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This is a continuation of the paper by Figiel, Johnson and Schecht-
man with a similar title. Several results from there are strengthened,
in particular: 1. If 7 is a “natural” embedding of /§ into L, then,
for any well-bounded factorization of 7" through an L; space in the
form 7 = uv with v of norm one, u well-preserves a copy of l{‘
with k exponential in n. 2. Any norm one operator from a C(X)
space which well-preserves a copy of /; also well-preserves a copy of
[%, with k exponential in n. As an application of these and other
results we show the existence, for any 7, of an n-dimensional space
which well-embeds into a space with an unconditional basis only if
the latter contains a copy of /X with k exponential in .

Introduction. In this continuation of [FJS], we show that in some
situations considered in [FJS], conclusions of certain theorems can
be strengthened. More explicitly, suppose that 7 is an operator from
some Banach space into L; which factors through some L;-space Z
as yw and normalized so that ||w| = 1. In Corollary 12.A we show
that if 7" is the inclusion mapping from a “natural” n-dimensional
Hilbert-
ian subspace of L; into L;, then u well-preserves a copy of l{‘ with
k exponential in n (where “well” and the base of the exponent de-
pend on |ju|| and on a quantitative measure of “naturalness”). This
improves the result of [FJS] that the same hypotheses yield that l{‘
well-embeds into uZ . (Actually Corollary 12.A requires only that T
be a “good” isomorphism from a “natural” n-dimensional Hilbert-
ian subspace of L;). Corollary 12.B gives a similar improvement of
Corollary 1.5 in [FJS]; in Corollary 12.B the operator T is assumed to
be a mapping from a space whose dual has controlled cotype into L,
which acts like a quotient mapping relative to a “natural” Hilbertian
subspace of L;.

Corollary 20 strengthens the conclusion of proposition 4.3 in [FJS]
in a similar manner; it states that an operator from a C(K) space
which well-preserves a copy of [} also well-preserves a copy of Ik
with k& exponential in »n (rather than just have rank which is expo-
nential in #n). This can be viewed as a finite dimensional analogue of
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a particular case of a result of Pelczynski [Pel] stating that every non
weakly compact operator from a C(K) space preserves a copy of ¢;.
Although the statements of Corollary 20 and Corollary 12.A are very
similar, the results themselves do not seem to follow from each other
via standard duality arguments.

In Theorem 21 we apply the earlier results in order to prove that
for each m there is an m-dimensional normed space G such that any
superspace of G with a good unconditional basis must contain a copy
of IX with k exponential in m.

We thank J. Bourgain for pointing us in the right direction on the
material presented here. After proving the results in [FJS], we sug-
gested to him that there might be a translation invariant operator T
of bounded norm on L; of the circle which is the identity on the span
of the first n Rademacher functions and which does not preserve /f
with k& exponential in n. By disproving this conjecture, Bourgain
started us thinking that Corollary 12.A was true.

We use standard Banach space theory notation, as can be found in
[LT] and [T-J]. In particular, d(X, Y) is used for the Banach-Mazur
distance between the normed spaces X and Y, while n,(T) is the
p-absolutely summing norm of the linear operator 7°. As usual, ¢*
denotes L, the conjugate index to .

Most nonstandard notation is used only “locally” and is introduced
when needed. However, the following two definitions are used
throughout the paper and are important for understanding the for-
mulations of the main L;-results, Corollaries 12A and 12B: Given
1 <p < gq<oo and an operator u: Z — L,(u), we define

Cp.q(w) = inf{||Alls|th~"u: Z — Lg|l}

where the inf is over all changes of measure #4; i.e., over all
0 < h € Ly(u) where 1+ { = 1. Also recall that for a pair of linear
operators 7: X — Y and U: X; — Y;, the factorization constant of
U through T is defined to be

yr(U) = inf{||4]| ||B]|: A: X; = X, B:Y —Y,, U=BTA}.
We let y7(U) = oo if no such factorization exists. We also put
yr(Z)=yr(idz: Z — Z).

This should be compared with the classical concept of y,(U), which in
our notation can be defined (say, for an operator U from a separable



FACTORING NATURAL EMBEDDINGS 263

space) by
vp(U) = 7, (U).

A quantitative version of Rosenthal’s lemma. In this section we
prove, in Proposition 1 below, a quantitative version of Maurey’s for-
mulation [M] of Rosenthal’s lemma [R] stating that an operator into
Li(u) either factors through an L,(v) space for some p > 1 via a
change of density or is of type no better than 1. Our approach is
in fact close in spirit to Rosenthal’s original argument which (unlike
some later arguments) was basically quantitative in nature.

Proposition 1 combines with the essentially known Proposition 4
to yield the central result, Theorem 8, a specialized version of which
(Theorem 11) gives our main L;-results, Corollaries 12A and 12B.

PROPOSITION 1. Let 1 < p < q < o0 and ¢ = 1—q*/p*. Let
T:Z — Li(u), where pn is a probability measure. If Cy ,(T) = K
and ||T: Z — Ly(u)|| = €K, then for some

m > (K/2** e | TP

there exist zy,..., zZm in the unit ball of Z and mutually disjoint
measurable sets Fy, ..., F,, such that for i=1,..., m one has
(1) g Tz Tz )70 > 2~ /P+IK

For the proof we need two lemmas.

LEMMA 2. Let g € L, with ||g|| < 1. Suppose E is a u-measurable
set, 1 <p<q<oo and

I1~£llp > K > 0.

Then there exists a measurable set F, FNE = O, such that

WA
/I(F) < (T) s

I1rgllfll1rgllh=c > 27 1Pk.

Proof. Without loss of generality we can assume that g > 0. Set
F =[g>7y]~E, where y >0 is defined below. Observe that

/ g? sw”“‘/ g <yl
~F ~F
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and hence, by Holder’s inequality,

e <) (L)

where t = (p —1)/(g —1). Since u(F) < 1/y, we can fulfill both
conditions of the lemma by choosing y so that y?~! = %xl’ . O

LEMMA 3. Let T: Z — Ly(u), u being a probability measure. Sup-
pose 1 < p < oo and

Clp(M =K, |T:Z—Lypl=%K.

If0<k<K,n>0 and &n'?" <1-xk/K, then u(E) < n implies
that there exists z € Ball(Z) such that ||1.gTz|p, > k.

Proof. Without loss of generality we may assume that u(E) > 0.
Observe that for any measurable set 4 one has

Ci p(14T: Z — Ly(p)) < w(A) VP |[14T: Z — Ly(w)||.

The lemma follows by using this observation for A=~ F and A=F,
because

~eT: Z — Ly(u)|| > Cy,p(1cgT) > Cy ,(T) = C1,,(1T)
>K-uE) P |NET: Z - Lw)| > K(1-27'")>k.  ©

Proof of Proposition 1. Clearly, we may assume that ||7|| = 1. Put
k=131K, n=02%)", §=(27/k)’" and let us start with E = .
Since

I~eT: Z — Ly(u)|| >k,
using Lemma 2 we can define z; and F; so that u(F;) < 0 and
15 Tz|| — 1 satisfies (1). Suppose now that, for some i > 1, we
have already defined z;,...,z; and Fy,..., F;. Let E=J,; F;.
As long as u(E) < n, Lemma 3 guarantees that we can use Lemma
2 again in order to choose z;,; and F;,; so that Fi,1 N E = O,
U(Fiy1) < 6 and ||1g Tz, satisfies the estimate (1). Therefore
this procedure can be applied more than 7/J times. Since we have
been assuming ||7|| = 1, this yields the promised lower estimate for
m and completes the proof of the proposition. C

The next proposition shows that we can actually get a somewhat
stronger conclusion to Proposition 1; namely, for some k£ proportional
to m, the identity on /¥ can be factored through 7.
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ProPoOSITION 4. Let T: Z — Ly(u) be a bounded linear operator.
Suppose that z,, ..., z,m are in the unit ball of Z and Fy, ..., F,
are mutually disjoint u-measurable sets such that, for i=1, ..., m,

11, Tzil| 2 6[|T > 0.

Then for some k > §6m there exist linear operators A: If — Z and
B: Ly(u) — I¥ such that BTA = id, and ||| |[B||||T] < 26~"; ie.,

yr(lf) < 26-Y T||~" for some k > tom.
For the proof we need two basically known lemmas (see [JS]).

LEMMA 5. Let xy, ..., Xm be elements of Li(u) and let Ay, ...,

Am be mutually disjoint u-measurable sets. If 1 < k < %m then

there exists a subset D C {1, ..., m} with |D| =k such that for each
ieD
m\ ' &
> [ miaus@e-n(5) Tl
jeD~{iy ' 4, i=1

Proof. Setting a;; = [, |x;|du, for i, j=1,...,m,and a =
J

m
a <>l
i=1

Put s=2k, &={EC{l,...,m}: |E|=s}. Write, for E€ &,
a(E)=Z Z aijj .
i€E jeE~{i}
It is easy to see that Ygeza(E) = ("P)a = 1€]3) (D) a;

hence we can pick Eg € & so that a(Ey) < (3)(%) 'e. Let
F ={i € Eo: Ljep, i %ij 2 ta(Ep)}. Then F has at most k
elements and, clearly, each k-element subset D C E; ~ F has the

required property. O

LEMMA 6. Let U: IF — L(u) be a linear operator, |U| < 1. Sup-
pose there exist u-measurable sets Fy,...,F, such that for
i=1,...,k

IrUell 26, Y |1gUel <7,
1<i#j<k
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where 0 < y < . Then there exists a linear operator Q: Li(u) — l{‘
such that QU =id, and ||Q|| < (6 —y)~!.

Proof. Define W: Ly(u) — I¥ by the formula W f = ([ fg:du)k_,,
where
g =1rsgn(Ue;) fori=1,...,k.

It is easy to check that ||| < 1 and for x € If one has |WUx| >
(6 — )||1x|| . Therefore the operator Q = (WU)~!'W has the required
properties. O

Proof of Proposition 4. We may assume that ||T)| = 1. Apply

Lemma 5 with # = }6 and x; = Tz; for i = 1,..., m. This
yields a set D C {1, ..., m}, with |D| = k > §{ém, Wthh satisfies
the assertion of Lemma 5 Writing {z;: i € D} { f1 soees S} we
can define the operator A by the formula Ae; = f;, for i = 1, k.
The existence of the operator B follows then immediately from Lem-
ma 6. O

We shall combine Propositions 1 and 4 in Theorem 8 below. Before
doing that we would like to state a dual version of Proposition 4. Note
that, if dim X;, dimY; < oo, then y7(U) = y7~(U*). This follows
from the principle of local reflexivity ([LT], p. 33).

COROLLARY 7. Let V: 17 — X be an operator of norm 1 such that

Vel >8>0 fori=1,...,m. Then yy(I£) < 267! for some
k>ém.

Proof. Let Z = X*. Pick norm one elements z;,..., z, in Z
such that z;(Ve;)) > 6 for i = 1,..., m. Using Proposition 4 we
obtain yy-(If) < 267! for some k > {dm. Since yy(I&) = yp-(If)
this completes the proof. a

The L; result. The main results of this section are Theorem 11
and Corollary 12 below. Corollary 12.A states roughly that in any
good factorization of a natural embedding of /5 into L;(0, 1) (for
example, the embedding sending the unit vector bas1s of I} to the first
n Rademacher functions) through an L; space, the operator between
the two L; spaces preserves an lk space with k exponential in #.
We begin however with a theorem of a more general nature which
1s a corollary to Propositions 1 and 4. The assumptions in both this
theorem and Theorem 11 are stated in terms of factorization constants
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of an operator into an L; space through L, spaces via changes of
densities. The relation between these constants and factorizations of
natural embeddings was one of the main tools in [FJS]. We shall return
to this relation in the proof of Corollary 12. For the moment we just
note that for Theorem 8 to be useful, we need the parameters A and
o in Theorem 8 to be such that A is bounded and ¢ is bounded away
from O in order to make yT(l{‘ ) bounded. Subject to that restriction,
we want k to be large. In practice, this is done by setting ¢ = oo and
choosing p so that C; ,(T) ~ 16||T||; under certain conditions this
choice makes p* large enough to guarantee that k is large.

THEOREM 8. Let T: Z — Li(u) be a linear operator such that
T #0 and C 4T) < oo, where 1 <p < q < oco. Set a=1—g-:,
A=|T|°Cy,4(T)'=°/Cy p(T). Then

Cl,p(T)

5
yr(IF) < 2(40)VO|T||7!  for some k > §(4A)~V/° (_8||T|I ) '

Proof. By Maurey’s result [Ma] quoted in [F.'S], for each r € (1, o0]
there is a nonnegative function ¢, € L;(u) such that [¢,du =1 and
7' T2 Z — Li(¢rdu)|| = Cy,(T)

(this uses the convention 8 =0). Set ¢ = 4(¢p+¢,). Then for r=gq
and r=p .
lp™'T: Z — Li(pdp)|| < 27 Cy (T).

Consider the operator T} = ¢~ !T: Z — Ly(¢du). Since Cy (T}) =
C,.(T) for r € (1, oo], applying Proposition 1 to the operator T,
we have # < 2!/P" | We can estimate for each i

e TizillL aw S IT1: Z — Lo(¢dp)l| < 2'/9°Cy o(T).

Hence we obtain elements z,, ..., z, in Ball(Z) and sets Fy, ..., F),
so that

_1_ . _ oA
”1F,lel'”zl(¢du) >2r 1(21/11 C1.4(T))° lcl,p(T) — 2724 lllT“a
and m > (C; ,(T)/8||T||)*" . Therefore, we have

_1
11T zilli = 1r Thzill L (g apy 2= (4A) " || T
Now we simply apply Proposition 4 to T, zy,..., zm and Fy, ...,
F, . O
We next state two corollaries to Theorem 8 concerning the dual
situation.
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COROLLARY 9. Let U: C(K) — X be a linear operator such that
0 < mm(U) <oo, where ] <r<t<oo. Set g =1-1%, A=
101177, (U)! =7 /me(U) . Then

k Yonrr-1 110 (7(U)
vulls) < 2(48)/|UNT" for some k 2 =(44) 30T )
Proof. This follows easily from Theorem 8, because C(K)* is an
L, space, yy+(IF) = yy(I%) and Cy ,(U*) = 7,(U) for 1 <p < o0
(see [R]). O

CoroLLARY 10. If U: I¥ — X, t > 1 and =, (U) = ¢||U|| > 0,
then yy(IK) < 2(H" NC-YU||=! for some k > 28 —3(§) +NI- .

Proof. This follows by using Corollary 9 with r = 1, because
n (U) < N|U|. o

The next theorem and Corollary 12 below are the main results of
this section.

THEOREM 11. Let T: Z — Ly(u) be a bounded linear operator and
let 1 <p<oo. Let Zg C Z. Suppose that n = dimTZy < oo and
that

Ci,p(u) 2 ¢|T|| >0,

Jor each finite rank operator u: Z — Ly(u) such that u|z = T|z . If
c>25 and 6§ = (p—1)n, then yr(If) < 5% for some k > 579(21/%)n,

Before proving Theorem 11, we use it to derive Corollary 12. The
first part of this corollary, Corollary 12.A, generalizes Corollary 1.5 in
[FJS].

COROLLARY 12.A. Let X be an n-dimensional subspace of L, for
which C ,+(X) < Cyp* forall 2 <p*<oco. If T: Ly - L, isa
linear operator of norm one and | Tx|| > t||x|| for x € X (with © > 0),
then yr(lf) < 5%P for some k > 572D27/CD) | where D = 216C27~4,

Proof. If n < 2D the conclusion is obvious, so we may assume that
n > 2D. Define p by p* = 3.

Set S =(T|x)"!': TX — X, so that ||S|| < L.

In order to apply Theorem 11, we need to obtain a lower estimate
of infC; ,(u), where the inf ranges over all finite rank extensions
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u: Ly — L; of T|y. Given an extension u: L; — TX of T|x into
TX (or even into L), we have

1 1 2

Vi < my(idly) = ma(ST)x) < ;ﬂz(TIX) < ?nz(u) < ;J’z(u)

(the last inequality follows from a weak form of Grothendieck’s in-
equality). Theorem 1.3 in [FJS] then gives that

inf C1 () 2 VAL, (TXOT"

But C; ,-(TX) is estimated from above by ||S||C; ,-(X). Indeed,
letting /: X — L; and J: TX — L; denote the inclusion maps, we
have by [R] that C; ,-(X) = n,(I*) and C, ,+(TX) = mp(J*). Thus

Cop (TX) = y(J*) = 2, (S*I°T)
< IS IITI < ISICyp (X) < SVFF.

Therefore our choice p* = 4 vyields infCy ,(u) > 2%, and the

conclusion of Corollary 12.A follows from Theorem 11. O

Corollary 12.B strengthens a specialization of Corollary 12.A in
the same way that Theorem 5.1 in [FJS] strengthens Corollary 1.5
in [FJS].

CoROLLARY 12.B. Supposethat X C L, dimX =n, and C; p-(X)
< Cyp* forall 2 < p* < oo. Let Y be a Banach space whose dual has
finite cotype q constant Cq(Y*) and let Q: Y — L, be an operator
for which

Q(Ball(Y)) 2 Ball(X).

Let Q = UW be any factorization of Q through an L, space with

|WI| < 1. Then for some absolute constant 1, yy(If) < 50 for some
k > 5D21/D  where

D =nC*qC(Y")||U|*.

Sketch of proof. Follow the proof of Theorem 5.1 in [FJS] (with
r replaced by p) up to the place on p. 98 where it is proved that
Cy,p(U) 2 2. Of course, now we need and can assure that C) 7p((7) >
25|U|| for any extension U: Z — L; of the restriction of U to
U~Y(X). Then apply Theorem 11. 0

To prove Theorem 11 we need to introduce some notation and some
preliminary results. Given two Banach spaces Z and W the space of
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all bounded linear operators between them is denoted by B(Z, W),
while F(Z, W) is the set of those u € B(Z, W) such that rank u
< o00. By a we denote a norm on F(Z, W) such that o(u)
<|lu|| if rank u=1.

Given a Banach space W and numbers n, 8 > 1, let us denote
by gw(n, B) the least number k such that, whenever v: W — FE
is a continuous linear operator with rank v < n, there exists P €
F(W, W) such that vP =v, |P|| < 8 and rank P < k. (Of course,
we let gw(n, B) = oo, if no such k exists.) The reader who is familar
with the uniform approximation property should note that this param-
eter is connected with the uniformity function for X*; specifically, in
the extension of terminology introduced in [FJS] for L,, gw(n, B)
is essentially the same as (even exactly the same as, for reflexive W)

kW"(n’ B)

ProPosITION 13. Let T€ B(Z , W) andlet Zy C Z, dimT(Zy) =
n<oo. If 1 < B <oo0 and gw(n, B) < o, then there exists P €
F(W, W) such that |P|| < B, rank P < gw(n, B) and

o(PT) > inf{a(u): ue F(Z, W), ulz =Tz} .

Proof. Write
Y={ueF(Z,W):ulz=T|z} and A4=inf{a(u):ue’}.

By the Hahn-Banach theorem there is a norm one functional @ on
(F(Z, W), a) such that ®(u) = A for each u € Y. Observe that if
S: W — Z** is the linear operator defined by

(Sw)(z*) = P(z" @ w),
then for all u € F(Z, W) one has
D(u) = Tr(Su) = Tr(u**S).

Clearly, our assumption on « yields ||S|| < 1. Moreover, for all
u €Y one has

(2) (T -u)*S=0.

Indeed, since Ker((T — u)**) 2 (Ker(T — u))*+ 2 Zg+, it sufficés
to verify that SW C Zg+. The latter inclusion is obvious, because
if we W, z} € Z; then we have (Sw)(zf) = P(z5 @ w) = 0,
since z; annihilates Z,. Since rankuy = dimTZ, = n, for some
up € Y, and since (2) implies that 7**S = u**S for each u €Y, we
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obtain that rank 7**S < n. Hence, by the definition of gw(n, 8),
there isa P € F(W, W) such that T**SP = T*S, ||P| < B and
rank P < gw(n, B). Observe that, if u is any element of Y, then
a(PT) > ®(PT) = Tr(SPT) = Tr(T**SP) = Tr(T**S)
= Tr(u™*S) =®(u) = A. a

The following known lemma is equivalent (via a standard duality
argument) to Lemma 17 below.

LEMMA 14. If W = Li(u) and 0 < e < 1, then qw(n, (1-¢)71) <
1/2 n
s(£+1)".

Proof. Let u: W — E have rank n. Write u = UQy, where
Qo: W — W/(Keru) is the quotient map and let F = W/(Keru). Set
B = (1-¢)~!. Suppose first that for some k there exists an operator
Q: I[F — F such that ||Q|| <  and Q(Ball(/¥)) 2 Ball(F). By the
lifting property of /f thereis Q;: IF — W such that ||Qi]| < [|Q] < B
and Q = QoQ;. By the lifting property of W = L;(u) there is
Qy: W — If such that ||Q,]| < [Qoll < 1 and Qp = QQ,. Let
P=Q;0;. Then |P|| < B, rankP < k and

u=UQo=U00,=U000:10> =uP.
Now the well-known volume argument shows that the unit sphere of F
contains an ¢-net (where (1—¢)~! = B) of cardinality k < J(2+1)".
Using this fact one easily constructs the operator Q: 1{‘ — F with the
two properties which we have used above. O

Theorem 11 can now be obtained by letting ¢ = % and replacing ¢
by 2° in the following proposition.

ProPosITION 15. Let T: Z — Ly(u) satisfy the assumptions of
Theorem 11, and let 0 < e < 1. Then

it <4 (2me) (G+1)" it

for some k > 41"2((1—‘g)1’1"(% + 1)-ne-1)

Proof. Let B = (1—¢)"', W = Li(u), a = C,,. Thanks to
Lemma 14, we can apply Proposition 13 which yields an operator
P on Li(u) such that |P|| < B, rankP < N = }(2 +1)" and
Cy,p(PT) 2 ¢||T| . Clearly,

C1,00o(PT) < (rank PT)||PT|| < N||PT||.
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Let g = oco. We can now estimate ypT(l{‘), using Theorem 8. The
resulting inequality, combined with the obvious relation yT(lf‘) <
I Pllypr(IF), yields the desired estimates for y7(/f) and k. o

The C(K) result. The main result of this section is Theorem 16
and in particular its Corollary 20 which gives a local version of a
result of Pelczynski [Pel] by showing that an operator from a C(K)
space which preserves a copy of /J' also preserves a copy of l!,‘o with
k an exponent of n.

THEOREM 16. Let U: C(K) — X be a bounded linear operator and
let 1 <t<oo. Suppose that EC C(K), dimE =n < oo and let

n(Ulg) = c||U|| > 0.

If ¢ > 2% and o = &, thenyy(lX) < 5¢|U||~! for some k >
5—a(21/a)n.

For the proof we need a lemma and a proposition. Lemma 17, the
dual statement of Lemma 14, is a weak version of Theorem 4.1 in
[FJS].

LEMMA 17. Let F be a subspace of C(K), dimF =n. Let 0 <
e<1 and N=1L1(2+1)". Then thereis Q: C(K) — C(K) such that
Qf =f for feF, |0l <(1-¢&)~! and rankQ < N.

Proof. There exists k < N and an operator J: F — [X such that
17| < (1—¢&)~! and ||Jf|| > ||f|| for f € F. By the extension prop-
erty of C(K), thereis J;: [X — C(K) such that ||Ji]| < (| J]|(1—¢))~!
and Jy(Jf)=f for feF. Welet Q= J,J,, where J,: C(K) — I&
is a linear extension of J with ||A] = ||J]. O

Theorem 16 follows easily from the next proposition by letting & =
4 and replacing ¢ by 2.

ProrposiTiON 18. Let U: C(K) — X satisfy the assumptions of
Theorem 16, and let 0 < e < 1. Then

ity <4 () o) or

for some k > 4 ~2(UEya™ (2 4 [)=n/(=1)

Proof. By Lemma 17, there exists P: C(K) — C(K) such that
[P <(1—¢)"!, rankP< N=4(2+1)" and Pe=e for ec E. It
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follows that
C, r(PU)2m(UP) 2 n(UP|g) = c||U||.

Since also C} (P*U*) < (rank UP)||(UP)*|| < N||UP||, we can fin-
ish the proof by applying an argument similar to that in the proof of
Proposition 15 and dualizing. O

COROLLARY 19. Let X be a Banach space. Suppose that t, n > 1
and there is an operator U: C(K) — X and a subspace E C
C(K), dimE = n < oo such that n(Ulg) = c||U|| > 0, where
¢ >25 Write a = 2, ¢ = (log2)(log$)/log5. Then, for all
j < min{5-¢(2Y/*)" 3exp(cin/a?)}, X contains a subspace X; such
that d(X;, 1) < 2.

Proof. Since ¢ > 32 using Theorem 16 we obtain that, if a = ;%;,

then yy(IX) < 52|Uj|~! for some k > 5-2(2!/*)" | Consequently, we
obtain the inequality

via, U5) < WUllyu(Is) < 5%,

from which we shall deduce a lower estimate for the number
Jo=min{m: yiq (IZ) 2> 2}.

Put for brevity g;(X) = yidx(lgo) . We shall employ the estimate

2
(X)) > o —
(3) gz]( ) 2 gt(X)l +gj(X)—1 s
for i,j=1,2, ..., which is the quantitative statement of results of

James [J] and Giesy [G] (see, e.g., [F]).

Suppose that jj < k and let m be an integer such that j{)”“ >k >
Jg'- Write 4 =g; (X) 22, B=2/(1+ A~1). Using repeatedly (3),
one obtains

.14 4 ;
8(X) 2 gl (X) 2 AB™™! > 5 Blosk/loth,

Since 4 > 2, we have 4/B? > §, B > $. Taking logarithms of both
sides we obtain the estimate
4\ logk
> = .
alog5 > log(gr(X)) > (log 3) Tog Jo
Using now the estimate k > 5-%(2Y/%)n, we get easily

log jo > (alog5)™! (log %) (g—log2 —alog 5)

_ 4\ ( n log2 .
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The latter estimate implies that if 1 < j < min{k, M} then g;(X) <
2. This implies that X contains a subspace X; with d(X;, I%) <2
and completes the proof. O

COROLLARY 20. Let U: C(K) — X be a linear operator of norm 1.
Suppose that for some subspace E C C(K) such that d(E,[l}) = a,
n > 2, one has ||Ux|| > b||x|| for x € E, where b > 0. Then U is

bounded from below by Al"("/ Y ona subspace G C C(K) such that

d(G, L) <2 and j > Agb/ 9" \where A, , Ay are absolute constants
>1.

Proof. Since m,(1}) > ﬁ for t > 1 [Pe2], we can estimate

b_ .. b [n
w(Ule) > Smiag) 2 2410

Assume first that n > (23a/b)*. Letting t = (27°b/a)?n we obtain
the estimate 7,(U|g) > 2°||U||. Let a = 2. Using Theorem 16 we
obtain, for some k > 5-*2%/% a pair of operators 4: X — C(K)
and B: X — [X such that ||A||||B|| < 5% and BUA =idy . Let F =
A(IK) . Clearly, one has ||Ux|| > 5~¢||x|| for x € F,and d(F, IX) <
5¢. Now, if d(F,[X) > 2, then the argument used in the proof
of Corollary 19 can be applied to F. Since gi(F) < 5% this will
produce a subspace G C F such that j = dim G > %exp(cln /a?) =1
and d(G, IL,) < 2. This yields the following conditions on numbers
Al ’ A2
Sn/(z_l) < Aga/b)2 ’ j > Agb/ayn )

If n < (2%a/b)*, then we let G be any 2-dimensional subspace of E,
so that d(G, [2) < 2. This gives the following conditions on numbers
Al ’ A2

b>A7@Y | 2> A3

It is not difficult to check that one can find 4;, 4y > 1 which satisfy
all the above conditions. ]

A space with very non-unconditional structure. The main result here
is Theorem 21 which, roughly speaking, shows the existence of an m-
dimensional space G which is contained in an n-dimensional space Z
with an unconditional basis only if » is an exponent of m . Moreover
any such Z must contain /X with k an exponent of m. This solves
part of problem 11.4(b) in [Pe3].
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Recall that the gl norm of a linear operator 7: X — Y is defined
by the formula

gi(T) =sup{n(UT):U:Y -1, m(U) <1},

and that one writes gl(X) = gl(idy). Recall [GL] also that the uncon-
ditional constant of X is greater than or equal to gl(X).

THEOREM 21. There is & > 0 such that for each m > 2 there is
a Banach space G,,, dimG,, = m, with the following property. If
Z is a Banach space which contains an isometric copy of Gy, then
there is a subspace Z, of Z such that d(Z,, 1K) < 2, where k >
exp(émgl(Z)™4).

In fact, a somewhat stronger version of this theorem follows by
applying Lemma 23 to the space obtained in Lemma 22. A stronger
version of Lemma 22 appears as Theorem 7.1 in [P].

LEMMA 22. There is a constant B < oo such that for n=1,2, ...
there is a Banach space F,, dimF, = 2n, and a linear operator
v: 1] — F, such that ||ve| > |le| for e €l} and m(v*) < B.

Proof. Consider a linear isometry U': Lg” — Lg”. Write
E =U(ler, ..., en)), Erx=U(lent1,..-,e€3ml).
It is well known (see e.g. [K], [S], or [P] Cor. 7.4) that for “most
choices” of U one has

Al < DI
for f € EyUE,, where b can be taken independent of ». Let us fix
a pair E;, E, with the latter property. Put F, = L3"/E5 and let
u: E\/E5 — L{"|Es = F,
be the natural map. If E;/Es- is given the norm induced from

L3"/E5 , then E;/Ej isisometric to /# and our choice of E; yields
the estimate |e|| < b|jue|| for e € E;/E5-. Now u* can be regarded

as the composition of the embedding map ifg’zz (Ey)o0 — (E2), with
the orthogonal projection P from L3" onto E; N E,. Hence our
choice of E, yields
. E E E
m(u*) < |\Pllm(ig 5) S mg il <b.

This shows that the operator v = bu has the required properties, if
B =b2. O
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LEMMA 23. Let F be a Banach space and let v: 1} - F, 1<t<
oo. Suppose that

m(v) 2 cllv]| >0, 7 (v*) < Bv|.
Let j: F — Z be a linear operator such that ||jf|| > |f|| for f e
v(I3). If ¢ > 25Bgl(j), then Z D Z; such that d(Z,,1%) <2 and
k = dimZ; > min{572(2!/*)", 3 exp(cin/a?)}, where o and c, are
as in Corollary 19.

Proof. Observe that, since gl(j*) = gl(j), one has
Yoo (JU) = 71((jv)*) < T (v*) gl(J*) < Bel(f)v] -
Consider a C(K)-factorization of jv: [} — Z**,say jv = Ui, where
li:f = CK)ll=1, |U: C(K)—Z™|| <Begl(j)|v].
Put E = i(/}); then
1(Ulg) 2 m(Ui) > m(v) > cllv]| > 2% U]l

Since yidz_,(lc’,‘o) = yidz(lgo) , the conclusion follows from Corollary
19. u]

Proof of Theorem 21. We may assume that m > 2(2°Bgl(Z))*,
where B is the constant from Lemma 22. (If not, we just let 6 =
%(253)‘4 and G,, can be an arbitrary space of dimension m.) Let
Gy = F, and Gypyy = Fp @ !} for n > (2°B)*. Fixan m and let Z
be a Banach space and j: G, — Z an isometric embedding, so that
gl(j) <el(Z). Let v: I} — Gy be the operator obtained from that in
Lemma 22 (where m = 2n or m = 2n + 1). Observe that, for t > 1,

i (v) > n,(id,zn) > \/?

Letting ¢ = (2°Bgl(j))~%n and applying Lemma 23, one can easily
find the absolute constant J needed in Theorem 21. O

REMARK. It follows from ([P], Th. 7.1) that the spaces G, in The-
orem 21 can be chosen to have uniform cotype 2 constants.
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