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Let f: V — X bea G-map defined on an open invariant subset
ofa G-ENR X where G is a compact Lie group and the G-action on
V is not necessarily free. In this paper, we introduce the notion of an
equivariant Nielsen number N§(f, V) which is an ordered k-tuple
that depends on the isotropy types (H,), ..., (Hy) of V. When
G is finite, N&(f, V') gives a lower bound for the minimal number
of fixed points in the (restricted) G-homotopy class of f and this
lower bound is sharp when the G-action on V is free. We relate
NE(S, V) to a local equivariant obstruction to G-deforming a map
to be fixed point free and we discuss the relationship between the
equivariant Nielsen number and the ordinary Nielsen number.

1. Preliminaries. Let G be a topological group and X be a (left) G-
space. For any subgroup H of G, we denote by NH the normalizer
of H in G and by WH = NH/H, the Weyl group of H in G.
The conjugacy class of H denoted by (H) is called the orbit type
of H. If x € X, then G, denotes the isotropy subgroup of x, i.e.,
Gx = {g € G|gx = x}. For each subgroup H of G, X! = {x €
X|hx = x for all h € H} and Xy = {x € X|Gx = H}. An orbit
type (H) is called an isotropy type of X if H appears as an isotropy
subgroup of some x in X. Suppose X has a finite set of isotropy
types denoted by {(H;)}. If (H;) is subconjugate to (H;), we write
(H;) < (H;). We can choose an admissible ordering on {(H,)} so that
(Hj) < (H;) implies i < j. Then we have a filtration of G-subspaces
X; C -+ C Xy =X where X; = {x € X|(Gx) = (H;) forsome j < i}.
Also, Xy = GXg = X; — X;— with (H) = (H;). By a free G-subset
of X, we mean a G-invariant subset on which the action is free.

Let G be a compact Lie group. A G-space X is a G-absolute
neighborhood retract (G-ANR), if X is a metric space and for any
G-embedding 4#: X — Y is a metric G-space Y such that A(X) is
closed in Y, the image A(X) is a G-retract of some open invariant
neighborhood in Y. If X is a G-ANR then X7 is an ANR for
every closed subgroup H < G. Moreover, if Y is a G-ANR and
f: X — Y is a G-equivalence then f# = f|XH:XH — YH isa
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homotopy equivalence for every closed H < G. A G-space X is a
G-euclidean neighborhood retract ( G-ENR) if X can be G-embedded
as a G-retract of a G-neighborhood in some Euclidean G-space V.

Let X be a finite dimensional separable metric G-space. Then X
is a G-ENR if and only if X is locally compact, has a finite number
of isotropy types, and for every isotropy subgroup H < G, the fixed
point set X is an ENR. If X is a G-ENR then X is a G-ENR
for every closed H < G and the orbit space X/G is an ENR (see
[tD]).

Given any admissible ordering (H;), ..., (Hy) of isotropy types
of a G-space X, we obtain the associated filtration X; C --- C Xj.
Then any G-map f: X — X preserves the filtration, i.e., f(X;) C X;.
Also, the inclusion X;_; — X; is a G-cofibration.

Let G be a finite group and K a G-(simplicial) complex (see
[B]). K/G is a simplicial complex such that the orbit map p: |K| —
|K|/G ~ |K/G]| is simplicial and p maps each simplex of |K| home-
omorphically onto the corresponding image simplex of |K/G|, where
| X| denotes the underlying space of X . Any G-complex is a G-ENR.
We will not distinguish K as a simplicial complex and K as the un-
derlying space.

In §2, we define G-compactly fixed maps. We show that every self
G-map of a compact G-ENR can be G-deformed to a G-compactly
fixed map. In §3, we first define an equivariant Nielsen relation on
the fixed point set Fix fy of fy = f|Vu: Vg — XH for each isotropy
type (H) of V. We obtain a WH-Nielsen number nyy(fy, Vy)
which is a lower bound for the number of orbits of fixed points of
fu . Then the equivariant Nielsen number NG(f, V) of f is the tu-
ple {nwy(fg, Vy)} and it is invariant under G-compactly fixed ho-
motopy. We give a local version and hence an equivariant analog of
the Hopf construction in §4. We prove in §5 a minimality theorem
for a certain class of G-spaces satisfying the equivariant Shi condition
when the action on V' is free. The basic technique here is an equivari-
ant version of the “Wecken Trick” (see [Br]) of coalescing fixed points
of the same class. We relate in §6 the equivariant Nielsen number
to a local equivariant obstruction to G-deforming a map to be fixed
point free. In §7, we define another equivariant Nielsen type invariant
N§(f) which enjoys the usual properties of the ordinary Nielsen num-
ber. Finally, in §8, we give an example in which f is G-deformable to
be fixed point free but not G-compactly fixed deformable to be fixed
point free.
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The author would like to thank the referee for a number of helpful
suggestions.

2. G-compactly fixed maps. Throughout this section, G will denote
a compact Lie group.

2.1. DEFINITION. Let X be aspace and V' C X be an open subset.
A map f:V — X is called compactly fixed if the fixed point set
Fixf = {x € V|f(x) = x} is compact in V. If, in addition, X
is a G-space, V is invariant and f is a G-map then we call f a
compactly fixed G-map. A compactly fixed G-homotopy is a G-map
F:V xI — X (the G-action on the unit interval I is trivial) such
that |J, Fix F; is compactin V.

2.2. DerFINITION. Let V' be an open invariant subset of a G-space
X such that V' has a finite number of isotropy types. A G-map
f:V — X iscalled a G-compactly fixed map if for each isotropy type
(H) of V', fuy= f|Vu: Vu — XH is compactly fixed. A G-compactly
fixed homotopyisa G-map F: VxI — X such that |J, Fix(F|Vgx{t})
is compact in Vg for each H .

2.3. REMARK. Any G-compactly fixed map is a compactly fixed
G-map but not the converse. For example, take G to be a finite group
and ¥V = X, a compact semi-free G-space. Then the identity map 1y
is a compactly fixed G-map but not a G-compactly fixed map.

2.4. PROPOSITION. Let Y be a G-ENR and X be a G-space. If
hy, h1: X =Y are G-maps and A C X is a closed invariant subset
such that hy)lA = H,|A, then there exist an invariant neighborhood W
of A in X anda G-homotopy I': W xI — Y suchthat T'oy=hy, 1 =
hy and Ty|A=ho|A forall tel.

Proof. Let r: U — i(Y) be a G-retraction of an invariant neighbor-
hood of i(Y) in some euclidean G-space, where i is a G-imbedding.
Let W be the set of points gx, g € G such that the line segment
from i(ho(x)) to i(hy(x)) lies inside U. Define I': W x I — Y by

I'(x,t)=r[(1-1t)i(ho(x)) + ti(hi(x))]. O

2.5. PROPOSITION. Let X and Y be G-ENRs, A C X be a closed
invariant neighborhood retract, and f: X — Y be a G-map. Then
there is an invariant neighborhood U of A in X and a G-homotopy
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(relative to A) from f to a map f' such that f'|\U = f'|Aor where
r: U — A is a G-retraction.

Proof. Let r: V — A4 be a G-retraction of an invariant neighbor-
hood V' of A. By 2.4, there exist an invariant neighborhood W of
A and a G-homotopy T' (relative to 4) such that I'p = fand I') =
for|W . Choose invariant neighborhoods U c U c W of A where U
is closed. Let p: ¥ — I be an invariant function such that p|U = 1
and p|V — W = 0. Define

w
I-,(x,t)z{f(x), XEW,
I'(x, p(x)t), xXew.
The map I"(x, 1) is the desired G-map O

2.6. PROPOSITION. Let X be a compact G-ENR and f: X — X
a G-map. Then f is G-homotopic to a G-compactly fixed map.

Proof. Choose an admissible ordering (H;), ..., (H,) with the as-
sociated filtration of compact G-ENRs X; € --- C X,,. Since X H =
H, le = f|Xp, is compactly fixed. We assume inductively that ij

is compactly fixed for j < k. Since X ,f’jl is a WH-invariant closed
neighborhood retract in X, there exist using 2.5 a WH,-invariant
neighborhood U of X, ,‘:I_kl and a WH;-homotopy (relative to X, ,fl_" )

to a map y such that y|U = w|/\’,1:‘r_k1 or where r: U — X,ﬁl_kl is a
WH, -retraction. Since y is fixed point freeon U—-X ,f{’j 1» FiIxynXpy

is compactin X H, - We extend this WH,-homotopy (relative to Xf_"l)
to a G-homotopy (relative to X;_;) from f to a map which is fixed
point free in an invariant neighborhood of X;_; (see [F-W, Prop.
2.1]). Induction completes the proof. O

2.7. REMARK. When given two G-homotopic maps f, g: X —
X, each of which is G-compactly fixed, one asks if they are G-
compactly fixed homotopic to each other. We will see in the next.
section that the answer is negative.

3. Equivariant Nielsen numbers. Let /7 be a compact Lie group,
X bea W-ENR, U be an open invariant subset of X such that the
W-action of U is free. Suppose f: U — X is a compactly fixed
W-map and Fix f # J.
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3.1. DerINITION. Let x and y be fixed points in Fix /. Then
x and y are said to be W-Nielsen equivalent, denoted by x ~y y,
if either (i) x = wy for some w € W or (ii) there exists a path
a: I — U such that a(0) = x, a(l) = wy for some w € W and a
is homotopic to f o« (relative to endpoints) in X .

With this definition, it is easy to show the following

3.2. PROPOSITION. =~y is an equivalence relation to Fix f .

3.3. ProrosiTION. Let f: U — X be a compactly fixed W-map
defined on a free open invariant subset U . The set of W-Nielsen classes
is finite.

Proof. If two fixed points are locally Nielsen equivalent, they are W-
Nielsen equivalent. Since there are a finite number of local Nielsen
classes, the assertion follows. O

Let f: V — X be a G-compactly fixed map defined on an open
invariant subset V' of a G-ENR X, where G is compact Lie and
the G-action on V' is not necessarily free. Recall that Vy = Vzg) =

3.4. DEerINITION. Let x and y be points in Fix f. Then x and
y are said to be G-Nielsen equivalent, denoted by x ~¢ y if (i) for
some H <G, x and y liein X, and (ii) x ~pG, Y where WG, is
the Weyl group of the isotropy subgroup Gy .

Note that when the action on V is free, 3.4 reduces to 3.1. We also
obtain

3.5. PROPOSITION. = is an equivalence relation on Fix f .

3.6. REMARK. The set of equivariant Nielsen classes is not finite
in general unless [G : H;] is finite for each i, for example, when G
is finite.

In classical Nielsen theory, the Nielsen number of f is defined as
the number of essential Nielsen classes. We will also define essen-
tial classes on the set of WH;-Nielsen classes (which is finite by 3.3)
instead of the set of G-Nielsen classes which may be infinite.

3.7. DErFINITION. Let f: U — X be a compactly fixed W-map
defined on a free open invariant subset of a W-ENR X . Then the
set of W-Nielsen classes is finite. A W-Nielsen class N is essential
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if I(f, N)# 0 where I is the local fixed point index. Define the W-
Nielsen number denoted by ny (f, U) to be the number of essential
W -Nielsen classes.

3.8. DEerINITION. Let f: V — X be a G-compactly fixed map
defined on an open invariant (not necessarily free) subset of a G-ENR
X . Define the equivariant Nielsen numbers, denoted by N&(f, V) to
be the k-tuple

(nW'l(fl s VH1)> ey n%(ﬁca VHk))

where {(Hi), ..., (H)} are the isotropy types of V' and nw (fi, Vi)
is the W; = WH;-Nielsen number of f; = f|Vy .

3.9. ReMARK. For every isotropy type (H), the WH-Nielsen num-
ber nwy(f|Vu, Vi) is finite and hence N&(f, V) is well defined.
Since ¥y (resp. X#) is homeomorphic to Vg (resp. XX) if K is
conjugate to H in G, nwy(f|Vy, Vy) is independent of the choice
of the representative of (H) and hence so is N5(f, V).

Of any Nielsen type invariant, the most important property is the
invariance under homotopy. Our next objective here is to verify this
property for N&(f, V).

3.10. ProrosITION. ( G-Compactly Fixed Homotopy Invariance.)
Let f:V — X be a G-compactly fixed map. The G-Nielsen number
NE(S, V) is invariant under G-compactly fixed homotopy.

Proof. Since V is a disjoint union of ¥ gy where H appears as an
isotropy subgroup, it suffices to show that given a G-compactly fixed
homotopy F:V — I - X, nwa(Fo|Vu, Vi) = nwa(Fo|Vu, Vi) =
nwy(F\|Vy, Vi) for every isotropy type (H). Let F= F|\VygxI.

Let . (F,) denote the set of WH-Nielsen classes of F,, t € I.
Suppose Ny e/l/(ﬁo) Y% e/V(Fl) then we say Ny and N; are F-
related if there exists xo € Ny, x; € N;, and a path C = {x;},el in
Vg such that {F;(x;)} ~ {x;} (rel. endpoints) in X . Let F: Vy x
I — X" x I be the fat homotopy defined by

Flx,0)=(F(x,1),1).

If Ny and N, are F-related then they belong to the same WH-Nielsen
class of F because {F;(x;)} ~ {x} is equivalent to {F(x;,5)}
~ {(x¢, s:)} . Also, each WH-Nielsen class of F is open (and closed)
in Fix F and hence an isolated fixed point set of F . Following [J1,
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1.3.10] we conclude that_

(1) Ny and N1 are F-related =>I(F0, No) = (Fl, Ny).

(2) N € #(Fp) is not F-related to any N' € #(F|) = I(Fy, N)
=0.

Hence there is a one to one correspondence between the essential
WH-Nielsen classes of FO and those of Fl. Thus nWH(FO, Vy) =
nwr(F, , Vg) for every type (H) of V. O

When the action on V is free, N&(f, V) = ng(f, V). When
G = {1}, N&(f, V) = n(f, V) the local Nielsen number of f on
V. When V = X, we write N&(f) = N&(f, X).

3.11. ProrosITION (Lower Bound). Let f:V — X be a G-com-
pactly fixed map. If [’ is G-compactly fixed homotopic to f then for
every isotropy type (H) of V with WH finite, we have

1 )
nwe(fu, Vi) < |—VV—I_{—[ - | Fix fl.

Proof. nwy(fu, Vy) is the number of essential WH-Nielsen classes
each of which contains at least one fixed orbit (orbit of a fixed point),
i.e., at least |WH| many fixed points. a

We will now illustrate by an example that two G-homotopic maps
each of which is G-compactly fixed, need not be related by a G-
compactly fixed homotopy.

3.12. ExampLE. Consider X = S! the circle of radius 1/2 cen-
tered at (1/2, 0) in R%. Let G = Z, = {1} and the action be given
by

f-(X,y)=(x,fy)
where & € G. Thus X¢ = {(0, 0), (1, 0)}. Define a homotopy

H: XxI—-X
by
(2x, 36(y)(1 — (4x — 1)2)1/2), 0<x<1{,
Hi(x,y)=13 (4, $6()(1 = (1 = 1)2)172), f<x<H,
2x-1,L6()(1-(@x-3)H?), Z<x<l,

where 6(y) =0 if y =0 and &(y) = y/|y| otherwise.
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.

Ho

It is easy to see that H is a G-homotopy and
Fix Hy = X,
Fix H; = XCU{(1/2,1/2), (1/2, -1/2)}.
Both H, and H; are G-compactly fixed but H; is fixed point
free on X — X¢ whereas H; has fixed points (1/2, 1/2) and (1/2,
—1/2) each of which has index 1. Thus ng(Hy, X — X%) = 0 and

ng(Hy, X — X% = 1. By 3.10, we conclude that Hy and H, cannot
be G-compactly fixed homotopic.

4. Equivariant Hopf’s construction. In this section, we modify the
proof of the classical Hopf construction given in [Br] and obtain a
local version of it. Then we apply the Covering Homotopy Theorem
to obtain the equivariant Hopf’s construction.

4.1. PRrOPOSITION. Let U be a connected open subset of a con-
nected locally finite simplicial complex X. Let f: U — X be a com-
pactly fixed map. Then given ¢ > 0, there exists a finite polyhedron
L c U with Fix f C int L and a compactly fixed e-homotopy H; (rel-
ative to U —intL) so that Hy = f and H, has finitely many fixed
points, each lying in the interior of some maximal simplex.

Proof. Since f is compactly fixed and X is locally compact, we
can find a compact set C C U such that Fix f cintC. Let N bea
finite polyhedron so that N is a neighborhood of C inside U. Let
K be a regular neighborhood of N and L be a regular neighborhood
of K. We may choose K and L so that both of them lie inside U
and their boundaries 0L, K in X are disjoint (0L and K are
finite polyhedra). Therefore, f is fixed point free on L —intK . Let
min{d(x, f(x))|x € L —intK} = 26 > 0, where d is the metric oh
X.

By the simplicial approximation theorem (with a subdivision of L),
there exists a small homotopy F: L x I — X given by

F(x, ) =(1-0f(x)+to(x)
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for some simplicial map ¢ . Also, F;(x) lies in the same simplex as
f(x) for every t € I. Choose a continuous function g: L — I such
that ¢|0L =0 and ¢|K = 1. Define

G(x,t)=F(x, p(x)t)
=(1-0(x)0)f(x)+ o(x)tp(x).
Then we have
G(x,0)= f(x), xeL,
G(x,t) = f(x), x€eoL,
Gx,t)=F(x,1t), xeK.

The map G; is fixed point free on L —intK for all . To see
that, we first subdivide L such that mesh(L) < d. If G(x,¢) = x
for some x in L —intK then f(x) and x would have to lie in the
same simplex since G(x, t) = Fy(x)(x). However, d(x, f(x)) > 20
and thus a contradiction. Thus, F; is fixed point free on K. We
now apply the Hopf’s construction (see [Br]) to F; on K and obtain
an e-homotopy H;: K — X such that H]|0K = F;|0K and H] has
finitely many fixed points, each lying inside some maximal simplex in
K. Define H: U xI — X by

f(X), er—L,
H(x,t) =} Gi(x), xelL-K,
H(x), xeKk.

By making mesh(L) sufficiently small, the homotopy {G;} can be
made to be an e-homotopy and hence {H;} is the required compactly
fixed e-homotopy. m}

Next we prove an equivariant analog of 4.1.

4.2. PROPOSITION. Let G be a finite group and X be a locally finite
G-simplicial complex. Suppose U is a free open invariant subset of X
and f: U — X is a compactly fixed G-map. Given any & > 0, there
exists a finite G-complex L c U with Fix f C int L and a compactly
fixed G e-homotopy H: U x I — X (relative to U — int L) such that
Hy = f and Fix H; is finite. Furthermore, each fixed point of H, lies
in the interior of some maximal simplex.

Proof. Let & = p(Fix f) where p: X — X/G is the orbit map.
Since Fix f iscompactin U, # isacompact subset of U/G. Denote
by f the induced map of f on U/G. Let {(H;), ..., (H;)} be an
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admissible ordering on the isotropy types of X with the associated
filtration X; € --- C Xy = X. Since Fixf c X - f~1(Xx_)), F C
(X — f~1(X,_1))/G . Without loss of generality, we may assume that
(X — f~Y(X¢_,))/G is connected. Applying 4.1 to f restricted to
(X = f~1Y(Xx_1))/G, we obtain an e-homotopy which can be lifted by
the Covering Homotopy Theorem. Since U — U/G is a finite cover,
the lifted homotopy can be made to be an e-homotopy. a

4.3. THEOREM (Equivariant Hopf’s Construction). Let G be a
finite group, X be a finite G-simplicial complex and f: X — X
be a G-map. Given ¢ > 0, there exists an equivariant &-homotopy
Z: X xI— X such that Z = f and #|Xy has finitely many fixed
points each lying in the interior of some maximal simplex in X for
each isotropy type (H) of X.

Proof. By 2.6, f is G-homotopic to a G-compactly fixed map and
the homotopy can be made arbitrarily small. Without loss of gener-
ality, we may assume that f is G-compactly fixed. Choose an ad-
missible ordering (H,), ..., (Hk) on the isotropy types of X with
the associated filtration X; C --- C X € X. We assume inductively
that f|X;: X; — X; has ﬁmtely many fixed points each lying in the
interior of some maximal simplex in the corresponding subcomplex,
for i < j. Since X H, is a free open WH-invariant subset of X H  we
apply 4.2 to f|X H: X H, — X% to obtain WH; i-homotopy I' relative
to X H —intK for some WH; invariant compact polyhedron K con-
tammg Fix f| VH Extend I" to a G-homotopy on X (H,) relative to
X H) —intGK . Smce X=Xy D¢ (H,)» We extend the homotopy toa
G- homotopy I" on X;. Flnally, we can extend I to a G-homotopy
on X because X; — X is a closed G-cofibration. The inductive step
is complete. O

4.4, REMARK. Let G be a compact Lie group and [ M — M
be a G-map on a compact smooth G-manifold M. Since M/G is
also a triangulable manifold, we can use the techniques in the proofs
of 4.2 and 4.3 to show that f can be G-deformed to a map with
finitely many fixed orbits. This is also proved in [Wi] using a different
approach.

5. Minimal number of fixed points. In this section, we study the
minimal number of fixed points in the G-compactly fixed homotopy
class of a G-compactly fixed map. When X satisfies a certain con-
nectedness condition and the G-action on U is free, any compactly
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fixed G-map f: U — X can be equivariantly deformable to a G-
map with the minimal number of fixed points in its compactly fixed
G-homotopy class.

5.1. DEeFINITION. A locally finite simplicial complex K is of type
S if (i) there is a 3-simplex, and (ii) for every O- or 1-simplex o, the
link lk(o, K) is path connected.

5.2. DEerINITION. Let G be a finite group and X a G-complex.
Then X is said to satisfy the equivariant Shi condition or is a G-
complex of type S if every connected component of X¥ is of type S
for every isotropy type (H) of X. In the case when G is compact
Lie, acting smoothly on a smooth G-manifold M, we call M a G-
manifold of type S if every connected component of M* is of type
S for every isotropy type (H) of M with WH finite.

Note that if X is a G-complex of type S, then X/G is a complex
of type S. In [Br, VIIL.D], a space of type S is defined to be a
simplicial complex satisfying the conditions of Definition 5.1 except
that the link of a 1-simplex is not required to be path connected. The
following is easy to verify

5.3. PROPOSITION. Every maximal simplex of a complex of type S
is at least three dimensional.

Next we show how to coalesce fixed points of the same class using
an equivariant analog of the Wecken trick.

5.4. LEMMA. Let f: U — X be a compactly fixed G-map where
X is a G-complex of type S and U is a free invariant subset of X .
Suppose @, and @, are isolated fixed orbits belonging to the same G-
Nielsen class such that each fixed point in @, U@, lies in the interior of
some maximal simplex of X. Then f is G-homotopic via compactly
fixed G-homotopy to a map ¢ with one less fixed orbit.

Proof. Since @, and &, belong to the same G-Nielsen class, there
exist x; € 4, x, € & and a path a in U from x; to x; so that
a ~ foa in X (rel. endpoints). Let @ denote the image of a in
U/G. We first cover the path @ by a finite number of open vertex-
stars. By taking the closure of these open stars, @ lies inside a closed
simplicial neighborhood. Following [Br, VIII.D.1], a is homotopic
(rel. endpoints) to a polygonal path B so that the interior of each seg-
ment lies inside some maximal simplex and each endpoint lies in some
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simplex of dimension at least one. Moreover this homotopy can be
made arbitrarily small so that the track of the homotopy stays inside
U/G. Since X/G is also of type S, each maximal simplex is at least
three dimensional. If s and s’ are maximal simplices intersecting at
a one dimensional face, by the connectivity of lk(s Ns', X/G) there
is a finite chain of maximal simplices s = 57, ..., sy = §' such that
sNns' Ccs; and s; N s;4; is at least two dimensional for i =1, ...,
k —1. So B lies inside the union of the closed simplices cl(s;). By
taking a fine equivariant subdivision of X and hence a fine subdivi-
sion of X/G we may assume that s; C U/G for all i.

We deform the path f slightly to a polygonal path % (rel. end-
points) so that the interior of each segment lies inside some maximal
simplex of dimension at least three and each endpoint lies in the inte-
rior of some simplex of dimension at least two. By general position,
we may assume that 7 is simple. Thus @ ~ 7 (rel. endpoints) in
U/G . Lifting this homotopy to a G-homotopy a ~ y (rel. endpoints)
in U, we have y ~ foy (rel. endpoints) in X . We then coalesce the
fixed points x; and x, along y by the Wecken method ([Br, VIII]).
The path 7 being simple implies that y is a cross section. By taking
all the G-translates of y we unite the fixed orbits &, and &, along
gv, for each g € G (also see [F-W]). Hence f is G-homotopic to a
map ¢ with one less fixed orbit. Since ¢ coincides with f outside
a small contractible neighborhood of Gy, this G-homotopy is indeed
compactly fixed. a

5.5. DerFINITION. Let f: V — X be a G-compactly fixed map
where V is an open invariant subset of a G-ENR X and G is com-
pact Lie. We define the minimal number of fixed points in the G-
compactly fixed homotopy class of f to be

mg(f, V) = min{|Fix | |h is G-compactly fixed homotopic to f}.

5.6. THEOREM (Minimality). Let f: U — X be a compactly fixed
G-map where X is a G-complex of type S and U is a free invariant
open subset of of X. Then f is G-homotopic via a compactly fixed
G-homotopy to a G-map ¢ such that

|Fixg| = |G| - ng(f, U) =mg(f, U).

Proof. By 4.2, f is G-homotopic via a compactly fixed G-homotopy
to a map f’ with finitely many fixed points each lying in the interior
of some maximal simplex. Applying 5.4 finitely many times, each
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G-Nielsen class contains only one fixed orbit which can be removed
if the index is zero (see [F-W]). Thus we arrive at a G-map ¢ with
ng(f, U) many fixed orbits and hence |G| - ng(f, U) many fixed
points. The minimality follows from 3.11. o

5.7. COROLLARY. Let X be a G-complex of type S and A C X
be a closed invariant subset such that the G-action on X — A is free.
Suppose that f: X — X isa G-map and f|X — A is compactly fixed.
Then ng(f, X —A) =0 if, and only if, f is G-homotopic (relative to
A) to a G-map which is fixed point free on X — A.

5.8. REMARK. Note that for any finite group G, we have from
3.11 the following:

Z (G : Hi]l-nwa(f, Vi) Smg(f, V).

We have equality when G acts freely on V. It would be interesting
to know when equality can be achieved in general.

6. G-deformation via obstruction theory. A local obstruction to de-
forming a map to be fixed point free has been defined and calculated
in terms of the local Nielsen number in [F-H]. Moreover, equivari-
ant obstructions have been used to prove an equivariant analog of the
converse to the Lefschetz fixed point theorem [V]. In this section, we
define a local obstruction in terms of nyy(fy, Vy) to deforming fy
to be fixed point free equivariantly.

6.1. LEMMA. Let M be a compact smooth manifold of dimension
>3 and f: U — M bea compactly fixed map on an open set U C M .
Suppose that L is a connected compact codimension 0 submanifold
with boundary OL such that L C U and FixfNOL = &. Then
there exists a local (primary) obstruction o(f, L) € H™(L,dL; ny)
of f on L in U such that f|L is deformable in M (relative to
OL) to a fixed point free map if, and only if, o(f, L) = 0, where
m=dmL=dimM,n,=n,(LXM,LxM-A).

Proof. This follows from 2.6 and 5.4 of [F-H]. O
We now give an obstruction theoretic proof of 5.7.
6.2. THEOREM. Let G be a finite group acting smoothly on a con-

nected compact smooth manifold of dimension > 3. Suppose that
A C M is a closed invariant subset of M so that the G-action on
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M — A is free. Suppose that f: (M, A) — (M, A) is a G-map so that
fIM — A is compactly fixed. Then f is G-homotopic (relative to A)
toa G-map f' such that f' is fixed point free on M — A if, and only
if, ng(f,M—A4)=0.

Proof. By 4.2, we may assume without loss of generality that f
has only a finite number of fixed points. Let .#* be a G-Nielsen
class. Choose a representative fixed orbit @ c .#*. For any fixed orbit
@' # @ in #, there exist x € @, x' € @' and a path a(x, X') in
M — A such that a(x, x')(0) = x, a(x,x')(1) =x" and a ~ foa
relative to the ends in M . As in 5.4, we may choose a(x, x') to be
a cross section and a(x, x') N (Fix fi{M — 4A) = {x, x'}. Now fix this
point x € @ . For all the other fixed orbits &’ in /", we form a wedge
of paths

P(x) = \/ alx, x)
x'ec’
e'cH
with wedge point x.

We can take a small closed invariant tubular neighborhood L of
GP(x) of the form GL where L is a connected compact submanifold
of codimension 0 with boundary 8L such that #(x) C intL and
Fix f N L =.# . Now consider the fiber bundle

Lx¢M - L/G.

Since L is a product, p is in fact the product bundle

LxM-—L.
There is also a one-to-one correspondence (see [tD, 1.7]) between

{G-maps: L - M} and {cross sectionsof p}.
Thus the fixed point free G-maps correspond to the sections lying in
LxgM—d(L/G),

where d: L/G — L x M is the section corresponding to the inclusion
i: L — M and hence to those sections lying in

LxM—TL.

If § is the section corresponding to f|L, then there exists a primary
obstruction o(f, L) for § to be deformable (relative to L) into
LxM-—A and

o(f,L)e H"(L,0L; nm(L x M, L x M —A)).
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By 6.1, o(f, L) has a cochain representation

o(f,L)= m}:lf Nk lo;

where the sum is over the local Nlelsen classes {N;} of f|L.

Since L = GL is a disjoint union of the translates of L and there
is only one local Nielsen class in L, then |G| - I(f, Ny) = I(f, /)
and from 6.1,

1
o T) = 5 1 M lhalo.
We then apply the above argument to every G-Nielsen class .#°. O

6.3. ReEMARK. We can now define a sequence of local obstructions
{o(fu, L))} associated with {nwy(fu, Vg)}. Thus a necessary
condition for f to be deformable to a fixed point free G-map via
a G-compactly fixed homotopy is the vanishing of these obstructions.

6.4. REMARK. In the case where M is simply connected and M —
A is connected, there is exactly one G-Nielsen class .#° of f|M —A.
If the relative Lefschetz number L(f|,4) = L(f) — L(f]4) = 0,
then ./ must have index 0 and hence nG( fyM—A)=0. Thus 6.2
reduces to the main result in [V].

6.5. REMARK. Suppose that M — A and M are connected and
(M — A) 2 7, (M)

is surjective. Let x,y € Fixfn(M — 4). If x and y belong to
a Nielsen class of f then they belong to a local Nielsen class of
fIM — A. Thus, as in the main theorem of [F-W], if the codimen-
sion of M, H’l in M# is at least 2, then the Nielsen equivalence of
fH: restricted to MH coincides with the local Nielsen equivalence
of fu on My . Therefore if f is fixed point free in M;_; then
n(fH) =0« nWHI(le,MHl) = 0. Hence 6.2 gives an alternative
proof of [F-W, 2.2].

7. An equivariant Nielsen type invariant. There is another natu-
ral equivariant Nielsen type invariant Ng(f) which enjoys the usual
properties of the ordinary Nielsen number. We may also extend to a
local definition Ng(f, V). Throughout this section, G will denote a
compact Lie group unless further restricted.

7.1. DEFINITION. Let M be a compact G-ANR and # = {H|H
closed subgroup of G with MH # @}. For any G-map f: M —
M , the G-Nielsen invariant of f on M, denoted by N{(f), is the



194 PETER WONG

function given by N&(f)(H) = n(fH) for all H € # where n(fH)
is the ordinary Nielsen number of ¥ = f|MH": MH — MH

7.2. REMARK. For any orbit type (H), if K € (H) then MY is
homeomorphic to MK by the assignment x — g~ !x where x € MH
and K = g7 'Hg, g€ G. Hence NA(f)(K) = Ni(f)(H). So Ni(f)
does not depend on the choice of representatives of orbit types.

We now give an equivariant analog of the homotopy invariant prop-
erty for N§(f).

7.3. THEOREM ( G-homotopy invariance). Ng(f) is invariant un-
der G-homotopy, i.e., if f is G-homotopic to f then Ni(f) = N§(f).

Proof. If f is G-homotopic to f then for every closed subgroup
H < G with M# # @, the map fH is homotopic to f#. Thus,
Ni(f)(H) = n(f¥) = n(fH) = N5(f)(H) by the homotopy invari-
ance of the ordinary Nielsen number n(fH). O

7.4. THEOREM (Commutativity). Let X and Y be compact G-
ANRsand f: X - Y, g:Y — X be G-maps. Then,

NG(gof)=N5(fog).

Proof. This follows from the commutativity of the ordinary Nielsen
number. O

7.5. THEOREM ( G-homotopy type invariance). Let X and Y be a
compact G-ANRs. Given the following commutative diagram

x L. x

hl Tk

Yy £ Y
where all maps are G-maps and h is a G-homotopy equivalence with
inverse k, then N5(f) = Ni(g).

Proof. Since f is G-homotopic to ko ho f we have Ni(f) =
N¢g(koho f). Similarly, Ni(g) = Ni(hoko g). By 7.4, we have
Ng(koho f) = Ng(ko(ho f))=Ng((ho f)ok)

= Ni(goh)ok) = Ni(go(hok)) = Ng(hokog). O
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7.6. REMARK. Theorem 7.5 can also be proven directly from the
homotopy type invariance of n(f¥) for each H < G. Also in 7.5,
suppose X and Y have isotropy types Iso(X) and Iso(Y) respec-
tively, and Iso(X)UIso(Y) = {(H;), ..., (Hy)}; then Ng(f)(H;) =
Ni(g)(H;) for i=1,..., k.

7.7. DEFINITION. Let V' be an open invariant subset of a G-ENR
X and f:V — X be a compactly fixed G-map. Then for every
closed subgroup H < G with VH £ & we define the local G-Nielsen
type invariant, denoted by Ng(f, V), to be the function given by
NL(f, V)(H) = n(fH, VH) the local Nielsen number as defined in
[F-H].

Note that if f is compactly fixed then f7: VH — XH is compactly
fixed. It is clear that when V = X, Ni(f, X) = Ni(f) and when
G= {1}, N(f,V)=n(f,V). f T: V xI — X is a compactly
fixed G-homotopy, then T'f: VH x T — XH is compactly fixed and so
by the homotopy invariance of the local Nielsen number, we obtain
the following

7.8. THEOREM ( G-homotopy invariance). N (f, V) is invariant
under compactly fixed G-homotopy.

Next we illustrate the relationship between N§(f) and Nj(f) which
was first explored implicitly in [F-W].

7.9. LEMMA. Let G be a finite group and X be a G-complex. Let
f:V — X be a G-map on an open invariant subset V with finite
number of fixed points. Suppose that (H) is an isotropy type of V and
A is a WH-Nielsen class of fy = f|Vy. If N is a local class of fy,
then either N C %" or NN = . Furthermore, in the case N C /¥,
I(fy,N)=0, if and only if, I(fy,7)=0.

Proof. From the definition of WH-Nielsen relation and that of or-
dinary local Nielsen relation on Fix fz, if two fixed points are locally
Nielsen equivalent then they are WH-Nielsen equivalent. It follows
that ./ is a disjoint union of local Nielsen classes. Therefore, if
NN #D then N Cc.#. Otherwise NN/ =,

If N = .7 then the last assertion is trivial. Suppose that N is a
proper subset of .#". Let py: Vg — Vy/WH be the orbit map. Since
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Vi is a free WH-space, py is a finite covering map. We also have
pa(N) Cpu(/). If x,y € 4 belong to distinct orbits then pgy(x)
and py(y) are locally Nielsen equivalent fixed points of the induced
map 71{ on Vy/WH . Thus any two points in pgy(.#) are in the
same local Nielsen class of fy, so pg(N) = py(/#). Since we may
assume that f, has isolated fixed points, it follows that I(fz, N)
is an integer (nonzero) multiple of 1 (fu,pu(N)) while I(fy, V) =
\WH| - I(f, pu(N)) = |WH|-I(fy, pu(/)) . Hence I(fu, N) =0
if and only if I(fy,#)=0. O

7.10. THEOREM. Let G be a finite group and X be a G-complex.
Let f:V — X be a G-map on an open invariant subset V with

finite number of fixed points. Let (H,), ..., (H,) be an admissible
ordering on the isotropy types of V. Suppose that Fix f C V| H)- If
nwe, (fu,» Vi) =0 then N&(f, V)(H;) =0 for i=1,...,k.

Proof. Since Fix f C Vg, f is fixed point free on Vj;_;. Thus
NE(f, V)(H;)=0for i=1,...,k—1. Let F be a Nielsen class of
fH:. Since F C Vu, and if two points are Nielsen equivalent in Vh,
they are Nielsen equivalent in ¥ | F is a disjoint union of Nielsen
classes of fy . By 7.9, nwy (fu , Vi) = 0 implies F is of index
zZero. m|

8. An example with N;(f) = 0 but Ni(f) # 0. Consider the
figure-eight P, :

by b

by b,

Define a self-map fy: Pp — Py so that fo(b) = by, fo(by) =
brl, folbs) = by'br by, fo(bs) = babsbs. Put a = biby, B = b3bs.
Then fy(a) = a~!, fo(B) = o182 and Fixfy = {x, y, z}. Since
So(b7'bs3) = byby'by = b7'by, x and p are Nielsen equivalent.
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Let P be the disk with two holes and the embedded figure-eight:

)

Q y

O

Let f" =10 fyor: P — P where r is a retraction of P onto P,
and i: Py — P is the inclusion. (The map f’ is the same map as in
Jiang’s example in [J2].) Furthermore we require that r contracts the
line / to the point z.

<)

B

Let X(1) be P, f)=f" andlet X(2) be another copy of P and
ﬂz) = f’ with Fixﬁz) = {.XI, vy, Z’} .
Let W be the wedge of two 2-spheres:

k\
<

and the map g: W — W which is a 180° rotation about the axis
through x”, z” and y” with Fixg = {x", y", z"}.
Let X(3) be the following space:
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which is the union of W and a 2-disc with a subset removed whose
boundary is the figure-eight F.

Take f3): X(3) = X(3) tobe fogof where 7: X(3) = W is the
retraction which sends the line /” to the point z” and i: W — X(3)
is the inclusion.

Let X(4) be the unit circle

and f4): X(4) — X(4) to be the composition Aok where k is a flow
on X(4) so that a is a “source” and z" is a ‘sink’ and 4 is a re-
traction which takes the line segment /" to the point z" . Therefore,
Fix fi4y = {2", a}.

We now let X be the union \J?_, X (i) with the lines I, /', I", ["
all identified so that z = z/ = z” = z"”. Embed X in R3 and let

G =Z, act on X by reflection in the plane containing X(4) = S!.
Let f: X — X be f1)UF)Uf3Ufs sothatFix f={x,y, x', ),
xll’ yI/’ Z, a}.

— ~_/ 3
: o
!
X(1) ; -

X(3)

Let Y be a symmetric regular neighborhood of X in R* and extend
f to ¢ =1xofory where iy: X — Y istheinclusionand ry: Y — X
is a G-invariant retraction. Note that Y is a finite G-complex of type
S and Fix¢ = Fix f.
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We are now to calculate Nj(¢) and Ng(¢). Since ¢ =i1xo fory
and fC = f|X(4) = fi4, the Lefschetz number

L(p%) = L(f°) = i(f4), @) + i(fa), 2)
= (-1 +(+1)=0.
Thus the Nielsen number n(¢¢) = 0 since Y ~ D? x S! is a solid
torus which is a Jiang space (see [Br] or [J1]). Recall on X(1),

fiy(@) =a'; fiy(B) = 1B? and f4 is homotopic to the identity
on X(4). Hence

Sai Hi(X; Q) — Hi(X; Q)

is given by 0
-1 0 00
-12 00O
0 0 -1 00
0 0 -1 20
00 001

and the trace tr(f,;) = 3. We also have

S =a)a = ((1) (1))

since f(3) is homotopic to the identity on X(3). Thus, tr(f.;) = 2.
Hence
L(f)=1-tr(fu) +tr(fi0) =1-3+2=0.

Thus, L(¢) = L(f)=0.

An easy computation shows that x and x’' are fixed points of f of
index 1 while y and )’ are of index —1. Also, x and x’ are Nielsen
equivalent to y and y’ respectively. Since W is simply connected
the fixed points x”, y” and z are Nielsen equivalent to each other.
Since L(f) =0 then {x”, y", z, a} hasindex zero. Therefore f has
at most three Nielsen classes each of which is of index 0. It follows
that n(g¢) = n(f) =0 and hence Nj(¢) =0.

Since ¢ has only a finite number of fixed points, it is G-compactly
fixed. The subspace Y — YC consists of two disjoint components
each of which contains three fixed points whose index sum is nonzero.
In fact, the fixed orbits of ¢ in ¥ — YC are {x, x'}, {y,»'} and
{x",y"}. S0 ng(p,Y —Y%) =1#0 and thus N&(p) #0.

Since z and a are Nielsen equivalent in Y9, the fixed point a
can be coalesced with z. We can also move x” to z along a path y
so that y — {z} is connected in ¥ — Y% . Then we can move x” and
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y" to z equivariantly. The fixed point z has index zero. Therefore
it can be removed locally. We are now left with fixed points x, yp,
x', y'. Since each component of ¥ — Y% has no local cut points,
x and y can cancel and hence the fixed orbits {x, y} and {x', y'}
can be removed equivariantly. We then conclude that the map ¢ is
G-deformable but not G-compactly fixed deformable to be fixed point
free.
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