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ON COVERINGS OF FIGURE EIGHT KNOT SURGERIES

Mark D. BAKER

We show that over half of the Dehn surgeries on S> along the
figure eight knot K yield manifolds having finite covers with positive
first Betti number by explicitly constructing these covers and exhibit-
ing their homology.

1. Introduction. Denote by K the figure eight knot, pictured in
Figure 1. In his celebrated Notes, [T], Thurston showed that all but
finitely many Dehn surgeries along K in S yield hyperbolic non-
Haken manifolds—the first such examples. It remains an open ques-
tion whether or not these manifolds (or every closed, irreducible 3-
manifold with infinite 7;) are finitely covered by Haken manifolds,
or stronger still, by manifolds with positive first Betti number.

FIGURE 1

In this paper we will show that over half of the Dehn surgeries along
K yield manifolds having finite covers with positive first Betti number
by explicitly constructing these covers and exhibiting their homology.

Section 2 is devoted to notation and preliminaries. Section 3 con-
tains a statement of our results as well as a summary of previous
results on the problem. The method of proof is outlined in §4. Proofs
are given in §§5-7.

2. Preliminaries. Throughout this paper K will denote the figure
eight knot and M the complement, in S3, of an open regular neigh-
borhood of K. We will use the fact that M is a bundle over S! with
fiber a once-punctured torus.

2.1. Let T, denote the torus with an open disk removed, pictured
in Figure 2. Let D, denote the left-handed Dehn twist about the loop
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FIGURE 2

x and D, the right-handed Dehn twist about the loop y in Tp. Then
M= TO X [0: 1]/(g(S), 0) ~ (S> 1)

where g = Dy oDy,.

We fix a basepoint, b, in 87 and let x, y be the elements of
n1(Ty, b) represented by the loops x, y in Ty based at b via the
arc 0. Then x and y freely generate n,(7y, b) and Dy, D, induce
the isomorphisms:

(Dy)g:x—x, y—yx,
(Dy)g: x = xy, y—y.

The loop a = b x [0, 1]/ ~ is a meridian for K and g =0T; is a
longitude for K. Then

n (M) =(x,y,ala” xa=xyx, o 'ya=ypx)

which is easily seen to be isomorphic to the following Wirtinger pre-
sentation for S3\ K :

n1(S*\ K) = (a, bl(a~'bab " a(a"'bab~)"1b~! = id).

Indeed, first eliminate ¥y (y = x"!a~!xax~!) then set a = a~! and
x=bal.

2.2. By Dehn filling on a 3-manifold X with respect to a loop in
a boundary torus, we mean attaching a solid torus to X so that this
loop bounds a meridional disk in the solid torus.

We say that X has a virtually Z-representable fundamental group if
71(X) contains a finite index subgroup with non-trivial representation
to Z. I~f X is compact,~this is equivalNent to the existence of a finite
cover X — X with f;(X)=rank H;(X) > 0.

Given a surface F and a homeomorphism A: F — F, we define
the corresponding bundle over S! by FxI/h = Fx[0, 1]/(h(s), 0) ~
(s, 1). Note that the back face F x {1} is attached to the front face
F x {0} via h.
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Given M, = Ty x I/h with h the identity on 8Ty, define (as for
M) the loops ap=bxI/~, p=0T;.

DerINITIONS. (1) Mj(u, A) represents the manifold obtained by
Dehn filling on M), with respect to the loop o, B*.

(2) By u/A Dehn surgery along K in S3, we mean Dehn filling on
M with respect to o“f*. Let M(u, A) denote the resulting manifold.

REMARKS. (1) M(u, A) = M(u, —4) since there exists an orienta-
tion reversing homeomorphism on M sending « to a and # to !
(see [H2] or [T]).

(2) Since My(u, A) = My(—u, —4) we will assume that u > 1.

3. Statement of results. M (u, 1) is known to have a virtually Z-
representable fundamental group if:
(1) A=+2u (mod 7) (see [H1] or [N]),
(1)) A=+pu (mod 13) (see [H1]),
(iii) 4 =0 (mod 4) and u/A # £8 (see [KL]).
In §5 below, we will prove:

THEOREM A. M (3u, A) has a virtually Z-representable fundamen-
tal group if |A| ¢ {u—1, u+1}.

In §6, we first give a simple proof of (iii) by explicitly construct-
ing covers N — M(4u, A), for which B{(N) > 1. We show that
M(8, £1) has a virtually Z-representable fundamental group, the case
not covered in [KL]. We then prove virtual Z-representablility for cer-
tain M(2u, A):

ProrosiTioON C. M(2u, A) has a virtually Z-representable funda-
mental group if 2 =+7u (mod 15).

In §7, we study singular boundary curve systems for M . In [H2], it
is shown that {a?}, {af} and {aB~!} are singular boundary curve
systems. We prove the following result:

THEOREM D. {a?B}, {2871}, {038} and {o3B~'} are singular
boundary curve systems for M .

REMARK. Our results, combined with (i)-(iii) above, show that ap-
proximately two-thirds of the surgeries on K yield manifolds having
virtually Z-representable fundamental groups.
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4. Construction of covers. Foragiven (u, 4), we show that M(u, A)
has a virtually Z-representable fundamental group by constructing a
finite cover N — M (u, A) with B{(N) =rank H;(N) > 1. The cover
N is obtained from a finite cover M — M having the following two
properties:

(i) The loop a*B* in &M lifts to loops in the components of
oM ; N s

(i) f1(M) > Bo(0M).

Property (i) guarantees that M — M extends to an (unbranched)
cover N — M(u, A) by Dehn filling on M and M. Property (ii)
guarantees that any manifold obtained by Dehn filling on M (hence
N) has positive first Betti number.

Since M is a bundle over S! with fiber Ty and characteristic home-
omorphism g, it follows that M is also a bundle over S! with fiber
F a cover of Ty and characteristic homeomorphism g a lifting of
g" for some integer n > 1. N

It is easy to show (see [H1]) that A satisfies property (ii) above if
and only if &.: H,(F) — H,(F) fixes a non-boundary class in H(F).
We adopt the terminology of [H1] that ¢ is homology reducible if it
fixes such a non-boundary class in H{(F).

Thus we will construct M by constructing a finite cover F — Tj to
which an appropriate power of g lifts to a homeomorphism g: F —
F that is homology reducible.

Since g = Dy o Dy, it is difficult to tell, given a cover F — T,
whether or not g” lifts to a g that is homology reducible (in fact the
matter of whether or not a given g" even lifts is difficult to verify in
practice). We will avoid these difficulties by using the fact that g2,
g3 and g* are isotopic to maps that are much easier to work with.

5. In this section we prove the following:

THEOREM A. M (3u, A) has a virtually Z-representable fundamen-
tal group if |A] ¢ {u—1, p+1}.

We fix & =D2o0D;%0D;o0D;*0D,. Recall that My, =Ty x I/h,
ap =bx1I/h, B =0Ty and M,(u, 4) is the manifold obtained by
Dehn filling on M) with respect to the loop a;l‘ B (see §2.2).

LEMMA 5.1, Mj(u, A) = MQBu, u+i) = MQ3u, —u—21) isa 3-fold
cover.
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Proof. Since h and g3 both have the same monodromy matrix
(13 %) € SLy(Z) they are isotopic, and hence M), is bundle equivalent
to the 3-fold cyclic cover, M EN of M. Moreover the isotopy H
from g3 to h rotates 87Ty one turn counter-clockwise, since for any
zem (TO s b ) s

83(2) = (xyx'y hy(2)(xyx~y )7L
(It suffices to check this for x, y € n;(Ty, b).) Thus the induced
bundle isomorphism H: M, — M, sends the pair of loops (ay, B)

to (agf, B) which projects to (a*f, §) in M. O

Now Theorem 1 of [B] tells us that M, (u, A) has a virtually Z-
representable fundamental group for 4 > 1, |A| > 2 and, if A is odd,
either 4 > 2 or —4u/3 <A< -2 or A < —4u. Since My(u, i) —
MQBu, u+A)=M@3u, —u—2) is a cover, Theorem A above follows
easily.

5.2. Weillustrate Theorem A by constructing covers N — M (3u, 1),
Bi(N) > 1, for u, A odd. Consider the 16-fold cover F — T
pictured in Figure 3. Let F’ — T, be the cover corresponding to the
kernel of the map 0: 71(7p) — Z/4 ® Z/4 defined by 6([x]) = (1, 0)
and 6([y]) = (0, 1). We obtain F by making eight vertical cuts in F’
and identifying the left edge of each cut to the right edge of the cut 2
to the right (mod 4). F is a surface of genus 5 with F consisting
of eight circles, each projecting 2 to 1 onto S in Tj.
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Both D, and Dj lift to homeomorphisms of F. D, lifts to D,
which can be viewed as 1/4 “fractional” Dehn twists about the {X;}.
In particular D, fixes pointwise rows 1 and 3 while shifting rows 2
and 4 each three squares to the right (mod 4). D;‘ lifts to D, which
consists of performing simultaneous Dehn twists about the {7;}.

Since both D, and D; lift to F, h lifts to a homeomorphism
h: F — F. It is easy to see that A fixes pointwise 8 F and that h is
homology reducible since 4, fixes the nonboundary class [7]+[d] in
H, (F ) _ . —

Let M = F xI/h. All Dehn fillings on M have positive first Betti
number. Moreover, since / fixes pointwise dF , it follows that the
loops oy, B% in @M, lift to loops &;, f; in the eight components
of 8M . Denote by M (u, A) the manifold obtained by Dehn filling
on M with respect to the curves a B} Then the sequence of covers

~ i—
M(u, T") o My, A= ) — M(3u, A)

gives the desired cover of M(3u, 4), u, A odd.

6. In this section we deal with the manifolds M (2u, A). Through-
out §6, we fix & = (Ro D;3) where R is the homeomorphism of
To induced by a 90° counter-clockwise rotation of the square in
Figure 2.

Let M, = Ty x I/h. The loop «y is represented in Ty x I by the
image of the curve b x I under a 90° clockwise rotation of 0 Ty x {1}.

LEMMA 6.1. M), is bundle equivalent to M, with the pair (ay, B)
mapping to (a, B).

Proof. Let R’ denote R composed with a 90° clockwise rotation of
dTy. Then R’ fixes Ty and induces on 7;(7y, b) the isomorphism
Ri(x) = xyx~!, R4(y) = x~!. A calculation shows that, for any
YA 7[1(T0 ’ b) 5

g#(z) = (Dx' o R' o D} 0 Dy)a(2) .

Thus the isotopy H from g to D! o ho Dy rotates 0Ty only
90° counter-clockwise and hence the bundle isomorphism H o
(D! x 1d): My, — M sends (ay, B) to (a, B). O

Now consider M’ = Ty x I/h*, the 4-fold cyclic cover of M), . Note
that h* fixes 87y, so we define (o', B) for M', where o/ = bxI/h*.
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LEMMA 6.2. M' — M is a 4-fold cover, sending the pair of loops
(o, B) to the pair (o*B, B).

Proof. Note that the lift of a2 to M’ winds once around 97 in
the clockwise direction and hence is represented by o’f~!. Thus o
projects to az B in M, which maps to a*f in M by Lemma 6.1. O

The following is an immediate consequence of Lemma 6.2 and will
be used in §6.1:

COROLLARY 6.3. M'(u,A) > M@u, u+A) =My, —u—-2) isa
4-fold cover.

6.1. Now we prove the following (see also [KL]):

THEOREM B. M (4u, A) has avirtually Z-representable fundamental
group.

We begin by considering the 9-fold cover S — T; corresponding to
the kernel of the map 6: n;(Ty) — Z/3 & Z/3 defined by 6([x]) =
(1, 0) and 6([y]) = (0, 1). Note that both D;3 and R liftto S.

Next we construct, for each d > 3, a cover F; — T, as follows:
Let Sy, ..., S; be copies of S, each with eight cuts {7;} as pictured
in Figure 4. Glue the left edge of 7; in S; to the right edge of 7,
in S;;; (mod d). Next glue the left edge of 7, in S; to the right
edge of 7, in S;_, (mod d). Now glue the edges 73, ..., Tg so that
the gluing is compatible with that of 7;, 7, under a simultaneous
counter-clockwise rotation by 90° of each S;. Note that the gluing of
7; determines the pattern for 73, 75, 77 while the gluing of 7, de-
termines that of the 74, 7¢, 7g. The surface F;, with identifications
for 7; numbered, is pictured in Figure 5. Some of the properties of
the surface F; are given in:

LEMMA 6.4. The surface Fy is a 9d-fold cover of Ty. Each compo-
nent f; of 0F; projects r; to 1 onto B =0Ty for ri|d.

Now the loop x (resp. y) in Ty is covered by 3d loops %X, ...,
X34 (resp. 3d loops yi,..., J34) in F,; that project 3 to 1 onto x
(resp. 3to 1 onto y). Thus D;3 lifts to 13;‘ consisting of simulta-
neous negative Dehn twists about the {J;}. It follows from the con-
struction of F; that R lifts to R, a simultaneous counter-clockwise
rotation by 90° of each of the S;...,S; in F;. Thus & (= RoD;3)

and h* lift to & and A* on F,. Note that A% fixes pointwise 9F.
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LEMMA 6.5. h*: F; — F; is homology reducible.

Proof. A portion of Fj; is pictured in Figure 6. The non-boundary
class [y] +[d] in H;(F,;) corresponding to the loops 7, 0 is fixed by
h%. Indeed, R* = Id and [y] +[d] is fixed by (D 1), since y and
0 each intersect the same Dehn twist curves in {y,} with opposite
orientations. m]

Let M, = F;xI/h*. Now M; is, by construction, a 9d-fold cover
of M', the 4-fold cyclic cover of M), hence ﬂd — M is a 36d-fold
covering space (see Lemma 6.2). Furthermore, Lemma 6.5 implies
that any Dehn filling on Md yields a manifold with positive first Betti
number.

We complete the proof of Theorem B by constructing, for each
(4u, A) coprime, acover N — M(4u, A), Bi(N) > 1, gotten by Dehn
filling on an appropriate ]de . Since M (0, £1) itself has positive first
Betti number, we exclude this case.
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Recall that M'(u, A —u) — M(4u,A) = M(4u, —2) is a 4-fold
cover by Corollary 6.3. Since (4u, ) # (0, £1), by changing the
sign of A if necessary, we can assume that either A = 4 = =1 or
|4 — u| > 3. In the first case the loop o' in M’ lifts to loops {c;}
in 8M, for any d. In the second case the loop () B*~# in oM
lifts to loops {c;} in 8 M, for d = |4 — u|. In both cases we obtain
N — M(4u, 2) by Dehn filling on 1‘7(1 with respect to the loops {c;}
in 8ﬂd . This completes the proof of Theorem B.

As an example, consider the case M(8, —1) = M(8,1). Then
M'(2,-3) - M(8,1) and the (2, —3) loop in M’ lifts to loops
{c;} in the boundary components of ﬂ3 . N is gotten by Dehn filling
on M3 with respect to the loops {c;} (see Figure 5).

6.2. ProprosiTION C. M(2u, A) has a virtually Z-representable fun-
damental group if A =+7u (mod 15).

Consider the 9-fold cover S — T, described in §6.1, and construct
a new cover F — T, by making eight cuts in S and identifying the
edges as shown in Figure 7. The surface F has genus 4 and 0F
consists of 3 circles: f§; that projects 5-1 onto B, B, projecting 3-1
onto B, and B; projecting 1-1 onto B. The loop x (resp. y) in Ty
is covered by the three loops X;, X, X3 (resp. J;, V2, V3) which
project 3-1 onto x (resp. onto y). N

It follows from the construction of F that R lifts to R the home-
omorphism induced by a 90° counter-clockwise rotation, and that
D;3 lifts to 5; I given by simultaneous negative Dehn twists about

the {y;}. Hence & (= RoD;?) lifts to A.
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LEMMA 6.6. A2 is homology reducible.

Proof. h? fixes the non-boundary class [%;] — [%3] in H{(F) (see
Figure 7). o

Let M = F x I/h*. Then M is an 18-fold cover of M),,. Since h?
rotates each component f; of AF one half turn counter-clockwise,
we can choose on each component 7; C oM loops (&;, [i‘i) where
(64, B1) projects to (e2B72, B3), (a2, B2) projects to (o271, B°)
and (a3, f3) projects to (aF, ) in M.

Now our proposition follows, since by the above paragraph any loop
in OM), of the form ai“ﬂ", A= -T7u (mod 15), lifts to loops {c;}
in each component 7; of dM . Dehn filling on M with respect to
the loops {c;} providesa cover N — M,(2u, A) = M(2u, 1), the last
isomorphism by Lemma 6.1.

6.3. REMARK. By similar arguments, we can show that M(2u, )
has a virtually Z-representable fundamental group if A = +3u
(mod 7). These cases have been done in [H1} and [N] by different
methods (see §3). Consider the cover F — T in Figure 8, obtained
from 3 copies of S by removing the interiors of the four shaded re-
gions in each copy of S and identifying the edges as numbered. The
reader should check the following: & F consists of 3 circles, each pro-
jecting 7 to 1 onto f = 8Ty; h? lifts to a homology reducible map
h2: F — F; and the loop o?*f*, A = +£3u (mod 7), in M lifts to
loops in M =F x I/h?.

7. Singular boundary curve systems for A/ . In this section we study
singular incompressible surfaces in M . Given a cover N — M(u, A)
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obtained by Dehn filling on M — M , then B;(N) > B1(M)—Bo(0 M) .
Hempel shows ([H2]) that this inequality is strict if and only if there
is an incompressible, boundary incompressible surface F in M such
that 0 F consists of a non-empty collection of Dehn filling curves.
This surface F projects to a singular surface in M whose boundary
curves are o#p*, and we say that {a#f*} is a singular boundary curve
system for M .

In [H2] the curves {a®}, {a, B}, and {af~!} are shown to be
singular boundary curve systems. We show:

THEOREM D. The curves {a*B}, {2871}, {a3B} and {a3p~1}
are singular boundary curve systems for M .

(a) The curves oB*!: We use the 3-fold cover M), — M for h =
D3 o D;% oDy oD;%o D, described in §5.

By Lemma 5.1, M;,(1,0) — M(3, 1) is a 3-fold covering. Now
consider the 8-fold cover F — Tj, pictured in Figure 9, to which 4
lifts (see §5). Denote this lift by k. Note that % fixes pointwise the
eight components of F and that h is not homology reducible.

Let M = F x I /h. By construction, the loop a; in M, lifts to
eight loops &;,..., &g in 8 M—indexed so that the loops (a&;, B,)
lie in the ith boundary torus of M. Thus the loops &; project to
a3f in OM and Dehn filling on M with respect to the {&;} gives a
cover N - M(3,1)=M(3, -1).

LEMMA 7.1. There exist relations among {[&;]} in Hy(M ) hence

Bi(N) > Bi(M) — Bo(M).

Proof. We have [&;] —[a&;] = [a6] — [@5] in H(M ) One computes
[a;] — [&;] as follows. Let o;; be a simple path in F x {0} from



226 MARK D. BAKER

Xl - E ~
7 Bg
(@)
Xe | o
Ei Bs
;3 - 056
B B
g | O
X2
B B;
L‘
';('1 AA 40, \
7 y2 1
FIGURE 9

&;NF to a&;NF. Then the disk o;; x I C F x I provides the relation
[6;]1-[ai]1= [A(o; ) * alf;l] where * denotes path composition.

Now gy, and o056 can be chosen as in Figure 9, and [iz(alz)*al‘zl] =
[A(os6) *05‘6‘] in Hl(ﬂ) since D, fixes 01, and oss pointwise and
they both intersect the Dehn twist curve ;. o

(b) The curves o*B*!: Consider the bundle M, = Ty x I/f for
f=(D5'oDy)*.

LEMMA 7.2. My is a 2-fold cover of M. The pair (ay, B) maps
to the pair (2B, B).

Proof. Let g = (D! oDZoD;')o g2 o (D5! oD2oD;)"l. We
have, for any z € n((Ty, b),

gy(2) = (xyx~ly™H™ fu(z)(xyx~Ty7h).

Thus the isotopy H between g’ and f rotates T one full turn
clockwise, so that the bundle isomorphism {(D;!oD20D;!)~! xId}o
H: My — M, sends the pair (ay, B) to (agzﬂ—l , B) which project3
to (281, ) in M. o

By Lemma 7.2 My(1,0) — M(2, —1) is a 2-fold cover. Now
consider the 10-fold cover F — Ty, pictured in Figure 10 to which f
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lifts. Denote the lift of f by f and let M=FxI /f. Now f fixes
pointwise the eight boundary circles of F . Denote by &; a lift of af
to OM , indexed so that the loops (&;, B,-) lie on the ith boundary
torus of M . Thus the loops &; project to a?8~! in M and Dehn
filling on M with respect to {&;} gives a cover N — M(2, —1) =
M(2,1).

LEMMA 7;3. There > exist relations among {[&;]} in hl(ﬂ ); hence
Bi1(N) > B(M) — Bo(M).

Proof. We have [&y] - [@1] = [ag] —[@s] in H; (ﬂ ) by an argument
identical to that in Lemma 7.1. O
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