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Let X be a Hausdorff continuous image of an ordered continuum.
MardeSic proved that X has a basis of open sets with metrizable
boundaries. We use T-set approximations to obtain bases of open sets
for X whose boundaries satisfy a variety of conditions. In particular,
we prove that

dimX= \nάX = \nάX

= max{l, sup{dim Y : Y c X is metrizable and closed}}.

1. Introduction. In this paper we study the rim-properties of images
of ordered continua and, more generally, of compact ordered spaces.
Mardesic proved in [Ml] that a Hausdorff space which is a contin-
uous image of a compact ordered space is rim-metrizable. In [N3],
the first author proved that every hereditarily locally connected con-
tinuum is a continuous image of an ordered continuum. Then he used
the approximation by T-sets of cyclic elements in images of ordered
continua to prove that every hereditarily locally connected continuum
is rim-countable. We use the techniques of [N3] to improve the result
of Mardesic and to answer a question of Mardesic and Papic [MP]
about dimension-theoretic properties of continuous images of ordered
continua and ordered compacta. We improve a result of Simone [Sil]
by proving that if X is a continuous image of an ordered contin-
uum and X contains no nondegenerate metric continuum, then it is
rim-finite. We also prove that if a rim-scattered space is a continuous
image of an ordered compactum, then it is rim-countable.

All spaces in this paper are HausdorfF. A continuum is a compact
connected (HausdorfF) space. An ordered compactum is a compact
space which admits a linear ordering such that the order topology is
the given topology. Ordered continua are locally connected; they are
often called arcs.

A point p of a connected set X is a separating point of X if X-{p}
is not connected. We let E(X) denote the set of all separating points
of X.

Let X be a locally connected continuum. A connected subset Q of
X is a cyclic element of X if Q is maximal with respect to containing
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no separating points of itself. Each cyclic element of X is a locally
connected continuum. The theory of cyclic elements is presented in
[Whl, Ch. 4] for the case of metric locally connected continua. We
shall use some extensions of this theory to the non-metric setting as
set out in [Wh2] and [C], see also [N4].

A collection A of subsets of a compact space X is said to be a null-
family in X if, for every open covering U of I , the subcollection
{B G A : B is not contained in any F E U } is finite.

Let A be a subset of a locally connected continuum X. We let
K{X - A) denote the set of all components of X - A. We will say
that A is a T-set in X if A is closed and each component of X - A
has a two-point boundary.

Let Y be a cyclic element of a locally connected continuum X.
We say that a sequence {A\, A2, . . . , An, ...} of T-subsets of Y
T-approximates Y if

(1) A i is metrizable,
(2) An c An+ι,
(3) if Z e K(Y - An), then £(C1(Z)) c Λ + i ,
(4) if Z G ΛΓ(Γ — ;4Π) and C is a nondegenerate cyclic element

of C1(Z), then C n ^ + i is a metrizable set which contains at
least three points.

Note that the conditions of the above definition imply that C l f l J ^ An)
= Y (see [Nl, Lemma 3.4]).

In [Nl], there are given several characterizations of continuous
Hausdorff images of ordered continua. One of them is the follow-
ing:

THEOREM 1 [Nl, 1.1]. Let X be a locally connected continuum.

Then the following are equivalent

(1) X is a continuous image of an ordered continuum,
(2) if Y is a nondegenerate cyclic element of X, then there is a

sequence {A\, Aι, ...} ofT-sets in Y which T-approximates Y.

Further properties of continuous images of arcs and ordered com-
pacta can be found in survey articles [M3], [TrW] and [N4]; see also
[Nl].

Let P be a property of sets. A space X is said to be rim- P if it
has a basis of open sets whose boundaries have property P . A set
is said to be scattered if each of its non-empty closed subsets has an
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isolated point. Recall that compact, metrizable, scattered spaces are
countable. For definitions of dimensions dim , Ind and ind , the
reader is referred to [E].

For a compact space X, we define

a{X) = suρ{dimZ : Z is a closed metrizable subset of X}.

We let α — 1 = oo if a = oo.
We shall need the following lemmas.

LEMMA 1 [Tr2]. Let X be a locally connected continuum and A a
T-set in X. There exists an upper semi-continuous decomposition GA
of X into closed sets such that if XA denotes the quotient space and
f: X —• XA is the quotient map, then:

(1) f\A is one-to-one and f(A) is a T-set in XA,
(2) each Z e K(XΛ - f{A)) is homeomorphic to ]0, 1[,
(3) for each Z e K(XA-f(A)) there exists a unique Pz e K(X-A)

such that f{Pz) c C1(Z), and each component of X -A is a Pz for
some Z e K(XA - f(A)).

In the above lemma, f(A) is a T-set in XA , and we call / a Ύ-map
with respect to A. The space XA is uniquely determined by X and
A. If the set A is metrizable it follows, by local connectedness of X,
that K{X - A) is countable, [Nl, 4.1].

LEMMA 2. Let X be a locally connected continuum and, for every
cyclic element Y of X, let By be a basis for Y. Then X has a basis
B such that, for each U e B, there exist a family A of cyclic elements
of X, non-negative integers m and n, nondegenerate cyclic elements
Yι,...,Ym of X, sets U\ e B^ , . . . , Um e Bγm, and separating
points xι, ... ,xn of X such that

i7iU UC/m and

= Bdγι(Uι)\J...UBdγm(Um)\J{xι,...9Xn}.

Proof. The lemma follows from the generalization, by Cornette [C,
p. 225-6], of Whyburn's cyclic chain approximation theorem [Whl,
IV.7.1, p. 73] to the case of locally connected Hausdorff continua. D

LEMMA 3. Let γ be an infinite cardinal number and let P be a
hereditary property of compact sets that is preserved under unions of
fewer than γ compact sets. Let X be a locally connected continuum,
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{^i)%\ an increasing sequence of closed subsets of X, and {V i}^ a
sequence of collections of sets such that:

(1) Vj is a basis of open sets for A\,
(2) Bd(K) has property P for each K e K{X - At),
(3) V e\t implies Bd^.(K) has property P,
(4) V e Ύi implies {K e K(X - A{): Bd(K) n V φ 0 and Bd{K)

(£. C\{V)} has cardinality less than γ,
(5) for each open cover W of X there is an integer i such that

K(X-Ai) refines W.

Then X admits a basis of open sets whose boundaries have property
P.

Proof. Let x eX and let U be an open neighbourhood of x. Let
W be an open neighbourhood of x such that C\{W) c U.

Suppose that x £ |J£Li Λn. For every n let Kn e K{X - An) be
such that x e Kn. Then Kn+\ C Kn. By (5), there is an integer
/ such that Ki is contained either in U or in X - Cl(W). Since
x e Cί(W)Γ\Ki, it follows that Kt c U. Since X is locally connected,
!£/ is an open set. By (2), Bd(Kj) has property P .

Now suppose that x e An for some integer n. By (5), we may
take n to be such that no component of X - An meets both Cl( W)
and X - C/. Let F e \ n be such that x e V c d ( F ) C PF. Let
F' = F u U { ^ 6 A : ( J Γ - Λ ) : B d ( ί : ) n F 5 έ 0 } . Then V c C/. Since
X is locally connected, K' is open and

U (J{Bd(iί:): K e K(X - An), Bd(K) ί)Vφ0 and Bd(A') <jί V}.

By (3), (2) and (4), it follows that Bd(F') has property P. D

2. Main results. The proof of the following lemma uses some ideas
from the proof of [N3, Theorem 4.1].

LEMMA 4. Let Y be a continuum with no separating point which is
a continuous image of an ordered continuum. Let a = max{l, α(Γ)}.
Then Y has a basis V of open sets whose boundaries are metrizable
sets of dim < a - 1. Moreover, if Y admits a basis of open sets
with scattered boundaries, then the boundaries of members of V are
countable.

Proof. Let {A\, A2, ...} be a sequence of T-sets in Y which T-
approximates Y. For each n, let fn : Y —• YA = Yn be a T-map with
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respect to An (see Lemma 1). We let B™ = fn(Am) c Yn provided
m < n. Notice that Yn has no separating point, each B™ is a T-
set in Yn provided m < n, fn\Am: Am -> J3™ is a homeomorphism,
and every component of yrt - 5^ is homeomorphic to ]0, 1[. Since
Yn has no separating point, it follows that if P is a component of
Yn-B™, Bd(P) = {α, b}, then C1(P) is a cyclic chain from α to
b (in the case when m = rc - 1, all cyclic elements of C1(P) are
metrizable—see below).

First, we use an induction to show that, for n = 1, 2 , . . . , Yn has a
basis Bn such that Bdy(F) is metrizable and dim(Bdy(F)) < α - 1
for each VeBn. "

Note that Y\ = B{ U (Y\ - B{) is a metrizable space which is a
union of the compact metrizable set B\ (which is homeomorphic
to A\) and a countable family of copies of ]0, 1[. By [E, 1.5.3, p.
42], dim7i < max{l, dim5|} < α. Hence, Y\ has a basis B! as
required.

Suppose that the required basis Bn for Yn has been already defined.
Let y e Yfl+i and let V be an open neighbourhood of y in Yn+χ.
If y φ £ * + 1 , then y e Q for some Q e K(Yn+ι - B^). Let
Bd(β) = {a, b}. Then Cl(β) is a cyclic chain from α to 6 and
£(Cl(β)) c B%+\. If Z is a nondegenerate cyclic element of Cl(β),
then Bz = B*+\ Π Z is a metrizable T-set in Z , Z n (E(α(β)) U
{a, 6}) consists of exactly two points, and each component of Z-Bz
is homeomorphic to ]0, 1[. Hence, K(Z - Bz) is countable and Z
is metrizable. Now, it is easy to find an open neighbourhood W of y
in yw+i such that W c VΓ)Q, Bdγn(W) is contained in two cyclic
elements Zi and Z2 of Cl(β) and for i = 1, 2

dim(BdrΛ(JH n Z/) < dimZ/ - 1 < max{l, d i m 5 z } - 1

< max{l, άimAn+\} - 1 < a — 1

provided Z, is nondegenerate (the case when Z, is degenerate is triv-
ial). Thus we have άim{Bάγn{W)) < a - 1.

Now, suppose that y e B£+ι. Let x denote the unique point of
An such that fn+\{x) = y. For every P G ΛΓ(7Λ+I - ££+ 1) let β P €

i4π) be a component such that fn+\(Qp) C C1(P) and let Λp G
yΛ - J5«) be such that fn(QP) c Cl(RP). Set Bd7;j+i (P) = {aP, όP}

and Bdrπ(RP) = {^, b'P}, where / ^ ( α π ) n An = Λ " 1 « ) n ^ n , and
let < denote the natural ordering on Cl(RP) from flp to ίj,. Choose
rP G i?p and let IP = {r e RP : r < rP} and JP = {r eRP : rP < r}.
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Let

U \J{Rp : P e K{Yn+ι - 5»+ 1) and C1(P) c V}

U \J{Ip : P € K(Yn+i - tf»+1) and αP e V}

U |J{/p : />€ K(Yn+ι - B$+ι) and bP e V}.

Since {Cl(i?p): P G AΓ(Γn+i - B%+1)} is a null-family, V is an open
subset of Yn. Moreover, fn(x) GK'. By the inductive hypothesis,
there is a connected open set W in Fn such that fn{x) EW'CV,

Bdγn(W) is metrizable and dim(Bdγn(W)) <a-l. Let

H ! = {P e K(Yn+ι - Bn

n+λ) :a'PeW and RP £ W'},

H2 = {P € ΛΓ(ΓB+1 - Bn

n+{) :b'PeW and i?P ?ί W'}

and

H3 = {P e K(Yn+ι - Bn

n+ι): RP c W '̂}.

Note that if P G Hi u H 2 , then i?/> n Bdy {W) is a non-empty open
n

subset of Bdy {W1). Since Bdy (Wf) is compact and metrizable, HiU
n n

H2 is countable. For every P e Hi (resp. P G H2), let ffp (resp.
W^) be an open subset of C1(P) such that aP e W£ c V (resp. bP e
W$cV), BdCι{P)(Wi) is metrizable and dim(Bdα(P)(^)) < a - 1
(resp. BdCi(i>)(FPp) is metrizable and dim(BdCi(p)(Wp)) < a - 1).
Note that Bdci(p)(Wp) may be assumed to be contained in one cyclic
element Z of C1(P). By the fact that K(Z - Bz) is countable, it
follows that Z is metrizable and dim Z < a. Let

w = fn+ι(f-ι(W)nAn)u

Since K(Yn+\ —B%+1) is a null-family, W is open in Z . A straightfor-
ward argument shows that y e W c V (because if P e K(Yn+ι-B%+ι)
is not contained in V, then rP φ V and so RP (jLW1) and

U U Bdσ{P)(W))U U BdCi(/>)(^2).

Thus Bdyn (FF) is a union of countably many compact metrizable
sets of dim < a - 1. It is well-known that each compact space which
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can be covered by countably many closed and metrizable subsets is
metrizable. Hence, Bdγn+ι(W) is metrizable. By [E, 1.5.3, p. 42],
dim(Bdγn (W)) < a - 1. The inductive argument is complete.

Let P" be the following property of compact spaces: a space is
metrizable of dimension < a - 1. Let γ = Ni be the first uncount-
able cardinal number. Note that Y satisfies all the assumptions of
Lemma 3. Indeed, the condition (2) of Lemma 3 follows immediately
from the definition of a T-set. Let \ n = {An n fnl(U) : U e Bn}
for n = 1,2,.. . . Then \ n is a basis for An which satisfies the
conditions (1) and (3). The condition (4) follows from [Nl, 4.1], and
the condition (5) is a consequence of [Nl, 3.4]. By Lemma 3, Y
has a basis V of open sets with metrizable boundaries of dimension
< α - 1 .

Suppose that Y is rim-scattered. Then Yx is metrizable and rim-
scattered. Hence, Y\ has a basis of open sets with countable bound-
aries. It is now easy to modify the above argument to show that each
Yn has a basis of open sets with countable boundaries. By Lemma 3,
Y has a basis of open sets with countable boundaries. D

Simone, [Sil] and [Si2], proved that if X is a continuum with de-
gree of cellularity Ko, which is a continuous image of an ordered con-
tinuum and which contains no nondegenerate metric subcontinuum,
then X has a basis of open sets with finite boundaries. Simone's
theorem can be improved as follows:

THEOREM 2. Let X be a continuum which is a continuous image
of an arc and which contains no nondegenerate metric subcontinuum.
Then X has a basis of open sets with finite boundaries.

Proof. Let Y be a nondegenerate cyclic element of X. Since having
a basis of open sets with finite boundaries is a cyclically extensible
property (see Lemma 2), it suffices to prove that Y is rim-finite.

Let {A\9A29...} be a sequence of T-sets in Y which T-approxi-
mates Y and, for n = 1, 2, ... , let fn: Y -> Yn be a T-map with
respect to An (see Lemma 1). Since A\ is metrizable, and, hence,
zero-dimensional, Y\ has a basis of open sets with finite boundaries
(see [Nl, 4.3]). If U is an open set in Y\ which has a finite bound-
ary, then all but at most finitely many components of Y\- A\ whose
closures meet UΓ\A\ are contained in Cl(£/) An inductive argument
similar to the one given in the proof of Lemma 4 shows that each Yn

is rim-finite. Taking P to be the property of being a finite set and
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γ = No in Lemma 3, it follows that Y has a basis of open sets with
finite boundaries. D

THEOREM 3. If X is a nondegenerate continuous image of an
ordered continuum, then

max{l, a(X)} = dimX = IndX = indX.

Proof Let a = max{l, a(X)}. Since X is a nondegenerate con-
tinuum, indΛΓ > 1. By general facts (see [E, 3.1.4 on p. 209, 2.2.1
on p. 170, and 1.1.2 on p. 4]), it follows that dimZ > dimZ,
\nάX > IndZ and indJΓ > indZ for each closed subspace Z of
X. Hence dimZ, IndΛΓ, indΛf > a. For each normal space X, we
have indZ < IndX [E, 1.6.3, p. 52] and dimX < IndX [E, 3.1.28,
p. 220]. Thus it suffices to show that IndX < a.

Let x e X and V be an open neighbourhood of x. By Lemmas 4
and 2, there exists an open set W such that x e W c V, Bd(W) is
contained in the union of a finite collection {Z\, ..., Zn} of cyclic ele-
ments of X, Bd(W)nZi is metrizable and dim(Bd(H0 n Z, ) < α - 1
for Ϊ = 1,... , n. Hence, Bd(W) is metrizable and IndBd(W) =
dimBd(PF) < a - 1. By the sum theorem for separable metric spaces,
[E, 1.5.3, p. 42], we have IndX < a. D

REMARK. In Theorem 3, if ot{X) = 0, then X is rim-finite by
Theorem 2.

THEOREM 4. Let X be a continuum which is a continuous image
of an arc. If X has a basis of open sets with scattered boundaries, then
it has a basis of open sets with countable boundaries.

Proof. By Lemma 4, each cyclic element of X is rim-countable.
The theorem follows by Lemma 2. D

The following theorem answers a question of Mardesic and Papic
([MP], see also [N4, Problem 4]):

THEOREM 5. Let Z be a continuous image of a compact ordered
space. Then

(1) dimZ = IndZ = indZ. If moreover, dimZ > 0 then
dimZ = max{l, α(Z)}.

(2) If Z is rim-scattered, then it is rim-countable.

Proof. For every compact space T, Ind T = 0 iff dim T = 0 iff
indΓ = 0, [E, 3.1.30, p. 221]. Thus we may assume that Z is not
zero-dimensional. Let a = max{l, α(Z)}.
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By [N2, Theorem 2], see also [Ml, Lemma 8], there exists a space
X such that I is a continuous image of an arc, Z c X, Z is
a T-set in X, and each component of X - Z is homeomorphic to
]0, 1[. If Y is a closed metrizable subset of X, then Y is a union of
Z n Y and at most countably many closed sets which are homeomor-
phic to subsets of ]0, 1[. Hence, dim Y < max{l, dim(7 nZ)} .
By Theorem 3, a = dimZ = IndX = indX. Since Z is not zero-
dimensional, a < dimZ, IndZ, indZ. However, dimZ < dimX,
IndZ < IndZ and indZ < indΛΓ. This completes the proof of (1).
A similar argument together with Theorem 4 show that (2) holds. D

REMARKS. 1. In the case when α(Z) = 0, the result (1) of Theo-
rem 5 was obtained by Mardesic [M2, Corollary, p. 425].

2. The proofs of Lemma 4 and Theorems 3 and 5 show that if a
space X is a continuous image of an ordered compactum, then it has
a basis B such that Bd(J7) is metrizable and dimBd(C/) < dimX- 1
for each U € B. This improves results of [Ml].

3. Problems. Filippov gave in [F] an example of a locally connected
continuum which admits a basis of open sets with metrizable zero-
dimensional and perfect boundaries and which is not a continuous
image of any ordered compactum.

In general, rim-scattered continua are not continuous images of or-
dered compacta. For example: the space X = Lx S/{0}xs > where L
denotes the long interval and 5f = {£:n = l , 2 , . . . }U{0} , i sa rim-
countable continuum which is a continuous image of no ordered com-
pactum. In fact, X contains a non-metric product of infinite compact
spaces—see [Trl]. However, the space X is not locally connected. In
[Tu], it was proved that rim-scattered locally connected continua do
not contain a non-metric product of nondegenerate continua. Hence
we may ask the following question:

Question 1. Is every locally connected rim-scattered continuum a
continuous image of an ordered continuum?

Filippov's example shows that rim-scattered locally connected con-
tinua are the largest possible class of spaces defined with the use of
rim-properties that could be contained in the class of continuous im-
ages of ordered continua. Recall the following weaker question which
is still open (see [N3] and [N4]).

Question 2. Is every locally connected, rim-countable continuum a
continuous image of an ordered continuum?
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Let us also pose the following problem:

Question 3. Is every locally connected and rim-scattered continuum
a rim-countable space?

Recall that, by Theorem 4, Question 3 has a positive answer pro-
vided the space under consideration is a continuous image of an arc.

Added in proof. Recently the authors answered questions 1 and 2
in the negative in the paper: J. Nikiel, H. M. Tuncali, and E. D.
Tymchatyn, A locally connected rim-countable continuum which is the
continuous image of no arc, Topology Appl. (to appear). L. B. Treybig
proved a result which implies Theorem 2 in Proc. Amer. Math. Soc.
74 (1979), 326-328.
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