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CURVATURE CHARACTERIZATION
AND CLASSIFICATION OF RANK-ONE
SYMMETRIC SPACES

Quo-SHIN CHI

We characterize and classify rank-one symmetric spaces by two
axioms on R(-, v)v, the Jacobi part of the curvature tensor.

1. Introduction. In his book [3], Chavel gave a beautiful account
of the rank-one symmetric spaces from a geometric point of view up
to the classification of them, which he left for the reader to pursue
as a matter in Lie group theory. The purpose of this paper is to
extend Chavel’s approach to fill in this last step by classifying these
spaces, on the Lie algebra level, based on geometric considerations.
To be more precise, for each unit vector v, define the Jacobi operator
K, = R(-, v)v, where R(X, Y)Z denotes the curvature tensor. Then
for a compact rank-one symmetric space one notes that (1) K, have
two distinct constant eigenvalues (1 & 1/4) for all v if the space is
not of constant curvature, and (2) E{(v), the linear space spanned by
v and the eigenspace of K, with eigenvalue 1 is the tangent space of a
totally geodesic sphere of curvature 1 (a projective line in fact) through
the base point of v, and consequently E;(w) = E;(v) whenever w is
in E(v). These two properties will be adapted in the next section as
two axioms, and we will prove then that they turn out to characterize
locally rank-one symmetric spaces. Indeed, motivated by [5] and [8],
we prove that the curvature tensor, under the two axioms, induces a
certain Clifford module, from which the curvature components and
the dimension of the space can be read off. It then follows that the
space must be locally rank-one symmetric, and the list of such spaces
falls out in a natural way.

We would like to mention that there is another interesting geomet-
ric classification of the compact symmetric spaces by Karcher [11].
Karcher’s construction of the Cayley plane rests on some intriguing
properties of isoparametric submanifolds and he has to assume the
space is symmetric of positive curvature for the classification, whereas
all our results follow from the the two axioms and the technique re-
quires essentially no more than linear algebra. Our analysis reveals by
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fairly simple constructions why such spaces are closely related to the
four standard algebras R, C, H, and the Cayley algebra Ca.

This paper is part of the author’s Ph.D. dissertation. He would like
to thank Professor Bob Osserman for direction and encouragement,
and Professor Hans Samelson for discussions.

2. A curvature characterization of locally rank-one symmetric spaces.
We start out with two axioms.

Axiom 1. Let K,(-) = R(-, v)v for v in SM , the unit sphere bun-
dle of M. Then K, has precisely two different constant eigenvalues
independent of v (counting multiplicities).

Axiom 2. Let b, c¢ be the two eigenvalues. For v € SM, denote
by E.(v) the span of v and the eigenspace of K, with eigenvalue c.
Then E.(w) = E.(v) whenever w € E.(v).

REMARK. 1. Axiom 2 is redundant if dim E.(v) = 2.
2. It’s not hard to show (cf. [3]) that a two-point homogeneous
space of constant curvature must be RP” or the space forms.

THEOREM 1. Locally rank-one symmetric spaces not of constant cur-
vature are characterized by the two axioms.

We need a few lemmas to complete the proof.

LemmMmA 1. If y is perpendicular to E.(v), then so is E.(y). In
particular M), the tangent space at p, can be decomposed into per-
pendicular subspaces of the form E.(v).

Proof. Since y is perpendicular to E.(v) and since E.(w) = E.(v)
for all unit w in E.(v) by the second axiom above, one sees that
Kw(y) = by for all such w, which in turn implies K,(w) = dw;
hence E.(y) is perpendicular to E.(v). m]

LEMMA 2. Let
My, =E(X)®E(y)DE(z)D-.

Then
(i) Ry, x1)x2 =—-R(y, x2)x1 for x;, x; in E(x).
(ii) R(x,y)z=0.
(ii1) R(xy, x2)x3=0 if x;, x5, x3 € E;(x).
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Proof. For (i), one considers w = (x; + x3)/v/2. One has Ky (y) =
by since w is in E.(x). This implies (i) by expanding

X1 +x2> X1+ X2

Kw(y)=R(y, 7 7

To prove (ii), let w = (¥ + z)/v/2. One has Ky(w) = bw since
K.(y) = by and K,(z) = bz; hence K, (x) = bx, which gives, after
expanding Ky (x),

R(x,y)z=—-R(x, z)y.

This same relation holds if we cyclically permute x, y, z. Now the
first Bianchi identity finishes the proof. The proof of (iii) is similar
to that of (ii). 0

DEeFINITION 1. The type number 7 =dim E.(x) — 1.

Clearly 7 is well-defined since dim E,.(x) is constant for all unit x.

Given xy € SM, choose x;, x3,...,Xx; so that xp, x1,..., X;
form an orthonormal basis for E.(xp). Define, for 1 < i < 7,
Jit Ec(x0)* — Ec(xo)* by

(1) Ji(y) = R(xo, x;)y,

where E.(xg)* is the subspace perpendicular to E.(xp). (That J;
sends E.(x)* to itself follows from Lemma 2, (iii).)

LEMMA 3. Given a fixed unit vector yyLE.(xg), the map R(xy, )yo:
E.(x9) — Ec(xo)* satisfies |R(xq, x)yo|l = 2/3|b — c| for unit x per-
pendicular to x .

Proof. Let w = (xo+0)/V2, and let M, = E(x0)® E.(yo) ®E.(z)
®---. Let (x;) and (y;), i=0,1,..., 7, be orthonormal bases for
E.(xp) and E.(yo) respectively. It’s directly checked, using Lemma
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2, that

b
(xo — (%0 ~ o)

b+c
Xi = ~—5— z+2z (R(x:, Yo)X0, Vs)¥s

b
Yo — —E(XO )

b+c
Vi— —— z+2}: (R(yi, X0)Y0 , Xs)Xs

\z—-»bz.

This precisely says that the restriction of K,, to the subspace V' gener-
ated by {x;, y;}!_, has b and c as eigenvalues with equal multiplicity
7 by axioms 1 and 2.

When written in matrix form relative to {x;, y;}7_,, Ky restricted
to V' assumes the form

(2)

which has dimension 7 since it is the eigenspace of K,, with eigen-
value c.
Now (2) 1s nothing but

b-c 3,
—Tx+—2-Ay—0,
3 b-c
5Ax+ 3 y=0

It follows that y = 2-A4x and A'Ax = (25¢)2x. Since the null
space under consideration has dimension 7 and x and y are 7 x 1
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matrices, one concludes that 4A’Ax = (b—g—c)zx for all Tx1 matrices x

perpendicular to xg, meaning ||R(x, yg)Xol = ]%—C‘ . Now the lemma
follows by noting that R(xp, X)yo = —2R(x, yo)xo by Lemma 2. 0O

From now on we normalize the metric so that

(3) |b—c|=%.

PROPOSITION 1. The operators J;: E.(xo)* — E.(xo)* defined in
(1) satisfy
(i) J2=-1I,
(i) JiJy = —JpJ; for i £k,
(iii) JiJi () € Span(Jy(y), ..., J=(¥)).

Proof. Let M, = E.(x9) & E.(y) ® Ec(z) @ ---. By Lemma 2,
Ji: E.(y) = E.(¥), Ji: E.(z) — E.(z) etc.; these restrictions of J;
are orthogonal by Lemma 3 and (3). On the other hand J; is skew-
symmetric since the curvature tensor is; hence (J;)? = J;J; = -JH; =
—I on E.(y), and so (J;)? = —I on E.(x)* since E.(xg)* is the
direct sum of subspaces of the form E.(y), proving (i). To prove (ii)
first note that (J;Jr(¥), y) = —(Ji(¥), Jir(y)) =0 if i # k by Lemma
3. It then follows that (J;J;(v), v) = 0 forall v € E}(xo) ; hence set-
ting v = y+z, onehas (JiJi(v), 2) = —(JiJi(2), ¥) = —(z, T i),
which is (ii). (iii) is clear from Lemma 2. m]

PROPOSITION 2. The type number 1=1,3,0r7. If 1=7, dimM
=16.

Proof. Notation is as in Proposition 1. Let M, = E.(xp) ® E.(y) ®
E.(z)®--- . Proposition 1 implies E.(y), which has dimension 7+1,
is a Clifford C; module induced by the operators J;. Hence 1=1, 3,
or 7 (cf. [10]).

To prove the second statement, first note that dim M = (t+1)s for
some s since M, = E.(xo) ®E.(y)® - .

SUBLEMMA. If s > 3, then (J;Ji, J;(¥),y) = (JiJk J)(2), z) for all
y, z in E.(xp)*.

Proof of Sublemma. Since s > 3, M, = E.(xp) ® Ec(yo) ® Ec(20)
®---. Since K,(z) = bz and K. (y) = by for y € E.(yo) and



36 QUO-SHIN CHI
z € E/(zp), we have
K(y_z)/\/j(y +2)=b(y + z);

therefore (J;Ji.J;(y—z), y+z) = 0 by (iii) of Proposition 1. Similarly,
0= (J;Ji  ;(¥), z) = (J;Jx Ji(2), y) for the same reason. In particular
we have

0= (JiJk iy = 2), ¥y + 2) = {Lilk i(¥), y) = (JiJx Ji(2), 2),

so that (J;Ji J;(y),y) = (JiJxJi(2), z) for all z perpendicular to
E.(xo) ® E:(y9), and all y in E.(yy) as well, proving the sublemma.

Now fix yo € E.(x9)* and let y; = J;(3o) so that yo, 1, ..., Yz
form an orthonormal basis for E.(yg). Define a product “-” on
E.(yo) so that E.(yo) under this product is isomorphic to one of
the three algebras C, H, and the nonassociative Cayley algebra Ca
corresponding to the type number 7 =1, 3, 7 respectively (cf. [13]),
namely, yo - y; = Vi, and y; -y = J;(yr) for i # k. Now let J;Ji(yo)
=Y sayJs(yo). Then a, = —(JsJiJx(¥o), yo), which is a constant
by the above sublemma. It follows that J;Ji(y) = > aj, Js(y) for all
y in E(yo), and hence (y; yi) ¥ = yi- (Vk - y1), so that E¢(yo)
under the product is associative, and therefore 7 # 7. In other words,
if 7=7 then s=2,and so dimM = (7 + 1)s = 16. ]

We now make a convention that if 0 < a, f < 7, we denote by
aff the number +y such that e, = e,eg, where ¢;’s are the basis
elements in the standard multiplication tables for the three algebras
above (cf. [13]). Also denote X_, = —X,, for vectors with subscripts.

LemMMA 4. In a neighborhood U of each point p, given a unit
vector field xo, one can pick an orthonormal frame xgo, X1, ..., Xt}
V0> Vis s Y3 20, ... Such that for g € U, one has My = E (X)) ®
E.(yo) ® E.(zg)--- with x; € E.(xg), yvi € Ec(yo), etc., such that
R(x0, Xa)Vp = —Vga> R(X0, Xa)Zg = —2p,, €l

Proof. Recall that 7 is the type number of the space. That M, =
E.(x0)®(yg)©®--- follows from Lemma 1. Pick smooth fields x;, ...,
X; such that xg, x;, ..., x; form an orthonormal basis for E.(xg).
Define for 1 <i <1, —y; = R(xo, X;)yo, —zj = R(xo, Xj)zo, etc.
For 7 =1, it is readily checked that R(xg, Xa)yg = —Yga, €tc. For
t=3,let dmM = (t+ 1)s =4s. If s > 3, then by the sublemma
in Proposition 2 span(Id, J;, J,, J3) = H, where J; = R(xp, x;). It
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follows easily that J;-J, = £J5. Changing x; into —Xxg if necessary,
one may always assume J; - J, = J3; in other words, R(xp, X,) -
R(xg, xg) = R(xg, Xop) if 1 <a, f <3,1e, R(X0, Xa)Vp = Vap =
—~Ygq €tc., which is the conclusion. On the other hand if 7 = 3 and
dimM = 8, then M, = E.(x9) ® E.(y9). Now E.(yg) is isomorphic
to H under the product y;-y; = J;(y;) = J;J;(yo) . Therefore again it
is easy to see that y; -y, = ty3, i.e., J; - JL(yo) = £J3(yo) . We may
assume J;J5(yo) = J3(yp) by changing x, into —xp, so that once
more R(Xo, Xa)Vg = —Vga -

If =7, then dimM =16, and M, = E.(xp) ® Ec(yo). Although
E.(yo9) is isomorphic to the Cayley algebra Ca under the product
yi - y; = JiJj(yo), it might happen that y;’s are not the standard
basis elements for Ca in general. However one observes that yg, y1, )2,
y1 - y» form a standard basis for H, and by picking a smooth
unit vector field w perpendicular to them one verifies that y,, y;, y2,
Y1:Va, W Yo, WY1, W-y2, W-(y; -y form a standard basis;
let’s call this new basis (vo = Yo, v1, ..., v7) SO that v, - vg = Vg .
Let v; = E}zo a;;y;. Define X; = Z}=0 Ajix;j. A straightforward
computation gives R(xg, Xo)R(Xo, Xg)yo = R(Xo, X4p)yo for
a, B #0. Nowlet y, = R(xo, Xa)¥o, one has R(Xp, Xo)Vp = Vop =
—¥ ga » PrOVing the lemma. O

LEMMA 5. Let M be a Riemannian manifold. If for every geodesic
r(t) the operator K, with v = 7(t) is parallel, then the entire curvature
tensor is parallel along r(t) and M is locally symmetric.

Proof. See [2]. O

LEMMA 6. Assume the same conditions as in Lemma 4. Then

(Vx,R)(Xi, X0, X0, Xj) = (Vi R)(Vi> X0, X0, V)
= (onR)(Zi, X0, X0, z})
= (vxoR)(yi7 X0 X0 Z}) = O:

etc., where R(x,y, z,w) = (R(x, y)z, w), provided x, is tangent
to the geodesics emanating from p.

Proof. We'll prove (Vx R)(i, Xo, Xo, zj) = 0. The proof of the
others are similar. Since R(y;, Xo, Xo, z;) = 0 by Lemma 2 and since
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Vx,Xo = 0 by the way x; is chosen, one sees that

(Vx,R)(¥is X0, X0, Zj)
= —R(Vxyi, X0, X0, zj) = R(yi, X0, X0, Vx,Zj)
= —(Vx i, zj)R(z;, X0, X0, Zj)
=i Vx,2j)R(yi, X0, X0, ¥i) =0,
in view of Lemma 2 and K (x;) = cx;, Kx (i) = by:, Kx (2i) = bz,
etc. O

Now we prove the promised characterization theorem.

Proof of Theorem 1. Here in this proof x; as in Lemma 6 is tan-
gent to the geodesics emanating from p € U. Let xp, X1, ..., X¢;
Yo, Vis.--» Yt Z0,... De asin the previous lemma. We only have
to show that

(VXOR)(xi > X0 X0, y]) =0,
in view of Lemmas 5 and 6. In fact it suffices to check
(Vx,R)(xi, X0, X0, ¥o) =0,

since R(xp, Xa)Vp = —Vpo says that one may rename the y;’s so that
yp becomes yo. Now a direct computation using R(xo, Xo)Vg =
—~Y g4, (1) of Lemma 2 and the first Bianchi identity, and (3) gives

(VR)(xi, X0, X0, o) = =(VR)(¥i, Yo, Yo, Xo) »
depending on whether ¢ > b or ¢ < b. In particular
(Vx,R)(Xi, X0, X0, ¥o) = £(Vx R)(¥i, Yo, Yo, Xo)-
Now the second Bianchi identity says

(V,R)i, Yo, Yo, X0) = (Vx,R)(Yo, X0, Vi, Vo)
= —(Vy R)(¥o, X0, Yo, Xo) — (Vy,R)(¥o, X0, X0, ¥:) =0,

in view of the proof of Lemma 6. Hence (Vx R)(xX;, Xo, X0, Yo) =0,
and the space is locally symmetric; therefore it must be of rank one
by the constancy of eigenvalues of the Jacobi operator K, . O

3. Lie algebra classification of rank-one symmetric spaces. Our anal-
ysis has been based primarily on Lemma 4, where the curvature struc-
ture of the space under consideration was partially displayed. Using
Lemma 2, Lemma 7 and Corollary 1 in this section, which give explic-
itly all the curvature components in their full generality, it will then be
a straightforward matter, with the aid of the fact that the Lie algebra
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of the isotropy group of a symmetric space is the linear span of all
R(x, y) at the origin (cf. [9]), to write down the Lie algebra structure
of the space to see that a compact symmetric space of rank one must
necessarily be either a sphere or one of the projective spaces. We shall
thus be brief, and leave the details to the reader.

Let M, = E.(x0) ® E.(yo) ® Ec(20)®--- as in Lemma 4 so that

(4) R(Xo > xa)yﬂ ==YVBa-
By the symmetry of the curvature tensor one has

(5) R(yo, yg)xo = —Xpq -

LEMMA 7. Assume ¢ > b. Then R(Xa, Xg)Vy = —V(yp)a, Where

a#pB and B #0.

Proof. We may assume o # 0 by (4). Fix ¢ and let w =
(xo +y5)/V2. Then
(6) Kuw(xg£ysp)=R(xp£ysp, ww
= §[cxp £ bysp + bxg £ cysp + R(xp, Xo)Vs
= R(ysp, X0)Vs + R(Xg, ¥5)X0 = R(¥sg » Ys5)Xo] -
Now R(xg, X0)¥s = ¥sp by (4). And by the first Bianchi identity

Yep = R(xg, xp)ys
= R(xg, y5)Xo — R(x0, ys)Xp
= 2R(xg, ¥s5)Xo >
by (i) of Lemma 2. Similarly R(ys5, ys)Xo = xp by (5) and
R(ysps x0)ys = xg/2 by (i) of Lemma 2 and the Bianchi identity.
Hence the right-hand side of (6) is

(b+c¢) 3 (b+c) 3
3 xﬁizxﬂi—2——y5ﬂ+zy55

_(b+oxlp—cl  |b—clz(b+c)

2 Jii ) yéﬂ ’
by (3). By assumption ¢ > b, therefore
(7) Kuy(xg +ysp) = c(xpg+Ysp)»
(8) Kuy(xg —ysp) = b(xg — Vsp) -

Replacing f by a in (8) one gets
(9) Ku(Xa = Vsa) = b(Xa = Vsa) -
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Now Axiom 1, (7), and (9) imply
K(xﬁyaﬁ)/\/i(xa = Véa) = b(Xa = Ysa) »

or equivalently,

b+c b+c 3
(10) b(xa"yéa) = P Xo — D) y6a+ZR(xa»xﬂ)y(5ﬂ

3
- ZR(yéa’ Vsp)Xgp -

On the other hand, R(x,, xg)¥sp € E.(¥o) and R(Vsq, Vsp)Xp €
E.(xp) by (ii) of Lemma 2. Hence comparing both sides of (10) one
concludes

3 b+c c—b
ZR(Xa, Xg)Vsp = —5Véa ~ bysq = —5Via>
or 5
R(xa, xg)ysp = §(C = b)Vsa = Vsa
by (3). Let y =68. Then 78 = (68)8 = =4 , so that da = —(y8)a,
i.e.,
R(xo, Xp)yy = =Y(3p)a- .

COROLLARY 1. Assume ¢ > b. Let M, = E.xy) & E:(yo) ®
E(z0)®---,and X;, yi, zi--- beasin Lemma 4. Then R(y., yp)zy
= —Z(y,b’)ar etc.

Proof. It suffices to show that R(yop, ¥.)zp = —zp, in view of
Lemma 7. A direct computation shows

K gyep 3 = o) = bla = ¥a),
if ¢ > b. Hence by (ii) of Lemma 2
0=R(xo+Y0, Xa _ya)zﬂ
= R(Xo, xa)zﬂ - R(yOJ ya)Zﬂ s

1.e.,
R(y0, ¥a)zp = R(xg, Xa)zp

= —Z ﬂ a
by Lemma 4. O
Now it is well known that the symmetric Lie algebra decomposition

of the underlying space is z = # @, where » is the tangent space at
the origin, and £, the isotropy algebra, is the linear span of R(X, Y)
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for all X,Y in » with the natural Lie algebra structure. It follows
easily from Lemma 2, Lemma 7, and Corollary 1 that if the type
number 7 =1, or 3, then R(u, v) corresponds to the Lie bracket of
the matrices

0 u 0 v
and ,

—u* 0 —p* 0

where ¥ and v are regarded as column vectors over C and H respec-
tively, and u* and v* their conjugates. Thus the symmetric Lie pair
must be either (u(n+1), u(n)xu(1)) or (sp(n+1), sp(n)xsp(1)). On
the other hand let the type number 7 = 7 so that M), = E.(xo)®E:(yo)
with dim M), = 16 corresponding to the Cayley algebra Ca. Recall that
if we denote by ¢y, ey, ..., eg the generator of Cy, the Clifford alge-
bra of rank 9, then the Lie algebra of Spin(9) is linearly spanned by
eoe; and e;e; forall 1 <i < j < 8. Inview of this it is also easy to see
that epe; and e;e; correspond to R(xg, y;) and R(xp, yi;)R(xp, ¥;)
respectively, so that the isotropy algebra of the space is 0(9) and
Lemma 7 gives explicitly the irreducible representation of 0(9) on
R16. Let

2 = Span(R(xo, yi)R(xo, yj)|1 £i<j<8),
21 = Span(R(xp, y;)|1 £i<38),

2, = E:(xp),

23 = E(y0) .

Then ¢ = 2y ® 2 ® £, ® 25 has the property that [Zy, Z;] C Z;,
and [Z;, Z;] C Dy, where 1<, j, k<3,and i, j, k are mutually
distinct. In other words ¢ is f4 [13], and the symmetric pair is
(fa, 0(9)). Conversely it is well known that such symmetric pairs
give rise to the symmetric spaces of rank one.

Lastly, we would like to mention a conjecture of Bob Osserman,
which states that nonzero R(-, v)v having constant eigenvalues with
fixed multiplicities for all unit v characterizes locally rank-one sym-
metric spaces [5]. It follows from Theorem 1 that this conjecture
would be true if the curvature condition in the conjecture would im-
ply the two axioms in §2.

Added in proof. Recently the author received a preprint by Z. 1.
Szabé and P. B. Gilkey, entitled “A simple topological proof that
two-point homogeneous spaces are symmetric”, in which an elegant
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proof of what the title addresses is given. Szabé and Gilkey’s re-
sult together with the characterization and classification of rank-one
symmetric spaces in our paper furnish a geometric-topological under-
standing of two-point homogeneous spaces.
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