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The concept of the C,-space by F. Williams is generalized to the
one defined on the category of higher homotopy associative H-spaces.
This generalized concept is used to obtain the modp version of the
torus theorem by J. Hubbuck.

1. Introduction. In 1969 J. Hubbuck proved the following theorem:

THE Torus THEOREM ([7, Theorem 1.1]). Let X be a connected
finite CW-complex. If X admits a homotopy commutative multiplica-
tion, then X has the homotopy type of a torus.

The above property depends essentially on the mod 2 structure of
X . In fact, Hubbuck used the 2-localized K-theory to prove the above
theorem. Later J. Lin reproved the above theorem by using another
method. In the paper he gave the explicit mod 2 version of the above
theorem which is stated as follows:

THE MoD 2 TorUs THEOREM ([12, Theorem 1]). Let X be a sim-
ply connected CW-complex whose mod 2 cohomology H*(X ; Z/2) is
finite. If X admits a homotopy commutative multiplication, then

H*(X;Z/2)=0.

Beside the above theorem, Iriye and Kono [8, Th. 1.3] also showed
that the mod 2 structure is essential for the homotopy commutative
H-spaces. They proved that if p is an odd prime, then any p-localized
H-space admits a homotopy commutative multiplication.

In this paper we describe the odd prime version of The Torus Theo-
rem. To do so we generalize the homotopy commutativity of H-spaces
to the higher ones. The concept of the higher homotopy commuta-
tivity was first introduced by M. Sugawara [21]. He used it to give a
criterion of a homotopy commutative H-space to be the loop space of
an H-space. Later F. Williams [25] considered another type of higher
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homotopy commutativity which is weaker than Sugawara’s one. Both
concepts are defined on the category of associative H-spaces. We
generalize the concept of Williams to the one which is defined on
the higher homotopy associative H-spaces. We call these generalized
spaces the quasi Cy,-spaces. In this sense if a space is a homotopy
commutative H-space, then it is a quasi C,-space, and if a space is
the loop space of an H-space, then it is a quasi C.-space. Then our
main theorem is stated as follows:

THEOREM 1.1. Let X be a simply connected CW-complex with the
finite modp cohomology H*(X ; Z/p) for a prime p. If X is a quasi
Cp-space, then

H*(X;Z/p)=0.

In the above theorem, the condition C, cannot be relaxed to C,_; .
In fact we show in §2 that the p-localized odd sphere S(zpt)‘ I is a quasi
Cy_1-space.

Now Theorem 1.1 implies The Mod 2 Torus Theorem since a ho-
motopy commutative H-space is a quasi C,-space (Proposition 2.3).
Furthermore since the loop space of an H-space is a quasi C,-space
for all n (Theorem 2.2), Theorem 1.1 implies the following theorem
which was originally proved by Aguadé and Smith.

THEOREM ([2]). Let X be a simply connected CW-complex with the
finite modp cohomology H*(X ; Z/p) for an odd prime p. If X has
a homotopy type of the loop space of an H-space, then

H*(X;Z/p) =0.

Recently McGibbon studied the higher homotopy commutativity of
Sugawara type. Then he got the similar results to Theorem 1.1 under
the assumption that X is a C,-space in the sense of Sugawara ([15,
Th. 3]). Since a C,-space in the sense of Sugawara is also a quasi
Cp-space (cf. [15, Prop. 6]), Theorem 1.1 generalizes his result.

Now the explicit definition of the quasi C,-space is given in §2,
and we state in Theorem 2.2 that our definition generalize Williams’
one which is proved in §5. We also study the localized spheres as
the examples in §2. Section 3 is for the preparation of the proof of
our main theorem. We study the cohomology of the exterior A,-
spaces. Then we generalize Borel’s result about the primitivity of the
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generators of the cohomology of homotopy associative H-spaces. We
give the proof of our main theorem in §4.

This research was made while the author was visiting the University
of California, San Diego. The author would like to express his hearty
thanks to Jim Lin for his hospitality.

The author would also like to thank Chuck McGibbon for his help-
ful discussions.

2. Quasi C,-spaces. In this section we define a quasi C,-form on
an Ay,-space. We follow the techniques of Iwase [9] on A,-space.

Let X be an A,-space (n > 2) with the projective i-spaces X P(i)
(i < n) (see §5). Then XP(i)/XP(i — 1) is naturally homeomorphic
to S A XAW  where YA® js the z-fold smash product Y A---AY
of a space Y . Since there is a natural homeomorphism S’ A XA() —

(SHAD A XAD) 4, (81 A X)AD - (ZX)AD | we have the induced map
pi: XP(i) = (ZX)A0) | where

A(S1y cee s Sis X1y eee s Xi) = (81, X15 00, Siy Xi).
Let (i) be the ith symmetric group. Then 7 € (i) acts on YA(®)

by TV, ..., Vi) = (yt_l(l), ,yt_l(l.)). Denote by (Y); the ith
James reduced product space of Y.

DEFINITION 2.1. Let X be an A4,-space (2 < n < +o00). Then a
quasi Cy-form on X is a family of maps {¢;: (ZX); = XP(i)}i<i<n
so that the following conditions are satisfied:

(1) ¢y =idsx,

(2) 9il(EX)i-1 = 1i-19i-1 (2L i< n),
where 1;_1: XP(i — 1) — X P(i) is the inclusion,

(3) pivi =~ (Zres(i)T)éis
where ¢&;: (ZX); — (ZX)AM) is the natural projection, and the sum-
mation on the right-hand side is defined by using the obvious co-H-
structure of (TX)A0),

An A,-space with a given C,-form is called a quasi C,-space.

The above definition is a generalization of Williams’ C,-form de-
fined on associative H-spaces ([25]). In fact it is noted in [25, Remark
19] without a proof that an associative H-space X is a Cp-space in
the sense of Williams if and only if there is a map ¢: (ZX), — XP(n)
with ¢ | X =1,_;---1;. Here we give a proof of the following

THEOREM 2.2. Let X be an associative H-space. Then X admits a
Cy-form in the sense of [25] if and only if X admits a quasi C,-form.
Thus in particular the loop space of an H-space is a quasi Co-space.
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The above theorem is proved in §5.

The quasi C,-space is closely related to the homotopy commutative
H-space. In fact we have the following proposition which can be
proved by [19, Th. 1.9] and [6, Prop. 3.4].

PROPOSITION 2.3. A homotopy commutative H-space is a quasi C,-
space. Furthermore the converse holds if the multiplication is homotopy
associative.

Now as examples of the quasi C,-space, we consider the p-localized
spheres S(’p) , where p is a prime. Since no even dimensional spheres
are H-spaces, we only consider the odd dimensional ones. Then we
prove the following theorem which is the best possible since by the
results on the existence of A,,-forms on the p-localized spheres ([1],
[20, §5], [22, §4]).

THEOREM 2.4. (1) S(lp) admits a quasi Cu-form for any p.

(2) S(ZP’)‘l admits a quasi C,_;-form for any p and t> 1.

(3) S}y and S}, admit no Cy-forms.

(4) Let t be adivisorof p—1 with t > 1. Put n=(p—1)/t. Then
S(zlf)‘ U with any Aoo-form admits a quasi Cy-form, and S(Zlf)‘ U with no
Ap-form admits a quasi C,i-form.

Proof. Since S! is the loop space of an H-space, (1) follows from
Theorem 2.2. (This fact is noted and used by Toda [24].) Furthermore
(3) follows by Theorem 1.1. Thus we prove (2) and (4) for t > 1.

(2) Put X = S}57! and Q = Q287+, and let f: X — Q be the
natural map. Then X admits an 4,_;-form so that f preserves the
Ap_i-forms (cf. [26, §1]). Now since Q is a double loop space, it
admits a quasi Coo-form {g;: (2Q); — QP(i)}i<cc by Theorem 2.2.
Furthermore the homotopy fiber of the induced map X P(i) — QP(i)
is (2tp —3)-connected. Thus we have a quasi C,_;-form on X which
is a lift of {p;(Zf);}.

(4) Suppose that ¢ divides p — 1. Then by considering the homo-
topy group of X = S(Zlf)‘ I we can easily show that if it < p, then both
XP(i) and (£X); have the homotopy type of SV S¥ v ... v SZI.
Thus a quasi C,-form {¢;}i<, is defined as the family of maps in-
duced from the self maps of SED‘) VeV S(zpi)’ which have degree j! on

Soy (<.
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Next suppose to the contrary that X has an A4,-form admitting a
Cp+1-form. It is well known that the cohomology H*(XP(i); Z/p) is
a truncated polynomial algebra of height i + 1 generated by a single
generator of dimension 2¢:

H*(XP(i); Z/p) = Z/plul/(u'*").
Furthermore the homomorphism induced from the inclusion
-1 lns1: XP(n+1) = XP(p)

preserves their generators. Now P'u = uw? #0 in H*(XP(p); Z/p).
Thus

.92’114 = cun+l
for some nonzero ¢ € Z/p in H*(XP(p);Z/p), and also in
H*(XP(n + 1);Z/p). Here by Lemma 4.8, which will be proved
in §4, we have that

Plue P'DH*(XP(n+1);Z/p) =0,
where D denotes the decomposable module. This is a contradiction,
and (4) is proved. O
3. Cohomology of A,-space. In the rest of this paper p denotes
a fixed prime, and H*(-) = H*(-; Z/p). Furthermore, if p = 2, we
assume that " means Sq*”*.
Let X be a simply connected A,-space with multiplication u: X x

X — X . Suppose that the modp cohomology of X is generated by
finitely many odd dimensional generators:

(3.1) HY(X)=A(xy, ..., Xp), dimx;: odd.
Then we prove the following theorem which is a generalization of [3,
Th. 6.6]:

THEOREM 3.2. The generators x;, 1 < i<k, in (3.1) are chosen to
be in the image of

o=ty HY(XP(n—1)) » H*1(X),

where o: H 1) — H*(X-) is the suspension isomorphism.

Proof. The case of n = 3 is due to [3, Th. 6.6] since the theorem

in this case is demanding that x;, 1 < i <k, are primitive. Thus we
assume that » > 3 and x;, 1 <i <k, are primitive.
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Let {E:'!, d,} be the modp cohomology spectral sequence associ-
ated to the filtration ZX Cc XP(2)C --- C XP(n). Then

(3.3) Ey' = Cotory. v(Z/p, Z/p) fors<n-1.

Furthermore, if we identify H*(X) with Ell’* , then x € H*(X) is
in the image of ¢~!i}---1} if and only if d,(x) =0 for r < j ([20,
Th. 5.1]). Thus to prove the theorem we show that d,(x;) = 0 for
r<n-2.

First of all, dy(x;) = 0 since Xx; is primitive. Furthermore if 2 <
r<n-2,then EM*"¥ " =0 for any s by (3.3). Thus d,(x;) =0
(r < n-2), and the theorem is proved. O

Now to state the next theorem we recall the spectral sequence used in
the above proof. This spectral sequence is constructed by the following
diagram:

(3.4)
' 1 - ~
0 —— BHEX) —— B (XP(n))
'val / \,\‘V ﬂl az / \‘~ﬂn—l an /
H*(X) H*(X)®? H*(X)®"
where A% = AQ®---® A (t-folds) for any Z/p-module A, dega; =
—degBi=1i, fiai=—-1*'®1®---1+14*®---®1—---, and

a; is the suspension isomorphism o. We define a submodule D(i)
in H*(X)® by
D)= Y H*X)® @ DH*(X)® H*(X)®~/!.
0<j<i-1
Put S(i) = a;(D(i)) c H*(XP(i)). Then by Theorem 3.2 we have the
following

THEOREM 3.5. There exist classes y(t); € H*(XP(t)) for 1 <t <
n—1 and 1< i<k so that the following properties hold.:

(1) 17_1(S()) =0, and S(t) - H*(XP(t)) =0 for 1 <t<n.

(2) 4 y(@)i =y(—=1); and y(t)iq) - Y(O)iq) = (X)) ® - ®Xi(r)) -

(3) For t < n—1, we have the algebra splitting:

H*(XP@) = T ()1, ..., y(th]®S(),

where T'[uy, ..., us] denotes the truncated polynomial algebra of
height r over Z/p with generators {u;}.

Tn[y(n_l)la--°ay(n—1)k]

@) ODImiz;_ DDT "y(n—1)1,...,y(n—1)].
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Proof. Since {x;} are in the image of ¢~!i}--.1; by Theorem 3.2,
(1)=(3) can be proved by the standard method (cf. [9]). Furthermore
B; is essentially induced from a map defined on a space homeomor-
phic to X{XAG+) | Thus we have DH*(XP(i)) c KerB;. The in-
clusion Imi;_, € T*[y(n — 1)1, ..., y(n — 1);] is clear, and (4) is
proved. m)

4. Proof of the main theorem. First we prove the following propo-
sition which strengthens a result by Browder [4, Corollary 8.7].

PROPOSITION 4.1. If p = 2, then for any simply connected quasi C,-
space X with finite mod2 cohomology H*(X), H*(X) is an exterior
algebra generated by finitely many odd dimensional generators.

Proof. 1t is enough to prove that
(4.2) PH?*(X)=0 foralln,

where P denotes the primitive module. In fact the lowest dimensional
nonzero square in H*(X) is even dimensional primitive. Thus (4.2)
implies the proposition by [11].

Now suppose to the contrary that PH2"(X) # 0 for some n. We
choose n as the greatest such #n. Take a nonzero x € PH**(X).
Since x is primitive we have a class y € H2"+1(XP(2)) with

o lif(y) =x.
Here o~ 11} Sq?*(y) = Sq*" x € PH*"(X) = 0. Thus we have that
(4.3) Sq*"y = aw

for some w € H*(X)®2. Let A: (2X)? — XP(2) be the composition
of ¢, and the natural projection (£X)%? — (ZX),. Write the element
A*y as
Fy=0(x)®1+1@0(x)+ > o(x;)®0(x)),

where dim x;+dim x} = 2n—1. Then for dimensional reasons and by
Sq** x = 0 we have that A*a,w = Sq?*A*y =0, and so w +7*w =0
by Definition 2.1(3), where 7 is the generator of .#(2). Thus for any
u € Hy,(X) we have that

(4.4) (u®u, Sq' w) = (1 + 7.)(uSq! Qu), w)
= (uSq' ®u, w+ T'w)
=0.
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Now we notice that

Sq!Sq*'y =Sq**y =y =ar(x®x)  (cf. [23, Th. 2.4]).

Thus there is a class z € H*(X) with
(4.5) *(z)=Sqw-x®x

by (4.3). Here by [11], we can write x = xgt with dimxy =2s + 1,
t>1. Thus x = Sq! x; with x; = (Sq* xo)xg'"z, and so

i*Sqlz=0
by (4.5). This means that
Sq! z e PH*+*(X)NImSq! = 0.

Thus in the Ej-term E'* of the Bockstein spectral sequence of
H*(X), z represents a class which is primitive by (4.5). Let v €
H,,(X) be any class with (v, x) = 1. Then

W2 z2)=(veu, i*z)=1

by (4.4) and (4.5). These show that z represents an even dimensional
nonzero class in E}>* since v? Sq! = 0. Thus we have a nonzero
square in E;°* by Milnor-Moore [17]. On the other hand, according
to [11] H*(X) has no even dimensional generators. Furthermore, the
square of an odd dimensional class is in the image of Sq'. Thus E’z* ¥
is an exterior algebra, and we have a contradiction. This proves (4.2),
and the proposition is proved. o

REMARK 4.6. If we assume that the multiplication of X is homo-
topy associative, in addition, a similar result to the above proposition
can also be proved for an odd prime p. But this case was already
proved by [4, Cor. 8.9] using Proposition 2.3.

Let X be the A,-space in §3. We use the notation 7'(¢) for
THy()1, ..., y(t);] for simplicity. Then Theorem 3.5 implies

H*(XP(t)=T()®S@1).
Furthermore we assume that X has a quasi Cy,,-form

{pi: (EX); = XP(i)}hicism (m < n).
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Then we prove the following
LemMA 4.7. ¢} | T(i) is monomorphic if i < min{n—1, m, p—1}.

Proof. We prove by induction on i.

If i =1, itis clear since ¢; =id.

Suppose that 2 < i <min{n -1, m,p - 1}. Take z € T(i) with
9}(z) = 0. Then by the inductive assumption we have that ;_;(z) =
0, and so z is a linear combination of % = {y(i)x) - ¥(Dru) | 1 £
k(1) < --- < k(i)}. Let 4;: (EX)! — XP(i) be the composition of
¢; and the projection (£X)! — (£X);. Then by Definition 2.1(3), we
have that

OGOk Yra) = D T (0Xk1) ® - ® 0Xk) -
1€%(i)
It is easy to prove that A} is a monomorphism on the submodule
spanned by % since i <p -1, and so we have z =0.

Now we prove the key lemma:

LEMMA 4.8. Let i <min{n—1,m,p—1}. Then for any z € T(i)
and 0 € & (p) with 1}---1}_,0z = 0, there is a decomposable class
d € DH*(XP(i)) with

0z =6d,

where o/ (p) is the modp Steenrod algebra.

Proof. We prove by induction on i.

If i =1, the lemma is clear.

Suppose that i > 2. Here we notice that DH*(XP(i)) = DT(i) by
Theorem 3.5. Then by the inductive assumption, we have that

01,z = 6d’

for some d' € DT(i — 1). Take d" € DT (i) with if_,d" =d’', and
put
Z=z-d".

Then since i}_;6z' = 0, we have that
0z' = a;(v)

for some v € PH*(X)®" .
Now let (ZX)I] denote the fat wedge, i.e.,

Ex) = {(xl s evrr Xi) € (EX)" | x; = * for at least one j} :
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Let 4;: (2X)' — XP(i) be the map in the proof of Lemma 4.7. Since
H*((ZX)") decomposes to the direct sum of submodules H*((ZX)!"),
(6PH*(X))® and (6 ® --- ® g)D(i), we can write

A =w+ (0@ - ®a)(uy + uh)
with w € H*(EX)), ¥, € PH*(X)® and u, € D(i). Here
H*((ZX)1), PH*(X)® and D(i) are all closed under the action of
& (p) . Furthermore

A0z =(6® - ®0) Z (sgnt)t*v € (6PH*(X))®".
1€7(i)
Thus 6w = 60u), =0, and
Ouy = (07'® - ®@a A0z = Z (sgnt)t*v € PH*(X)®'.
t€2(i)

This implies that Aja;0u) = (6 ® --- ® 0)i!0u} = A;(i'6z"). Thus by
using Lemma 4.7, we have that o;0u} = il6z’, and hence

6z =06d,
where d = d" + a;(1/i!)u . This proves the lemma. w

LeEMMA 4.9. Suppose that n > m > p. Then for any t with t #
Omodp, we have that

it -1 H¥(XP(p)) = 0.

Proof. We prove by contradiction. Assume that the lemma is not
true. Choose ¢ to be the greatest integer such that

i3 HY(XP(p)) #0

with ¢ # Omodp. Take x € H*(XP(p)) with z = o~ 11} --13_,(x)
# 0. Since dim&P*~1x = 2(tp — p + 1), we have by the assumption
that

i 1 Plx =0,

Thus we have that
Py x=9"14d

for some d € DH*(XP(p — 1)) by Lemma 4.8, and so

t—1,% -
P x=0
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for dimensional reasons. This means that (1/¢)%#*~!x = a,y for some
y € H*(X)®P, and so

X =P'x =P (1/)P" " 'x = apPly.
Here we notice that if p = 2, x2 = Sq* x = Sq? Sq% 2 x+Sq*~1Sq! x
= S$q?Sq*~2x since Sq! =0 on H* (X). Thus the above equation
holds also for p = 2.

Now
X =0p(z® - ®2).
Thus
z® - ®z-Plyep, | H?# 1 (XP(p-1)).
But H?P~1(XP(p — 1)) Cc Ima,_; since by Theorem 3.5(3). Thus

z® - Qz=Ply+w

with welm(i*®1®---®1-1®94*®1Q®---®1+---). Take ue
PH,, ((X) with (u, z) #0. Then

U - ®u,z®--®z)#0.

On the other hand, (¥® - -®u, w) =0 since u? =0 by [10, Lemma
2.5]. Furthermore

ue---ou,#'y)

_—_(1/(p—1)!)< > (sgnt)t*(u91®u®---®u),Y>
\1e€¥(p)

=(1/p- ) uP' @ue - ®u, Aayy)

=(1/tlp - 1)) uP' @ue- - ®u, P*~11x)

=0

since A;x € H?((ZX)P) implies #*~1A3x = 0 for dimensional rea-
sons. (We also use the fact that Sq! =0 on H*(X) for p =2.) This
is a contradiction, and the lemma is proved. o

Now we prove our main theorem.

Proof of Theorem 1.1. First we notice that H*(X) is an exterior alge-
bra generated by finitely many odd dimensional generators by Propo-
sition 4.1 and Remark 4.6. Thus we assume that X satisfies (3.1).

Suppose to the contrary that H *(X) # 0. Let s be the smallest
integer with H2~1(X) # 0. Then by (3.4) and Theorem 3.5(4), we
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have that

(4.10) iy_,: H(XP(p)) — T(p—1) is isomorphic for ¢ < 2sp, and
epimorphic for 1 < 2sp +2s — 2.

Now we prove that

(4.11) Im6 N HY(XP(p)) = 0 for any ¢ < 2sp and for any 0 €

& (p).
In fact, (4.11) for the case that 6 is the Bockstein operation follows,

since .
HZJ‘I(XP(p)) =0 for2j—-1<2sp

by (4.10). Furthermore, by Lemma 4.9, we have that
R 1;_1.9"1H"‘(XP(p)) =0.
Thus by Lemma 4.8 together with the inductive argument we have

that
15_ P H/(XP(p)) c #'DH/(XP(p - 1)) =0

for j < 2sp — 2p + 2. This shows that
ImP' NHY(XP(p)) =0 fort<2sp

by (4.10). Furthermore, since i} ---1>_ HX?=P+1)(XP(p)) = 0 by
Lemma 4.9, we have that 17_, HX?=?+1)(XP(p)) c DT(p — 1), and
so H2sP-r+))(XP(p)) c DH*(XP(p)). Thus

Im 2! N H*?(XP(p)) c ' DH*(XP(p)) N H*?(XP(p)) = 0.

This proves (4.11) for 0 = P!,

Now if p is an odd prime, (4.11) for the general case follows by
Liulevicius [13] or Shimada-Yamanoshita [18]. For p = 2 we need to
prove a little more. If p = 2, then by using the same method as in
[12, Prop. 2.3], we can prove by Lemma 4.9 that

QH*+1(X)=0, and Sq’=0 on H*(X).
Then by induction on r we can prove that if ¢ = 2" 4+ 2"+t1k, then
{H'(XP(2))=0, QH"'(X)=0, and
Sq?" =0 on H*(X) (cf. [12)).

This proves (4.11) for the case that p = 2.
Now take x € H*~!(X) and y € H*(XP(p)) with 1} ---15_,y =
ox # 0. Then by (4.11), we have that

apx®---®x)=y? =2y =0.
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Since ﬂp_lHOdd(XP(p -1)) C Im/?p_lap_l with ﬂp_lap_l = i*®
1®--®1-1®@0*®1®---®1+---, there is a class w € H*(X)®?
so that

X® QX = ﬁp_lap_lw.
Then for any primitive class u € PH),_(X) with (u, x) # 0, we
have that

O#A(uUu® - Qu, x® - ®x)

=U® U, Bp_10p_ W)

=0
since u2 = 0 by [10, Lemma 2.5]. This is a contradiction, and the
theorem is proved. o

As was shown in §2, S(Z‘;)‘ ! hasan 4, ;-form which admits a quasi
C,-1-form. However, this 4,_;-form cannot be extended to an Au-
form. Thus to show that our main theorem is the best possible, we
have to find an example of a simply connected A.-space with non-
trivial finite modp cohomology which admits a C,_;-form for each
odd prime p. McGibbon [14] showed that Sp(2);) is one of such
examples for p = 3. For p > 3 the author does not know such ex-
amples. But it seems to be reasonable to conjecture that the space
B1(p)(p), which is a Sa,)-bundle over S(pr)“ , 1s an Ay-space admit-
tinga C,_;-form. In fact Sp(2):3) has the homotopy type of B;(3)3),
and B;(p)(y) is an A-space for any odd prime p ([5, Th. 1]).

5. Proof of Theorem 2.2. In this section we prove Theorem 2.2.
First we prepare some known facts.

Let n denote the set {1, 2,...,n} for any positive integer ».
Then a partition of n is a sequence of nonempty disjoint subsets
of n, a = (4;,..., 4;), with [J;4; = n. We call the sequence

(#4y, ..., #4;) the type of o, where # denotes the cardinality. A
partition a = (4y, ..., A;) of n of type (n;, ..., n;) defines a shuf-
fle T of type (ny,...,ng) by 4; = {t(ny+---+n_1+1),...,
7(ny +---+n;)}. Here a shuffle of type (m;, ..., m;) isaclass p in

F(my+---+my) sothat p(i) < p(i+ 1) if m+.---+mj+1<i<
my +---+mj; for some j <t. By this correspondence we consider
any partition of n as an element in #(n). In particular, all parti-

tions of n of type (1,..., 1) correspond to the elements in %(n)
bijectively.

Let C(n — 1) be the convex hull of {z(s,) | T € &#(n)}, where
sn = (1,2,...,n) € R*, and 7 acts on R"” by 7(x;,...,Xn) =

(Xz=11y > +o o s X;-1(y) - Then C(n—1) is an n —1 dimensional cell
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complex whose faces correspond to the partitions of n bijectively (see
[25]). Thus we also identify a partition o = (Ay, ..., A;) of n with
the inclusion of the corresponding face, a: C, — C(n — 1), where
Ca=C(#A1 - I)X cee X C(#Ak-— 1)

Let o = (4, ..., A;) be a partition of n of type (ny,..., ng).
Then for any ¢ with 0 <t < k we define a partition o; = (By, ...,
By.1) of n+1 by

A; ifj<k-t+1,
Bi=S {n+1} fj=k-t+1,
Aj—l ifj>k—'t+l.
Here we define a map
ga:Akaa—->C(n)
by

8o (ZatPlaxla"':xk)
t

=Zata,(x1, cee s Xie—t l,xk_,+1,... ,xk),

where o; is considered as the inclusion C, — C(n), and AX is the

k-simplex with vertices {Py, ..., Pr}. Then the set {g.} for all par-
titions a ofn gives a decomposmon of C(n):
(5.1) C(n)=UImga.

a

We also define a map
h(a): A¥ x C, — A"
by

E(a)(Za,Pt,xl,... ) Zat (D1 v ¥On),
t
where .
(t)"—{O 1fa‘1(i)>n1+---+nk_1+1,
VIi= ifa~l()) <np+ -+ mpy.

Then by using the decomposition (5.1), {/(a)} define a relative home-
omorphism:

(5.2) hp: (C(n), dC(n)) — (I", 81™) (n>0).



MODp TORUS THEOREM 109

Now we recall the definition of Williams’® C,-form. Let X be an
associative H-space. Then a C,-form on X in the sense of [25] is
defined as a family of maps {Q;: C(i—1) x X’ — X} << satisfying
- the following conditions:

(1) @, =idy where C(0) x X is identified with X .
(2) Let a be a partition of i of type (r,s) (r+s=1i). Then

Qi(a(p’ 0'), X1y eees xi)
= Qr(p9 Xa(l)s ++e s xa(r)) : QS(G s Xo(r+1)s oo s xa(i)) ’
where pe C(r—-1), aeC(s-1), x;,...,x; € X, and “-” denotes
the multiplication of X .
(3) If x; = *, then
Qi(ra Xlseeos xi) = Qi—-l(Dj(T)a X1y eees Xja ey xi)’

where D;: C(i—1) — C(i—2) is the degeneracy map (see [16, Lemma
4.5]).

Finally we recall the definition of the projective n-space XP(n)
of an associative H-space X . Stasheff [20] used his own complexes
to define XP(n). Here we use the n-simplex A” since we get the
equivalent one.

Let 8;: A" 1 - A" (0<i<n) and s;: A" - A""! (1<i<n) be
the boundary and the degeneracy operations, respectively:

P; if j<i P, ifj<i
9:(P;) = J ’ si(P:) = J ’
=1 P ifj2i, 0 { Py ifj2i.
Then X P(n) is defined inductively by the relative homeomorphism:
Ent (A" x X", A" x X" UA™ x X"1) — (XP(n), XP(n — 1)),
where &, is defined by

én(al'(a)a Xis'eees xn)

Cn-1(0, X2, ..., Xn), i=0,

=3 ¢n-1(0, X1, .ov s Xp-1), i=n,
Enm1(0, X1, eee s Xi* Xigtseee s Xn), 1<i<n-1,

én(a,'xl,...,xn)=£,,_1(sj(a),x1,...,)‘c]—,...,xn)

if xj=+(1<j<n).

Now we can prove Theorem 2.2.

Proof of Theorem 2.2. The second part is clear from the first part.
So we only prove the first part by [25, Cor. 2.6].
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Let X be an associative H-space with C,-form {Q;}i<i<,. We
construct a quasi Cp-form {¢};<,, inductively.

First we put ¢, = idsy .

Next we suppose that 1 < m < »n and {¢;}1<i<m-1 are constructed.
Let o« = (41, ..., A;) be a partition of m of type (a;,..., ay).
Then we consider the following composition:

AFx Cox X™ HAF X Cla; — 1) X X% x - x Clag — 1) x X%
A Ak x X* - XP(k) c XP(m),

where 7 is the appropriate switching map, and n = 1xQy X---x 0y, .
By considering the above maps for all partitions of m, the decompo-
sition {g,} of C(m + 1) of (5.1) defines a map

Cim)x X™ — XP(m).

Then this map together with A, of (5.2) defines a well defined map
9m which satisfies the desired properties of quasi C,,-form since there
is a natural relative homeomorphism

(I x X", I x X" UI™ x X" o (X)), (X))

Thus X is shown to have a quasi Cp,-form.

Now suppose that X is an associative H-space with a quasi C-
form {¢;}i<n. Let v;: (£X); — BX be the composition of ¢; and
the inclusion XP(i) - XP(oc0) = BX. Then since v;: ZX — BX is
the adjoint of the natural map ¢: X — QBX, v; defines a map Q;:
C(i—1)x X' - QBX so that {Q/},<;<» gives a C,-commutativity
of ¢ in the sense of [25, Def. 25]. Thus if y: QBX — X denotes
the natural A..-equivalence, then we have a C,-form {ywQj}i<, on
X . This completes the proof. 0
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