that

/°° lg(O)] + |g(=1)
t2

1a’t<+oo

(1.2)

and let f(z) be a regular function on T, such that
lim log|f(z)| < g(?)

Im(z)>0,z—t

forany t€0T,. If

(1.3) fim - nlog*lf(re”’)]sin 6d6 =0,

rooo I Jo

then
+00
(1.4) log|f(2)| < %/_oo _(_Z—:%;)-l-_yzdt

forany z=x+1iy €T,.
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In the slightly different form from Theorem A, Boas [2, pp. 92-93]
also stated

THEOREM B. Make the same assumption as in Theorem A. If

.1
Hm —~Miog1(r) < +00 (Mlogm(r) = sup loglf(Z)I) ,
r—o00 [z|=r,Im(z)>0
then
(1.5) log| /(2)] < y/ _—_%duafy

forany z = x + iy € T,, where

I -
af"?{)i%?/o log|f(re'”)|sin 6 d6.

Keller [7] proved an analogous result for a harmonic function on
Ts.

THEOREM C. Let g(Q) be a continouus function on 8T such that

/oor—z (/—:/zz‘g<r, g,ez)l d92> dr < +o00
(Q= (r, —725, 02) €6T3>.

Let h(P) be a harmonic function on T3 such that
lim h(P) < &(Q)

PeT,, P—

forany Q € 8T;.
(I) There exists

l +
by = rlingo 7 s h*(P)cos 6, dos, 0 < b+ £ +00,

where h*(P) = max{h(P), 0} (P € S7(r)) and dos = sin 6,d6,d0,

is the surface element on S* at the radial projection P= (1,64, 65)
of P=(r, 0,0, €S{(r).
(II) For any P € Ty,

WPYS 37 [ S(@IP -0t ot by,

where dQ is the area element on 87Tj3.
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With respect to the least harmonic majorant of a subharmonic func-
tion on T,,, Kuran [8, Theroem 3] proved

THEOREM D. Let ¢ <0 and let u(X,y) be subharmonic on
{(X,y)eR™; XeR™ !, y>c}
such that u>0 on Ty,.

@M If
(1.6) /m_l(l FIXP)~12my(X | 0)dX < +oo,
then there existthhe limit
l, = rl_iglo 2ms, r~m1 /S+( )yu(Q) dag, 0</, < +00,
*(r

where |X| = \/xl2 +---+Xx2_,, dX is the (m — 1)-dimensional vol-
ume element at X = (X1, ..., Xm—1) ER™™! (m >2) and dog is the
surface element of the sphere S,,(r) at Q = (X, y) € S;(r). Further
if

(1.7) ly < 400,

then
(1.8) Ly + 2s;,1y/ P — Q] "™u(X, 0)dX
Rm—l
(P=(X,y)€Tm, Q=(X,0)€dTy)
is the least harmonic majorant of u(P) on Ty,.

(II) If u possesses a harmonic majorant on Ty, , then (1.6) and (1.7)
hold.

As an application, we shall give a result concerning the classical
Dirichlet problem on a cone with an unbounded function defined on
the boundary. Our method in this paper can be applied to a subhar-
monic function #(X, y) defined on an infinite cylinder

{X,y)eR™; XeD,yecR},

where D is a bounded domain in R”~! (m > 2). We shall state
some results in the cylindrical case.

2. Preliminaries. Let A,, be the spherical part of the Laplace op-
erator
9?2 9?2 9?2 9?2

Am=-=+S5+ "+ +75
" ax2 T ax3 axZ_,  0y? =
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relative to the system of spherical coordinates:

m-—120 92 2
Ay = p 5 + m +r“An.
Given a domain Q on S™"!, consider the Dirichlet problem
(2.1) (Am+AF=0 onQ,

F=0 o0onoQ.

We denote the least positive eigenvalue of it by /18) and write fq(©)

for the normalized positive eigenfunction corresponding to AS) , when
they exist. Thus

(2.2) | fa©doe =1,

where dag is the surface element on §™~!. Two solutions of the
equation
24+ (m-2)t-20 =0
are denoted by ag, —fa (aq, fo >0).
Let ®(r, ©) be a function on C(Q). For any given r (r € R4),
the integral

| . ©)a)dos
is denoted by Ng(r), when it exists. The finite or infinite limits

lim r®aNg(r) and limrfaNg(r)
r—o0 r—0

are denoted by ue and 7¢, respectively, when they exist. The maxi-
mum modulus Mg(r) (0<r < +o00) of ®(r, ©) is defined as

Mg(r) = ggg@(r, 0).

We denote max{®(P), 0} and max{-P(P),0} by ®*(P) and
®~(P), respectively.

This paper is essentially based on some results in Yoshida [11].
Hence, in the subsequent consideration, we make the same assumption
on Q asinit: if m > 3, then Q is a C?:°-domain (0 < g < 1)
on S$™~! surrounded by a finite number of mutually disjoint closed
hypersurfaces (e.g., see Gilbarg and Trudinger [4, pp. 88-89] for the
definition of C?:?-domain). Then there exist two positive constants
L; and L, such that

(2.3) L, dis(®, Q) < fo(0) < L, dis(0, Q) (0 Q)
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(by modifying Miranda’s method [9, pp. 7-8], we can prove this in-
equality).

REMARK 1. Let Q=87"!. Then ag=1, fo=m—1 and

_ (@2ms;H) Y 2cos 6, (m > 3))
f“(e)‘( 2 sin 6 (m=2)
= @mH 2L (m22).
Let X = (x1, X2, ..., Xm—1) be a point of R”~! (m >2). Given a

bounded domain D in R”~! (m > 2), consider the Dirichlet problem

Ay—1+4)F =0 onD,
F=0 ondD.

Let Ap be the least positive eigenvalue of it and let fp(X) be the
normalized eigenfunction corresponding to Ap. As in the conical case,
we assume that the boundary 8D of D c R”~! (m > 3) is sufficiently
smooth. The set

DxR={X,y)eR"; XeD,yeR}

in R™ is called a cylinder and denoted by I'(D) (m > 2). Let
Y(X, y) be a function on I'(D). The integral

/D WX, y)fp(X)dX

of (X, y) is denoted by N@(y) when it exists, where dX denotes
the (m — 1)-dimensional volume element. The finite or infinite limits

lim e‘\/'glep(y) and lim e\/’EyN\y(y)

y—+o0 y——o0

are denoted by ui, and #i,, respectively, when they exist.

Let Go(P, Q) (resp. Gp(P, Q)) be the Green function of a cone
C(Q) (resp. a cylinder I'(D)) with pole at P € C(Q) (resp. P €
I'(D)), and let 8Gq(P, Q)/0n (resp. 0Gp(P, Q)/0n) be the differ-
entiation at Q € 9C(Q) — {0} (resp. Q € dT(D)) along the inward
normal into C(Q) (resp. I'(D)). It follows from our assumption on
Q (resp. D) that 0Gq(P, Q)/0n (resp. 8Gp(P, Q)/0n) is contin-
uous on 8C(Q) — {0} (resp. T (D)) (see Gilbarg and Trudinger [4,
Theorem 6.15]).
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Let g(Q) be a locally integrable function on 8C(Q) — {O} (resp.
dI'(D)) such that

+00
(2.4) / =1 (/ lg(r, 6)|dae> dr < +o0,
Q

/rﬁn—l </ |g(r, 8)1d0’e) dr < +o00,
0 aQ
(resp.

(2.5) /_:o e~ Vsl (/w lg(X, y)|daX> dy < +0),

where dog (resp. doy) is the surface area element of 0Q (resp.
dD) at ©® € 9Q (resp. X € D). If m =2 and Q = (y, J) (resp.
D=(y, 9)), then

/aQ|g(r,®)|dGe (resp. /(,;D|g(X’y)|d0'X)

=[g(r, y)| +1&(r, 8)| (resp. |g(v, ¥)|+1g(d, ¥)]).
The Poisson integral PIg(P) (resp. PIE(P)) of g relative to C(Q)
(resp. I'(D)) is defined as follow5'
1
PL(P)=o- [ g(Q)5-Gal(P.Q)dog
m JoC(Q)-{0}

1 0
(resp. PIL(P) = —/ar(D) g(Q)a—nGD(Ps Q) d"Q) ;

Cm
where
{ 2n (m=2),
Cm =
(m-=2)sy, (m>3)
and dog is the surface area element on dC(QQ)— {0} (resp. oI'(D)).
REMARK 2. Let Q =$7"!. Then
P-QP™m—-|P-Q*™ (m23),
Gap, o= {1 O
—log|P - Q[ +1og|P - Q| (m=2),
where Q = (X, —y), that is, Q is the mirror image of Q = (X, y)
with respect to 9T,,. Hence, for two points P = (X, y) € T, and
Qe€dTp,
9 2(m=-2)|P-Q| ™™y (m 2 3),
( > Q) =2
an 21P - Q|2 (m =2).
3. Statement of results. The following Theorem 1 is a fundamental
result in this paper.



376 H. YOSHIDA

THEOREM 1. Let g(Q) be a locally integrable function on 6 C(QQ) —
{O} satisfying (2.4) and let u(P) be a subharmonic function on C(Q)
such that

(3.1) peclm, | (u(P) = PIy(P)} <0
and
(32) peclm, {4t (P) = Plg(P)} <0

Jor any Q € 9C(Q) — {O}. Then all of the limits u,+, n,, Ky and
Mu (O < wyrs Nyr < +00, =00 < fhy, Ny < +00) exist, and if

(33) my < +o00  and Ny < +o00,
then
(3.4) U(P) < PIg(P) + (uur® + nur~Fa) fo(©)

forany P=(r,0)e C(Q).

REMARK 3. It is evident that (3.3) follows from

(3.5) lim r~%M,(r) < +o0 and limrfaM,(r) < +oo.

r—0oo r—0

It is proved in Yoshida [12, Remark 9.1] that if

Im  u(P)<0,
PeC,(Q), P—Q

for any Q € 6C(Q) — {0}, (3.5) also follows from (3.3).

REMARK 4. If u(P) is a positive harmonic function on C(Q),
then (3.3) is always satisfied. To see it, apply (I) of Lemma 2 (which
will be stated in §4) to —u(P). We immediately obtain that —oo <
Uers M-y < 400, 50 that u,+ = py < +oo and 7, =1y < +00.

The following Theorem 2 generalizes a result of Yoshida [11, The-
orem 3].

THEOREM 2. Let g(Q) be a continuous function on 8C(Q) — {O}
satisfying (2.4) and let u(P) be a subharmonic function on C(Q) such
that

(3.6) 1—'_ u(P) < g(Q)
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forany Q € 0C(Q) — {O}. Then all of the limits p,, N, Uy and
Me (0< pe, Ny <400, —00 < fy, Ny < +00) exist, and if

(3.7) U+ < +oo andn < +oo,
then
(3.8) u(P) < PIg(P) + (uur®e + nur~Fa) fo(©)

forany P=(r,0)e C(Q).

COROLLARY 1. Let g(Q) be a continuous function on 8T, (m > 2)
such that

(3.9) / -2 ( / L letr, 9)|dae) dr < +oo.

Let u(P) be a subharmonic function on T,, such that

(3.10) peTﬁE» Qu(P) < g(Q)

for any Q € 8Ty,. Then both of the limits u,~ (0 < u,+ < +oo) and
Uy (—00 < py < +00) exist, and

a1 uP) <25 [ g(@IP - QI dog + (2msy) Puy
o,

forany P=(X,y)€Ty. If
lim r~'M,(r) < 400,

r—00

then
(312)  w(P) <25 [ g(@IP - Q™" dog + (2msy) Py
ar,

forany P=(X,y)&€Ty,.

REMARK 5. Let f(z) be a regular function on T,. Put m =2 and
u(P) = log|f(z)| in Corollary 1. Then (3.9) is equal to (1.2). Since
(1.3) gives

Hogr1) = 0>
(1.4) follows from (3 11). Since

Miog|f| = = hm / log|f(re'®)|sin 646 = —af,

T rooo

(3.12) gives (1.5). Thus we obtain Theorems A and B.
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Next, to obtain Theorem C, put m =3 and u = & in Corollary 1.
From (3.11), we have

1/2
wp <3 [ s@IP-0tdoe+ (5) ey

for any P = (X, y) € T3. Since

3 1/2
'Llh+ = (-2—7?) bh+

(Remark 1 with m = 3), we immediately obtain Theorem C.

EXAMPLE 1. Let Ag) be the second least positive eigenvalue of (2.1)

and let F(©) be a normalized eigenfunction corresponding to lg‘) .
Let Aq be the positive solution of the equation

2+ (m-2)t-i% =0,
The harmonic function
H(P) =r%aFy(0) (P=(r,8)eCn(Q))
on 9C(L2) has the property

(3.13) H(P)=0,

lim
PeC(Q),P—~Q
for any Q € 8C(Q) — {0} . Since A2 > 28 it is evident that

lim r~*Mg(r) = +o00o.

r—00
Hence it follows from Remark 3 that
(3.14) W+ = +00.

This H(P) shows that (3.6) with a continuous function on 9C(Q) —
{O} satisfying (2.4) does not always give (3.7). Further, let g(Q) be
a continuous function on dC(QQ) — {O} satisfying (2.4). Put

I(P) = H(P) + PI,(P)

on C(Q). Then we see from (3.13) that I(P) is a harmonic function
on C(Q) satisfying

I(P) = g(Q)

lim
PeC(Q),P—Q
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for any Q € 0C(Q)— {0} (see Lemma 3 and Lemma 6). Hence (3.6)
is valid for the function g(Q) on dC(Q) — {O}. However it is easy
to see that (3.8) is not true. Since F(O) is orthogonal to fo(©) and

Ny(r)=0 (0<r<+o00),

it follows from Lemma 3 that
mr=pg +upr, =0, 1 =ng+np, =0.
Since
I*(P) > H*(P) - Plig(P)
on C(Q), we see from (3.14) and Lemma 3 that
M+ > Hyg+ = +00.

Hence this 7(P) shows that (3.8) does not always follow without (3.7).

EXAMPLE 2. There exists a subharmonic function u(P) such that
(3.7) is satisfied and (3.6) holds for no locally integrable function g(Q)
on 0C(Q) — {0} satisfying (2.4). Let ¢ be a number satisfying 0 <
¢ <% andlet

Q={0=(01,0, ..., 0n-1) €55 O] <E< T}

Consider the subharmonic function
v(r, ®) =r%

on C(Q) and any locally integrable function g(Q) on 8C(Q) — {0}
such that

lim <
pealslz??p_.gv(” ) <g(Q)

at every Q = (r, ©) € 0C(Q) — {0} . Then we always have

+00
/ r=%! (/ lg(r, ©)] dae) dr = +oo.
9 -

On the other hand, we have that
lim r~%M,(r) =1,

r—oo

so that u,+ < 400.
Let W be a domain in R™ and let g(Q) be a function on oW .
A harmonic function on W satisfying

peid_ h(P) =2(Q)
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for any Q € W is called the solution of the classical Dirichlet prob-
lemon W with g. In comparison with a result of Keller [7, Satz in p.
25], from Theorem 2 we obtain the following Theorem 3 which gives
a kind of uniqueness of solutions of the classical Dirichlet problem on
an unbounded domain C(Q). It must be remarked that the classical
Dirichlet problem on unbounded domains has no unique solution (e.g.
see Helms [6, p. 42 and p. 158]).

THEOREM 3. Let g(Q) be a continuous function on 8C(Q) — {O}
satisfying (2.4)

(I) The Poisson integral Pl,(P) is a solution of the classical Dirichlet
problem on C(Q) with g.

(II) Let h(P) be any solution of the classical Dirichlet problem on
C(Q) with g. Then all of the limits u,, n, (—oo < up, fp < +00),
M) and mp (0 < gy, My < +oo) exist, and if

(3.15) Ui < +00 and M < +00,
then
(3.16) h(P) = PIg(P) + (usr® + npr~a) fa(©)

forany P=(r,0)e C(Q).

REMARK 6. The harmonic function /(P) in Example 1 is one of
the solutions of the classical Dirichlet problem on C(£2), which do
not satisfy (3.15). In fact, (3.14) gives

M1 = Hip1 +H| = 10,

because
Hipr =0
from Lemma 3 and

Hp1 +H| 2 MiE| — WL | 2 Ugs — HPL | = Uy

COROLLARY 2. Let g(Q) be a continuous function on 8 C(Q)—{0}
satisfying (2.4). If h(P) is a positive harmonic function on C(Q) which
is the solution of the classical Dirichlet problem on C(Q) with g, then
(3.16) holds.

The following Theorem 4 generalizes a result of Yoshida [12, Corol-
lary 5.2].
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THEOREM 4. Let u be subharmonic on a domain containing C(Q)—
{0} and let
u>0 onC(Q).

(D) If &t = uloC(Q) — {0} (the restriction of u to 8C(Q) — {0})
satisfies (2.4), then both of the limits u, and n, (0< un, Ny < +00)
exist. Further, if

(3.17) Uy < +oo and ny < +oo,
then
hu(P) = PLa(P) + (uur®a + nur~Pa) fo(®) (P =(r, ©) € C(Q))

is the least harmonic majorant of u on C(Q).
(I1) If u possesses a harmonic majorant on C(Q), then i satisfies
(2.4) and (3.17) holds.

REMARK 7. When u(P) satisfies the additional condition

lim u(P)=20
PEC(Q),P—Q

for any Q € 0C(Q) — {0}, we extend u(P) to R™ — {O} by defining
u(P) =0 forany P € R” — C(Q) — {O}. Then u(P) is subharmonic
onR” — {O}. From Remark 3 and (I) of Theorem 4, we obtain a
result of Yoshida [12, Corollary 5.2].

COROLLARY 3. Let u be subharmonic on a domain containing T,
(m >2) and let
u>0 onTy.

(1) If &t = u|0Ty, satisfies

+00
(3.18) / r“2(/ ft(r,@)da@) dr < +oo,
osr!

then the limit u, (0 < u, < +oo) exists. Further, if

(3.19) Uy < +00,

then

(3.20) 255y /a #(Q)|P - Q™ dag + 2ms;!) 2 u,y
T

is the least harmonic majorant of u on Tp,.
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(I1) If u possesses a harmonic majorant on T,,, then @ satisfies
(3.18) and (3.19) holds.

REMARK 8. Theorem D immediately follows frorﬂ_ Corollary 3. In
fact, u is bounded above on any compact subset of 7,,. Hence (3.19)
is equivalent to (1.6). We also see from Remark 1 that

ly= (2m5r7zl)l/2ﬂu
and (3.20) is equal to (1.8).

Finally we shall state some results in the cylindrical case.

THEOREM 5. Let g(Q) be a continuous function on 6I'(D) satisfy-
ing (2.5) and let u(P) be a subharmonic function on I'(D) such that

lim <
periam,_,#(P) < &(Q)

for any Q € OT' (D). Then all of the limits u£+n5+u£ and nl (0 <
ple, ml < 400, —0o < uy, nl < +o00) exist, and if
B <400 and nL. < +oo

then
u(P) < PIg(P) + (ubeV2¥ 4 nle=V7?) fp(X)

forany P=(X,y)eI(D).

THEOREM 6. Let g(Q) be a continuous function on 8I'(D) satisfy-
ing (2.5).

(I) The Poisson integral PII; (P) is a solution of the classical Dirichlet
problem on T'(D) with g.

(I) Let h(P) be any solution of the classical Dirichlet problem on
I'(D) with g. Then all of the limits p}, nl (—oco < uk, nl < +00),
'“Il;tl and ’7|1;1| (0< '“|I;z|’ ”ll;zl < 400) exist, and if

”ll;tl < 400 and '7|1;,; < +00,
then
(3.21) h(P) = PIL(P) + (uf eV’ + nfe~VA) fi(X)
forany P=(X,y)eI(D).

COROLLARY 4. Let g(Q) be a continuous function on 8T'(D) sat-
isfying (2.5). If h(P) is a positive harmonic function on I'(D) which
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is the solution of the classical Dirichlet problem on I'(D) with g, then
(3.21) holds.

THEOREM 7. Let u be subharmonic on a domain containing I'(D)

and let
u>0 onI(D).

() If &t = u|6T(D) (the restriction of u to 8I'(D)) satisfies (2.5),
then both of the limits ul and nl (0 < ul, nl < +o00) exist. Further,
if
(3.22) pl < 400 and 1nl <40,
then

PIS(P) + (ufeV™ + nfe VE) fo(X) (P =(X,y)eT(D))

is the least harmonic majorant of u on I'(D).
(II) If u possesses a harmonic majorant on I'(D), then @ satisfies
(2.5) and (3.22) holds.

4. Proof of Theorem 1. For a domain Q ¢ §”~! (m > 2) and a
number ¢ (0 <t < +00), the sets
{(r,®eR";0<r<t, €9} and
{(r,®erR™;r>t, ® i}

are denoted by S () and S{(¢), respectively. For two numbers
and 1, (0<t <ty <+00), let Sa(t;, t;) denote the set

{(r,@)eR™;t;<r<t,, ©ciQ}.

For a point Q € R™, the set {P € R™; |P - Q| < p} (p > 0) is
represented by U,(Q). We write GL(P, Q) for the Green function
of
Cl(Q)=("',j)xQ  (jis a positive integer)

with pole at P. For an upper semicontinuous function ¢(Q) on
dC/(Q), the Perron-Wiener-Brelot solution of the Dirichlet problem
with respect to C/(Q) is denoted by Hé(P) (e.g. see Helms [6]).
Since the harmonic measure (P, E) of E C dC/(Q) with respect
to C/(Q) is equal to

- 0 .j
it [ 5nGh(P. Q)dog
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(see Dahlberg [3, Theorem 3]), we know that H/ (P) is equal to

C;fl/ oy ‘ Q)a—GJ (P, Q)doap.
SUTLNUETT IxQUIxQ) n

To prove Theorem 1, we need some lemmas.

LEMMA 1. There exist two positive constants k, and k, (resp. ki
and k4 ) such that

karetr bl fo(@)  (resp. ksr~Fara! 5(8))
< —%GQ(P, Q) < kyrtar~Fa™! f5(©)
(resp. kar~Para™! fo(©))
for P=(r,0) e C(Q) and Q = (t, ®) € 9C(Q) — {O} satisfying
0<r<it(resp. 0<t<ir).

Proof. These immediately follow from Azarin’s inequalities [1,
Lemma 1] and (2.3).

LEMMA 2 (Yoshida [12, Theorem 3.31]). Let u(P) be a subharmonic
function on C(Q) (m > 2) such that

im u(P)<0
PeC(Q),P—-Q

forany Q€ dC(Q) - {0}.
(I) Both of the limits u, and n, (—o0 < Wy, Ny < +00) exist.
(I1) If n, <0, then r~*N,(r) is non-decreasing on (0, +0).
(III) If u, <0, then rfaN,(r) is non-increasing on (0, +o0).

LEMMA 3. Let g(Q) bea locally integrable function on 8C(Q)—{O}
satisfying (2.4). Then Pliy(P) (resp. Plg(P)) is a harmonic function
on C(Q) such that both of the limits Hpr, and e, (resp. 1P, and
ﬂp[g) exist, and

ppr, =npy =0  (resp. ppr = npr = 0).

Proof. Take any P = (r, ©) € C(Q) and two numbers R, R,
(R; < ir, Ry>2r). Then by Lemma 1

(4.1) c;ﬁfwu )| 2-Ga(P, Q) dog

+00
< ks/ %! (/ lg(t, <I>)|da<p> dt
R o0Q

2



HARMONIC MAJORIZATION 385
where ks = kyc;lr*a fo(0), and
9
-1 o
42 [ 8@ GalP, @)dog

o (R,

Rl
<k [ ( [ 1, <I>)|daq>) dt
0 oQ

where kg = kac;,'r=Pa fo(©). Hence we see from (2.4) that Pl (P)
and PI,(P) are finite for any P € C(Q). Thus PI;(P) and Pl (P)
are harmonic on C(Q).
Let vy )p(E) and v$p(E) (0 < R < +00, P € C(Q)) be two
positive measures on 8C‘(Q) — {O} such that
(1 _ 1
ApBV =i [ gOalP, O deg

and
0

() -1
I/R P(E) Cm /Ens )6nGQ(P Q)dO'Q

for every Borel subset E of 9C(QQ) —{O}. Then PI,(P) is the sum
of two positive harmonic functions:

(4.3) Plig|(P) = h1,r(P) + h2,R(P),

where
h P -—-/ dv
1,R( ) 2C(Q)— (0} |g| R,P

hy, r(P) = / ¥4 de(zz,)P-
aCc()—{0}

Let r; (r; > 0) be a number and let ¢ be any positive number. From
(2.4) we can choose a number r* (r* > 2r;) so large that

(4.4) /m] g(t, ®)|t o~ day < 1 she Q= @)

and

By applying Lemma 1, we see from (4.4) that

Ny, .(n) < gerfs
and hence
(4.5) N, L (n) 2~ e
Since
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is non-decreasing from (II) of Lemma 2, (4.5) gives that
(4.6) 0<r N, (<3 (r2n).

By using Lemma 1 again, we obtain that

N ()< k4r“ﬁn/0r* ha=1 </aQ|g(t, <I>)|a’<D> i (r>2r).

2,r

By (2.4) we can choose a number r, (r, > 2r*) so large that

(4.7) 0<r N, .(r)< %s (r > nr).
We finally conclude from (4.3), (4.6) and (4.7) that
0<r™aNp (r)<e  (rzn),

which gives the eixstence of Hpr,, and

(4.8) upr = 0.

In the same way we can also prove the existence of p1, and
(4.9) fpy,, =0

Since

Ner (r) 2 Nipt (1) > [Ner (] (0 <7 < +00),

it immediately follows from (4.8) and (4.9) that both limits up; and
npy, exist and are zero.

LEMMA 4 (Yoshida [12, Theorem 5.1] and Remark 3). Let u(P) be
a subharmonic function on C(Q) (m > 2) such that

lim u(P)<0
PeC(Q),P—Q

for every Q € 0C(Q) —{0}. If (3.3) is satisfied, then
u(r, ©) < (uyr®e + nurFa) fo(0)  on C(Q).

Proof of Theorem 1. Consider two subharmonic functions
U(P) = u(P)—PI,(P) and U*(P)=u"(P)—Plg(P)
on C(). Then we have from (3.1) and (3.2) that

lim U(P)<0 and lim U*(P)<0
PeC(Q),P—-Q PeC(Q), P—Q
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for every Q € 0C(Q) — {O}. Hence it follows from (I) of Lemma 2
that four limits Hu,s Mu, Uy~ and nu~ (—OO < MUy, Nu, ly-, Ny- <
+o00) exist. Since

Ny(r) = Nu(r) = Nop () and  Ny-(r) = No(r) = Nex_ (),

Lemma 3 gives the existence of four limits u,, n,, u,~ and 7+, and
that

(4.10) Hu =Ry, Nu="Nu, Hy =l > Ny =N,

Since
UT(P)<u™(P)+ (PL)"(P) onC(Q),

it also follows from Lemma 3 and (3.3) that

Ry < My < +00, Mg+ S 1y < +00.
Hence by applying Lemma 4 to U, we can obtain from (4.10) that
U(P) < Plg(P)+ (uur®e +nyr~P2) fo(€) on C(Q) (P =(r,0)),
which is (3.4).

5. Proofs of Theorems 2 and 3, Corollaries 1 and 2. The following
lemma is not obvious for unbounded functions.

LEMMA 5. Let g(Q) be an upper semicontinuous function on 8 C(QQ)
— {0} satisfying (2.4). Then

Iim <
peclim,  PIe(P) < g(0)

forany Qe€oC(Q)- {0},
Proof. Let Q* = (r*, ©*) be any point of 9C(Q2) — {O} and let ¢
be any positive number. Take a number 6 (0 <dJ < r*). From (2.4),

we can choose a number R;, R; > 2(r* +J) (resp. R}, 0 < R} <
L(r* = 6)) so large (resp. small) that

+00
t~%! (/ t, ®)| da )dt<c—mr*+6‘%s
/. [ late, @)1doe) di < (" +0)

2

.
resp. " B! (/ t, ®)|d ) dt < =" (% — §)Pa ,
( . | [ la(t, @)l doa ) | di < = (1" - 0)Pne

where

Kg = rgggfg(@))-
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From (4.1) and (4.2), we obtain that

-1 0 &
(5.1 ' [, e, 18(Q) g 6alP . Q)dog < g
and

~1 0 €
(52) i [, 8@ 6alP, Qoo < 5

forany P =(r, ©®) € C(Q)NU;s(Q*). Let ¢ be a continuous function
on 0C(Q) — {0} suchthat 0< ¢ <1 on 9C(Q) - {0} and

B { 1 on Sq(R}, R3),
~ L0 onS3(2R;) USG(3RY).
Since the positive harmonic function Go(P, Q)—GY o(P, Q) on C/(Q)

converges monotonically to 0 as j — oo, we can ﬁnd an integer Jjg
(o' <27'R%, jo > 2R3) such that

53 e[ 9(0)2(Q)|
So(27'R},2R})

0 i, 0 €
X %GQ(P, Q) - %GQ(P, Q)| dag < 2
forany P = (r, ©) € C(Q)NnUs(Q*). It follows from (5.1), (5.2) and

(5.3) that
_1 0
54 e [ iy § Q7 GalP Q) dog

-1 _?_ Jo
<G [ o age, POED 5 GAP, Qg

<+

-1 i o
T [, e oy P QS Q5GP Qg

0
—c-! K2
“m /SQ(Z_IR;,ZR;)w(Q)g(Q)anGQ(P, Q) dag

2261 [ 18(Q)I5=Ga(P, ©)dg

a(R3)

0
+2e! [ Ig(Q)Ia—Gg(P, Q)dog
S5 (R})

<ait [ 0(Q)8(Q)-GY(P, Q)dag

S,(27'R},2R})
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for any P = (r, ©) € C(Q) N Us(Q*). Consider the upper semicon-
tinuous function
0)g(Q) on Sq(2"1R*, 2R%),
g - { (@@ on Sa”Ri, 28
on Z

(Z = Saliy", 27'R}) USa(2R;, Jo) U ({Ug '} x Q) U ({Jo} x Q)
on 9C/H(Q). Since

im  H}(P Tim — (O
PeC(Q), P—0Q" v(P) < QedC(Q)- {0} 00" V(Q) =g(Q)

(e.g. see Helms [6, Lemma 8.20]), we finally obtain from (5.4) that

— )
lim C—l/ —@ P’ dO' S ).
pec@ o0 Jycyioy 5@ an GalP» Q) dog < 8(Q°)

From Lemma 5, immediately follows

LemMaA 6. If g(Q) is a continuous function on dC(Q) — {O} satis-
fying (2.4), then

recm®,_,Fls(P) = g(0)

Sfor every Q € 0C(Q) — {0}.

Proof of Theorem 2. First, we see from Lemma 6 that

Pec(lér)n Ply(P)=g(Q) and C(lér)n Plig|(P) = [g(Q)]

for every Q € 0C(Q) — {0} Hence we see from (3.6) that

peo I, {U(P) = PIs(P)} <0

and

PeC(lflll)r,lP—-»Q{u (P)—PLig(P)} <0

for every Q € 90C(Q) — {O}. Theorem 1 immediately gives Theo-
rem 2.

Proof of Corollary 1. Put Q = §™! in Theorem 2. Since g(Q) is
continuous at Q = O of 9T,,, |g(Q)| is bounded in the neighborhood
of Q = O. Hence we see from Remark 1 and (3.9) that g(Q) is
admissible on 9T, and from (3.10) that #,, < n,+ =0. If p,+ = 400,
then (3.11) is evidently satisfied. When p,+ < +o00, (3.11) also follows
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from (3.8), Remark 1, Remark 2 and the inequality u, < u,. Itis
easily seen that Remark 3 and (3.8) give (3.12).

Proof of Theorem 3. It follows from Lemma 3 and Lemma 6 that
PI,(P) is one of the solutions. To prove (II), put u(P) = h(P) and
—h(P) in Theorem 2. Then Theorem 2 gives the existence of all limits

Kps My s Au;: ’7;-:3

(5.5) ﬂ(_h)+ = ﬂh—- and n(_h)+ = nh—.
Since

it follows that both limits u,; and 7, exist. Suppose that # satisfies
(3.15). Then we see from (5.5) and (5.6) that u;+, p_,-+, n,+ and
H—p+ < +oo. Hence, by applying Theorem 2 to u(P) = h(P) and
—h(P) again, we obtain from (3.8) that

h(P) < PIg(P) + (upr®e + nyr~Fa) fa(©)

and
h(P) > PIg(P) + (uyr® + nyr~Fa) fo(8),
respectively, which give (3.16).

Proof of Corollary 2. Tt follows from Remark 4 that
Hip) = Up+ <400 and Mh = Ny < +o00.
Thus Theorem 3 implies Corollary 2.

6. Proof of Theorem 4.

LEMMA 7. Let g(Q) be a non-negative lower semicontinuous func-
tion on 0C(Q) — {0} satisfying (2.4) and let u(P) be a non-negative
subharmonic function on C(Q) such that

(6.1) peclm, U(P) < 2(0)

SJor every Q € 0C(Q) — {O}. Then both of the limits u, and n,
(0 < Uy, Ny < +o00) exist, and if u, < +oo and n, < +oo, then

u(P) < PLg(P) + (ur® + fur~2) fa(8)
Jorany P=(r,0)e C(Q).
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Proof. To apply Theorem 1, we shall show that (3.1) and (3.2) hold.
Since —g(Q) is upper semicontinuous on 9C(Q) — {0}, it follows
from Lemma 5 that

(6.2) lim  PI,(P)> g(Q)

PeC(Q),P—Q
for every Q € 0C(Q) — {O} . Hence we see from (6.1) and (6.2) that

lim,  (u(P) ~ PL(P)}

PeC(
< lim u(P) — lim Pl (P) < — =0
= PeC(Q), P—Q (P) Peci@) Poo ¢(P) < g(0Q) - ¢(Q)

for every Q € 0C(QQ) — {O}, which provides (3.1). Since g and u
are non-negative, (3.2) also holds. Thus we obtain Lemma 7 from
Theorem 1.

LEMMA 8. Let u be subharmonic on a domain containing C() —
{O} such that &t = u|dC(Q) — {O} satisfies (2.4) and

u>0 onCQ).

Then
PI;(P) < h(P) onC(Q)

for every harmonic majorant h of u on C(Q).

Proof. Take any P* = (r*,0*) € C(Q). Let ¢ be any positive
number. In the same way as in the proof of Lemma 5, we can choose
two numbers R; and R, (2R; <r <27 !R5) such that

_ N 0 . e
(6.3) - /S " #(Q)5-Ga(P*, Q)dog < 3
and
(6.4) c“‘/ 10) 2L Go(P*, Q)day, < &
' " Jsz(R,) on 2 7 ety
Further, take an integer j, (jj' <R; and jo > R;) such that
_ . 0 .
65 e [ u@{76ar.0)
So(R,,R,) n
0 s ps 4
— =GP, Q)} dog < 5.
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Since 9 . ‘
c-l/ 10) -G (P, 0)day < Hio(P
" Js r (Q)5,.Ga(P, Q)dag < H(P)

for any P € C/(Q), we have from (6.3), (6.4) and (6.5) that
(6.6)  PLy(P*)— H(P")
3}

-1 ~ o *
S [ o 1@ {5560 0)
0

—%GS(P*, Q)} dG'Q
0
+c’1/ i(Q)=—Gq(P*, Q)do,
7 [, 1@ GalP Q) dg
0
+c‘1/ 1(Q)=—Gq(P*, Q)dop < &.
. (Q)Bn Q(P*, Q)daog

Here, note that H,{*’(P) is the least harmonic majorant of u(P) on
C/(Q) (see Hayman [5, Theorem 3.15]). If 4 is a harmonic majorant
of u on C(QQ), then '
H;*(P*) < h(P).
Thus we obtain from (6.6) that
PI;(P*) < h(P*) + ¢,

which gives the conclusion of Lemma 8.

Proof of Theorem 4. Let P = (r, ©) be any point of C(2) and let
¢ be any positive number. By the Vitali-Carathéodory theorem (e.g.
see [11, p. 56]), we can find a lower semicontinuous function g,(Q)
on 8C(Q) — {0} such that

(6.7) #(Q) < 8&(Q) onaC(Q)-{0}
and
(6.8) Pl (P) < PIy(P) +e.
Since L

pec i, u(P) < Q) < £(0)

for any ¢ € 0C(Q) — {O} from (6.7), it follows from Lemma 7 that
two limits u,, n, exist and if u, < 400 and 7, < +o00, then

(6.9) U(P) < Plg (P) + (uur® + nur=Fa) fo(©).
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Hence we have from (6.8) and (6.9) that
u(P) < PIy(P) + & + (ura + nur~Fa) fo ().
Since ¢ was arbitrary, we obtain
u(P) < PIz(P) + (uur® + nur™%2) fa(©)

for any P = (r, ©) € C(Q). This shows that 4,(P) is a harmonic
majorant of ¥ on C(Q).

To prove that A, is the least harmonic majorant of u on C(Q),
let A(P) be any harmonic function on C(Q2) such that

(6.10) u(P) < h(P) on C(Q).
Consider the harmonic function
h*(p) = hu(P) — h(P) on C(Q).
Since
h*(P) < hy(P) on C(Q),
we see from Lemma 3 that A*(P) satisfies (3.3). We also see from
Lemma 8§ that

h*(P)=__ Hm  {PL(P)-h(P)} <0

lim =
PEC(Q), P—Q PeC(Q), P~Q

for any Q € 0C(Q) — {O}. We have from Lemma 3 and (6.10) that
Bnr = Mp, — W = Hu — Pp < oy — Py =0
and similarly 7, < 0. Thus we obtain from Lemma 4 that
h*(P)<0 on C(Q),

which shows that 4,(P) is the least harmonic majorant of u(P) on
C(Q).
To prove (II), let A;(P) be a harmonic majorant of #(P) on C(£2).
Since
My < pp < +00 and 7, < M, < +00

from Remark 4, we immediately have (3.17). Fix Py = (1, 6y), Oy €
Q. Take any two numbers R;, Ry (0 < R; <27!1,2 < Ry < +00)
and choose a sufficiently large integer j*, j* > Max(Rl‘1 , Ry), such
that

n ) { 2 _9 &
m /Sn(Rl,z")u(Q) {BnGQ(PO’ Q) 3nGg (Po, Q) dag<1
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-1 ~ 0 9
Cm /Sn(zst) u(Q) {é—n‘GQ(POs Q) - %‘Gé (Po, Q)} dO'Q <1.

Since Hj (P) is the least harmonic majorant of u(P) on C/(Q),

. ) O -
hy(Po) > H (P) > ¢! / Q)G (B, Q)dag
Sﬂ(]*l on

%)
S Cm' fsg(Rl,z—‘)a(Q)g—nGZ) (P, Q)dag
| et fsn(z,Rz) a(Q)é?_ntz (Po, Q)dag.
Hence it follows from Lemma 1 that

+OO>h1(P0)+1
(¢! Js (&, 2 ) 1(Q) & Ga(Py, Q)dag

>k1f ' p—ag— (f(m i(r, ©)dag) dr
Cm fs (2,R,) Q)& Ga(Po, Q)dag

2k3f22rﬁn (faﬂ r, ©) dO’@)d
which shows that # satisfies (2.4).

> |

7. Proofs of Theorems 5, 6 and 7. These proofs proceed in the
completely parallel way to the proofs of Theorems 2, 3 and 4, on the
basis of two results of Yoshida [12, Theorems 7.2 and 7.5] and the
following inequality corresponding to Lemma 1:

ke Vi f(X)  (resp. kje VAV £ X))
< 2 6y(P, Q) < ke VR D fp(X)

on
(resp. ke~ VR (X))
for P=(X,y) €eI'(D) and Q = (X*, y*) € 9I'(D) satisfying y* >
y+1 (resp. y* <y—1), where k; and k; (resp. kj and k) are two
positive constants.
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