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For a bounded linear operator 7 from an L, to an L, space
(1 <p,q < o0), we study its norming vectors, i.e. those, including
the zero vector, on which 7" attains its norm. The scalar field may be
the reals or the complex numbers. Our first two main results are the
characterization of the set of norming vectors for a positive 7 when
both p > 1 and either (i) p = g or (ii) p > ¢g. The descriptions
may not hold if 7 is not positive, but they do in modified forms if
|T| exists with norm ||7’||. We also prove that if p > g and one of
the two underlying measures is purely atomic, then every regular 7
is norm-attaining. Sufficient conditions for 7" (of norm 1) to be an
extreme contraction in the case p > ¢ > 1 are derived from properties
of its norming vectors. All results extend to the case of quaternion
scalars with little change of the proofs.

1. Introduction. Generic patterns of distribution of norming vec-
tors of elements of the Banach space .Z(E, F) of bounded operators
from E =L, to F = L, reflect the geometric structure of the unit ball
of Z(E, F), including its extremal aspect. (On this aspect, [10] con-
tains other results.) Our investigation reveals that these patterns are
different for different regions of (p, g), broadly delimited by p = ¢,
p =2 and g = 2, but are also affected by assumption of positivity
on the operator and sometimes the scalars used. The aforementioned
result for p = g > 1 in the abstract is of particular interest. The
characterization therein (Theorem 3.4) is analogous to those of sev-
eral operator-related subsets . of Banach or function spaces. These
include the two cases . = the range of a contractive projection (pos-
itiveif p=2)on E=L,, 0 <p < oo [1, Theorem 2], [22, Theorem
6], [3, Theorems 3.4-5], and .%¥ = the convergence set {f: T,,f — f
in norm} for a net of contractions {7,} on E=L,, 1 < p < o0,
D # 2 [2, Theorem 2.5]. In our result (Theorem 3.4) and these oth-
ers, . is a subspace of E isometrically isomorphic to another L,
space over essentially a measure subspace of the underlying one, with
a change of scale. When p > 1, Bernau [2] characterizes . also as
a subspace V of E for which f, g € V= |f|sgng € V. Scheffold
[21] extended this notion to the case E = a real Banach lattice with
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order continuous norm. Under some additional assumptions on the
norm of E (which are satisfied if E = L,, 1 < p < oo) he proved
that the following are such subspaces: (a) Ker(/ — T') for a regular
operator 7 on E for which |T| is contractive; (b) the convergence
set for a sequence of regular operators 7, on E, where each |T},| isa
contraction. More recently Hardin [5, Theorem 4.2 and Remark (ii)]
proved that an isometry on a linear subspace W of an L, space to
another, when 0 < p < oo and p # 2, 4, 6, ..., extends to one on
a subspace of the above type generated by W ; see also [19, Theorem
1.4] and [15, Proposition 1] for the complex case.

We note that for finite dimensional non-negative matrices 7,
Koskela in different formulations ([13], Lemma 1 and Theorem 2 for
p > g, and Theorems 7-8 for p = ¢) and by proofs different from ours
essentially obtained our characterizations (Theorems 3.4 and 4.1(a))
when they are restricted to # (7).

I am very grateful to the referee, whose comments greatly help im-
prove the presentation of the material in this paper.

2. Decomposition system of an operator. In this paper we only con-
sider underlying measure spaces that are direct unions of finite ones.
This does not entail any loss of generality [14, Corollary to Theorem
15.3], {10, p. 615]. An advantage in this case is that the associated
measure algebras are complete Boolean algebras, a convenience for
formulating concepts and describing properties, e.g. in Theorem 2.1.

In the sequel let 1 < p, g < oo, and let E=L,(X, %, u) and
F=L,Y,%,v) be the usual Lebesgue spaces. Norms in E, F, etc.
are all denoted by || - || as no confusion seems likely. Let 4 € 7.
Define E4 = {f € E: supp f C A4}, where supp f = {f # 0}, the
support of f. For any function f on (X, u) (or even one defined
only on (A4, u)),let f4,=f on 4, and 0 on A¢, the complement of
A. Given T € Z(E, F), we define the decomposition system for T
to be

F(M)={AeF:|TfIN|Tgl=0Vfe€E, and Vg € E,}.
When #(T) =%, T is said to be disjunctive (or Lamperti in [8]).
Define o(T) = sup{d € ¥:TE, = {0}}, s(T) = (o(T))° and
F(T)=%(T)ns(T). Define ®: (#(T), u) — (¢, v) by

®A =sup{suppTf: f €E,} (A4eF(T)).
® generalizes the natural set mapping (4 — supp 71, if uAd < o)

for a disjunctive T, by [8, Theorem 4.1]. Define Z(7*), o(T*),
s(T*), &'(T*) and ¥: (¥(T"),v) — (¥, p) similarly.
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THEOREM 2.1. Let 1 <p,q<oo and T € Z(E,F). Then

(i) F(T) is a complete Boolean sub-algebra of & including F N
o(T), and
(ii) @ is a Boolean ring homomorphism, preserves arbitrary supre-
ma and has Ker® =% no(T).
These also hold with (T*,¥Y,%) replacing (T,®,%), and
|1y Is a o-isomorphism from the measure algebra (7'(T), u) to
(Z(T), v) with inverse ¥|g 1+ .

Proof. First, some ready observations. & (T') is closed under com-
plementation and finite union. So it is a Boolean sub-algebra. @
preserves disjointness and finite direct union. So & is a Boolean ring
homomorphism.

Let @# % CF(T) and A=sup# . Let f € E4 and g € E.
There are A', 42, ... € % with suppf c |J4". Now B" = A' U
-UA" € F(T) and so |Tfz:|A|Tg| = 0. Hence |Tf|A|Tg| =
0,as |[Tfer =TS <ITI Ilfgr =Sl = 0. So 4 € F(T). Thus
F(T) is Boolean complete. The same proof shows that o(7) € {4 €
F: TE4 = {0}}. (Take the latter as .# and note that T fz = 0.)
Thus % No(T) Cc #(T). This proves (i) and Ker® =9 no(T). ®
preserves union. So the argument above carries through if we replace
|Tg| by any & € F?;up(w?)r. We get ®sup.# C sup®Z . Equality
follows. This ends the proof of (ii).

Now [ fT*gdu= [Tf -gdv(feE, geF). Soforall Ces
and De¥%, TEc CcFp & T*F’Dc C E’C Let B € £(T*). The latter
inclusion holds for (C, D) = (¥B)¢, B¢) or (¥B, B). Thus so does
the former. It follows that

¥YBeF(T) and ®¥YB=BndX.

Like ®, ¥ is a Boolean ring homomorphism. So dually for all 4 €
F(T) we have

P4cZ(T*) and POA=ANPY.

From these two results it follows that (WY )¢ € Ker®, (®X)° €
Ker¥,

Range¥ =7 (T)NYY, Range®=Z(T")NndX,

and @ is a bijection from the former range onto the latter, with inverse
Y. Hence o(T) = (YY)¢ and o(T™*) = (®X)°. The rest follows.

For A€% and Be % ,define Ty € L (E,F) by Tp,yf =(Tf4)B
(fe€E).
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THEOREM 2.2. Let 1 <p<g<oo and O#T € Z(E,F). Then
(F(T), u) is purely atomic and

1T\ = sup{|| Ty 4ll: 4 is an atom of F'(T)}.

Proof. Assume that #'(T) has a diffuse part D # &. Fix 0 #
f€Ep with Tf #0. Then D D> A% = the &'(T)-measurable cover
of supp f. Now ||[Tf4||9 and | f4]|P are additive on 4 € F'(T).
Soif @ # A e F'(T)n A° is partitioned into non-null B, C €
F'(T), then p(d4) = [T/ f4l? < max{p(B), p(C)}. Hence
there exist A', 4%, ... € F/(T) with A" C A", ||f P = || fo]17/2
and p(4"*') > p(4") (n 2 0). So ||T||¢ > (ITfll/IferlD? =
p(AMY /|| f41197P 1 00, impossible. So D = .

Let Ae #(T) and B = A°. For all f € E, we have

IT AP = (1T f£all? + I T £ 7)P/
SNTLall? + 1T SalP < Ty allPWfall? + 1 Ty lP 1 21 -
It follows that ||T'|| = max{||Tyll, |Tyzl|} . By this formula,

HTY(A‘U...UA")l = max{]lTYA1|| ) ”TYA"”}
for any atoms A!, 4%,...,4" of F(T). If f € Eyr), then
fovwar — f for some such atoms A!, 4%2,.... By these and a

continuity argument, ||7|| < stated supremum. Equality follows.

Suppose (X, F , u) is purely atomic. Then s(7T)={x € X: Tl #
0}. Call x,y €s(T) T-linked if |T1,m|A|T1 mi]#0 (1<m<n—
1) forsome x! =x, x%,...,x" =y in s(T). This is an equivalence
relation. It is easy to prove:

ProrosiTION 2.3. If (X, %, u) is purely atomic, then the equiv-
alence classes of T-linked points are precisely the atoms of F'(T),
and for each such atom A, ®A = sup{suppTl,: x € A}. If further
(Y, &, v) is purely atomic, then ®A is an equivalence class of T*-
linked points.

® induces a unique positive linear operator ®* from F(T)- to
Z-measurable functions, satisfying ®*1, = 14 (4 € F(T)) and
behaving like a composition operator [8, §4] (see also [16], p. 159 or
[4], pp. 453-454).

Let

Z(E*, F') = {positive operators in .Z(E, F)}
={T e ZE, F): TE" CcF}.
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For a scalar a # 0, let sgna = a/|a|; let sgn0 = 0. This defines the
signum of a.

LEMMA 24. Let 1<p,g<oo, TeZE",F*) and f€E.

(a) If 0 is F(T)-measurable and 0f € E, then T(6f) = ®*0-Tf.

(0) If £ >0, then TEgyy  C Fopprs-

If f>20,suppfesF(T), BeFnsupp f and TfpAT fz- =0,
then Be ¥ (T).

(d) If suppf € F(T) and |Tf| = T|f|, then sgnf is F(T)-
measurable.

Proof. (a) This is easy for 6 simple. The general case follows.
(b) T preserves monotone limits. So g € E,;, 1 implies

supp Tg C supp T'|g| = | Jsupp T(|g| A (nf)) C supp T .

(c) By (b) with f replaced by both fz and f5, we have B €
F(Ty4), where A = supp f. Since 4 € &F(T), this implies B €
F(T).

(d) We need only prove B = {Re(sgn f/s) > 0} € #(T) for any
unimodular scalar s. Let f' = f/s and g = Ref’. Then B =
suppgt. Let C = B°. As

ITfa+ T/l =T/ =ITfl=TIf|=T|f|
=T\fal + Tlfc| 2 1T 1l + T fcl,

so we have equality. Hence sgn7fp = sgnTf. on D = {|Tf3| A
ITfz| # 0} and TS| = TIfyl (Z = B,C). On suppTfy (=
supp Tg* by (b)) ReTfp = Tg* > 0. But ReTf. = -Tg~ <0.
So D=3, or T|fg| AT|f:|=0. By (c) applied to |f'|, Be F(T).

3. Norming vectors: oo > p = g > 1. The set of norming vectors of
T € Z(E, F) is defined to be

A(T) ={f €E TS =T IIA1I}-

T is norm-attaining if 4/ (T) # {0}. Let #/*(T) =4 (T)NE*. For
a scalar a # 0, let a?~! = |a|P~2a; let OP~! = 0. This is applied
on L, vectors. For a sub-o-ring % of % with largest element 4, a
function f = fy on (X, ¥, u) is #Z-measurable if f|, is.

Lemma 3.1 (from [10, Lemma 2.10]) dates back to M. Riesz [17,
§6] (see also [6, §8.14]) in the case of finite complex sequence spaces.
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LEMMA 3.1. Let 1 <p,gq< oo, Te ZE,F) and 0 # f € E.
Then f e (T) if and only if

(3.1) (T = ITI9A1e> 7,
in which case (Tf)?~' e ¥ (T*).

LEMMA 3.2. Suppose 1 < p,q < oo, O# T € Z(E*,F) and
0#£ fenN(T). Then |fl e #¥H(T). When p > 1, sgn f is F'(T)-
measurable and supp f € F'(T). Further, supp f is (1) s(T) if p > q
or (i) an atom of F'(T) if 1<p<gq.

Proof. We have |T f| < T|f]. So equality holds and |f| € #*(T).
Let p > 1. The assertion on sgn f follows from Lemma 2.4(d) and
A=suppf € F'(T). To prove A € ¥'(T), we may assume f >0
(or replace f by |f|). Clearly A C s(T). Let g € E* with gAf=0.
When 1 <p <gq, (Tg, (T4 1) =0 by (3.1). So TgATf =0.
By Lemma 2.4(b), A € #'(T). Assume further, as we may, that
1Al =17l =1=|Tf| = |lgll. When p > g, with ¢ = ||Tg|4/?~9)
and r=pq/(p —q) we have ## = ||Tg|" = |¢tTg||. So

1T+l 2 (TSN + 1T g9 = (1 + | Tgl") /" (1 + )7

and | f+tg|| = (1+)/?, Hence ||T||" > 1+|Tg|". Thus Tg =0.
So A =s(T). This gives result (i) and ends the proof that 4 € ¥'(T)
if p>1.

When 1 <p <gq,let A be decomposed into B, C € #'(T). Then

1T AP = (1T f6l|? + ||chl|q)p/q

Thus equalities hold. Hence f3, fc € #(T) and as p/q < 1, one of
Tfp and T fc, and so one of fz and f-, is 0. This proves result
(ii).

Lemma 3.3(b) is a crucial step towards proving Theorem 3.4. It

is based on the condition of equality for an integral inequality [9, p.
324].

LEMMA 3.3. Let co > p=¢q > 1, O # T € Z(E*,F") and
0#fenst(T). Then:

(a) 6f € #(T) for all ¥F(T)-measurable functions 0 such that
0f €E.
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(b) If g € /" (T)NEgypp s, then (&/f)supp r is F'(T)-measurable.

Proof. (a) The norms in E and F being p-additive this holds for
simple whence general 6.
(b) We may assume ||T|| =||g|| = 1. For any scalar >0,

(32) / (Tg — (T (TP dv < / T(g—tf)* (TfyP~'dv
- / (g~ /) 7\ du

by Lemma 3.1. Integrate both ends of (3.2) with respect to #?~2dt
over (0, oo) and interchange the order of integration. We get c||Tg||?
<c=1/(p-1)—-1/p. As g € #(T), equality holds here, whence
also in (3.2) for all ¢ > 0, as the integrals shown are continuous in ¢.
Furtheras Tg—tTf=T(g—tf)*—T(g—tf)", where all the terms
have supports C supp 7 f (Lemma 2.4(b)), this implies

(3.3) T(g—-tH)*AT(g—-tf)"=0 (t>0).
For those ¢t >0 with {0< g=1tf} =, supp|g —tf] =suppf €

F'(T) by Lemma 3.2. So by (3.3) and Lemma 2.4(c) applied to
g —tf1,

{(g/f)suppf>t}=5upp( -tf)*eF(T).

As such scalars ¢ > 0 are co-countable and so dense in (0, o), the
conclusion follows.

THEOREM 3.4. Let co>p=¢q>1 andlet O#T € L(E*, F*) be
norm-attaining. Then when u is o-finite there exists 0 # f € #/(T)
with supp f € F'(T) such that /' (T) is given by the closed linear
subspace

{6f €K: 0 is F'(T)Nsupp f-measurable} ,

and in the general case /' (T) is a direct l,-sum of such subspaces. In
any case ' (T) is a closed linear subspace isometrically isomorphic to
an L, space and is also a Banach sub-lattice of E.

Proof. Let u be o-finite. Let 4 = sup{suppg: g € #(T)}. For
some fi, fr,... € #/(T), Usuppfn = A. Let A! = supp f; and
A" = supp fu\(4' U---u A" 1) (n > 2). Let g = |fulsr (n 2
1) and choose scalars a;, ap,... > 0 with > aj||gn||? < co. By
Lemmas 3.2, 3.3(a) and Theorem 2.1(i), A" and 4 = |JA" are in
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F'(T),and g, and f=> a,g, arein #/*(T). Forany h € #(T),
we have supph C suppf = A. So 0, = sgnh and 6, = (|h|/f)4
are ¥'(T)-measurable, by Lemmas 3.2 and 3.3(b), and 4 = 6,0,f.
This and Lemma 3.3(a) prove the first case. In general by the same
principles and transfinite induction, we can find a maximal family
of elements of /" *(T)\{0} with disjoint supports € F'(T). The
general description follows. The last statement is an easy consequence.
(The displayed subspace in the theorem is isometrically isomorphic to

Ly(supp f, F'(T)Nsupp f, fPdu).)

Let oo > p > 1 and let P be a norm-one projection (positive if
p =2)on E. Ker(I—P) has a structure [1, 3] similar to that of /' (T)
given in Theorem 3.4, with &'(T) replaced by a differently defined
sub-og-ring A of F ; S consists of supports of functions invariant
under P. The following implies that for positive operators, Theo-
rem 3.4 generalizes this. See also Theorem 5.1(a); note that |P| has
norm 1.

ProrosiTION 3.5. #(P) = Ker(I - P) and ¥'(P) = F'(P*), which
as a complete Boolean sub-ring is generated by % .

Proof. If f € #(P), then applying Lemma 3.1 with 7 = P to
f andto Pf,weget f=Pf. So #(P) C Ker(I — P). Equality
follows. The rest follows from properties of conditional expectation
operators and from P being, essentially, unitarily equivalent with one
of them through a multiplication operator [1, 3], in our setting with
the underlying measure space being a direct sum of finite ones.

4. Norming vectors: co>p >qg>1.

THEOREM 4.1. Let co>p>qg>1.
(a) Let O # T € Z(E*, F*) attain its norm. Foran f € 4 *(T)
with support s(T),

(4.1) A/ (T)={cOf €E:c>0isascalar, 8 is #'(T)-measurable
and |0| = 1s(T-)}'

(b) Conversely when (X, ,u) = (Y,%,v), given 0 # f € E*
and a sub-a-ring # with largest element supp f, there exists T €
Z(E*, F*) of norm 1 such that ¥'(T) = F'(T*) = # and (4.1)
holds.
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Proof. (a) By Lemma 3.2, there is an f € .#*(T) with support
s(T). Further, if 0 # h € #(T), then g = |h| € #*(T) and 0 =
sgn # has support s(7T) and is &'(T)-measurable. We show that g =
cf for a scalar ¢ > 0, and thus # = fg is in the prescribed set. We
may assume ||T|| = |fl|=1=|Tf].

Case (1) g = 1. We have
1+ gll=1+Tgll=ITf+Tgll<Ilf+gll<1+]egll,
whence ||/ + gl = (/]| + gl andso g =gl f.

Case (2) q > 1. Proceed as in the proof of Lemma 3.3(b), sub-
stituting g for p in the operands (7f)?~! and *~2dt. We get
ITgll? < [g9fP~9du < ||g||? (Holder’s inequality for p/g). So
equalities hold. Hence g = || g||f.

Conversely by Lemma 2.4(a), the prescribed set is included in
H(T).

(b) By Proposition 3.5 and [1, Theorem 4], there is a positive norm-
one projection P on E such that ¥'(P) =9'(P*) =% and

A (P)=Ker(I — P)={{f € E: ¢ is F-measurable}.
Define Tg = (f/||f|))?/"!Pg (g € E). The rest follows; cf. part (a),
Case (2).

An n-dimensional /, space (on counting measure) is denoted by
Ip(n).

THEOREM 4.2. Let O# T € Z(E*, F*). Then #*(T) is a closed
convex coneif oo>p>qg>1. It may notbesoif 1 <p <gq < oo,
even when F'(T)\{<J} is a singleton.

Proof. If p > 1 and p > g the first result follows from Theo-
rems 3.4 and 4.1(a), and if p = ¢ =1, from #/H(T) = E?T‘1=IITH}'
Let p < q. Define T: [p(n) — li(n) (n > 2) by: Tly = Ly +

cly,, ¢ = constant. (Cf. [13, Example 3].) Let f = (1,...,1) €
Ip(n). Then |Tf|/IIf|l = |n =1+ c|/n'/P~1/4 = a(c) and |T|| 2
IT(1,0,...,0) = (n -1+ |99 = B(c). Choose ¢ >

(n = 1)/(nt/P=1/4 — 1), Then a(c) < ¢ < B(c). So f ¢ #(T).
By symmetry of 7', permuting the coordinates of a vector # 0 in
W *(T) gives like ones. Via summing up these permutants, we infer
that f € conv./*(T), and #*(T) is not convex.
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Let T € Z(E, F) be disjunctive. Similar to [8, Theorems 4.1-4.2],
for an # -measurable function D(7) > 0 with support s(7) and a
Z-measurable £,

(4.2) Tg=hd*g and
ITgle = [ 1heetigltdy = [ DT)lgl?du (g €B).

THEOREM 4.3. Let O # T € Z(E, F) be disjunctive. Then when
oo >p>q 21, T is norm-attaining and formula (4.1) holds with
f =D and D(T)!/#-9 € E, for which supp f = s(T). When 1 <
p <qg<oo, T may not attain its norm.

Proof. The result for p > q follows from the second formula in
(4.2) by Holder’s inequality for p/q. For p < g take eg. T =
diag(1/2,2/3,...): I, — I, and use Theorem 2.2 and Lemma 3.2(ii)
(verify the sub-case p = g directly).

5. Norming vectors of regular operators. An operator 7 € .Z(E, F)
is regular if it has a linear modulus |T| [10, §4], [20, Chapter 4]. It is
hyper-regular if |T| exists with norm ||T|.

THEOREM 5.1. Let co > p,g > 1 andlet O # T € Z(E, F) be
hyper-regular and norm-attaining. Let 0 # f € #(T). Then |f| €
N H(T)) and

(5.1) Tg=¢|T|(Lg) Vegeky,

where A=supp f, { =sgnf and & =sgnT f. Furthermore:

(a) When p = q > 1, there exists a family, reducible to a singleton
if u is o-finite, {fo} C A4 (T)\{0} with mutually disjoint supp f, €
F'(T) such that

N (T)=> {6/, €E: 0 is F'(T) N supp f,-measurable}
(p)

(direct ly-sum) and is itself a closed linear subspace of E isometrically
isomorphic to an L, space. Moreover, relation (5.1) holds for signum
Sfunctions { and & with supports A = sup{suppf: f € #/(T)} €
F'(T) and ®A respectively.

(b) When p > q, formula (4.1) holds for an f € ¥ (T) with support
s(T).

Proof. As |Tf| < |T||f|, we have equality. So |f| € #*(|T))
and by Lemma 2.4(b), Tyy = Tp4. Let S =¢ET o{. Then |S| =
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€T o |ll = 1T]pa = |T|ya- So

SUT=ITA =IT|If1=IS|IA1.
As |S| > (ReS)*, this gives —(ReS)~|f] = [|S]| — (ReS)*]|f] = 0.
By Lemma 2.4(b), (ReS)™ = 0 |S] — (ReS)*. So |S| =S. This
means (5.1).

We have F/(|T|) = #'(T). When p > ¢, for the above f,
supp | f| = s(|T|) = s(T) (Lemma 3.2(i)). By relation (5.1) and The-
orem 4.1(a), result (b) follows. For (a), obtain a maximal family of
Jo € #(T)\{0} with disjoint supp|f,| € F'(|T|) = F'(T) (Lemma
3.2 and above). The description of .#(T') then follows from (5.1),
Theorem 3.4 and p-additivity of the norms. Finally (5.1) holds with
(=) sgnf,, E=> sgnTf, and 4 = sup{supp f,}.

REMARK 5.2. (i) For non-norm-attaining hyper-regular 7°, (5.1)
may not hold for any signum functions &, { # 0 with supp{ =4 €
F'(T). For 1<p<qg<o,take T:[l, — I, defined on each f €,
by:

Tf(0)=f(0)- f(1)+ f(2),
Tfn)=fn)+f(n+1)+f(n+2) (n=1).
Formally |T| = I + S + S? where S = unit shift operator; each
summand is bounded (use Theorem 2.2 if p < g). The assertion can
then be easily verified.

(ii) All results on T (not involving 7*) valid for p > ¢ > 1, e.g.
Theorem 5.1(ii), extend to the case p > 1 > g > 0. The proofs adapt
themselves readily. Thus, for Lemma 3.2(i), just replace g in the
computations by 1. For Theorem 4.1(a), replace the “=" sign by “<”
in the displayed relations in Case (1).

When p =1 < g, each T € Z(E, F) is hyper-regular [10, Re-
mark 4.3(i)]. For p = 1 = g, Theorem 5.1 and the fact #*(|T|) =
E{m.l:”T“} amply describe /(7).

THEOREM 5.3. Let p=1<g<oo andlet O # T € Z(E, F) be
norm-attaining. If 0 # f € #(T) and A = supp f, then

Tg=(g,sen/Y)Tf/IfIl Vg§€Ey, and
A (T)NEy ={ch.sgn f: c is a scalar and h ¢ E'} .

Proof. We may assume ||T|| = ||f]| = 1. Let A be decomposed
into B, C € ¥ . Then

ITA < NT /Bl +1TAl < /Bl + /el =1.
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Thus we have equalities. So fp € #(T) and as F is strictly convex,

Tfp = TfBITf=I/fslTf=(fs,sen )TS.

By a routine process, we get the equation for 7 on E4. The rest
follows.

Using [18, Theorem A2}, Johnson and Wolfe [7, Proposition 4.2]
showed that every T € Z(E, F) is norm-attaining if and only if p > ¢
and either (i) p > 2 and u is (purely) atomic or (ii) ¢ < 2 and v
is atomic. We extend this below (we could even take p > 1 > ¢ for
the implications). In a similar attempt, for co > p > ¢ > 1 and
T € Z(lf, ) Koskela [12, Theorem 1] indicated that there is an
f €l with support s(T) satisfying relation (3.1) with the “=" sign
replaced by “ <™. A sharper result follows from Theorem 5.4, Lemmas
3.1 and 3.2(i).

THEOREM 5.4. Let O # T € Z(E, F) be regular. Consider the
Statements:

(a) u or v is purely atomic;

(b) T is compact,

(c) #(T) #{0}.
If co>p>qg2>1, then (a)=(b)=(c). If 1 <p < g < oo, then (c)
may be false even if T is positive, u and v are purely atomic, and
F'(T)\{} is a singleton.

Proof. Let p > q. Assume (a) u (resp. v) (purely) atomic. For
some increasing sequence of finite subsets 4" € X (resp. C" C
Y), ITyq = Tl = | Ty(aryll £ T ly(aryell = O (resp. |Teny = T =
1Ticry x|l < 1T lcryexll — 0), from which (b) follows as each Ty
(resp. Tny) is of finite rank. When u is atomic, the claim on S = |T|
follows if we choose A" with ||Sy || — ||S]|. Here we have used this
fact: for any 4 € ¥ and B = A°, with r =pq/(p - q),

(5.2) ISI™ 2 [1Syall” + ISy sll".

To get (5.2), observe that for all unit vectors f € EY and g € E},
ISII” > ISfII" + ||Sg||” . This was shown in the proof of Lemma 3.2(i)
when S f # 0; else it is trivial. When v is atomic, we choose C” such
that ||Scoy|| — ||S]| and use the dualized analog of (5.2): if C € &
and D = C¢, then with r =pgq/(p — q),

ISII” = IScxll” + iSpx |l
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This follows from (5.2) by considering S* when ¢ > 1. When g =1,
IScx|l = ||IS*1¢|l, which is r-super-additive on C € &. (Or: extend
(5.2) to p =00, with r = g. Then use dualization.)

Assume (b). For some unit vectors f, € E (n > 1), [T/l —|IT|.
As E is reflexive, a subsequence f,, (weakly) — f € E with | f]| <1
and Tf, — Tf innorm. Hence ||Tf|| = ||T|| and so ||f]| = 1. This
gives (c).

When 1<p<gq, T:1l, — 1, defined by Tf(n)= f(n)+ f(n+1),
n=0,1,... (f €lp), is bounded; cf. Remark 5.2(i). As ||Tf| <
1700, f(0), f(1), .. I < ITI- I/ if £(O) # 0, #(T) = {0} by
Lemma 3.2. When 1 =p <gq, T:1l; — l;(1) givenby Tf = f(0)/2+
2f(1)/3+3f(2)/4+--- (f€l;) hasnorm 1 and #(T) = {0}.

6. Norming vectors and extreme contractions. Theorem 6.1 extends
Lemma 3.2. We could allow for 0 < p, ¢ < oo and quaternion scalars;
the extended proofs involve modification of inequalities (6.1). (To
extend (b) and (c) for ¢ < 1, we replace the integral term in (6.1) by
one (< 0) of order o(t?). To extend (a) for ¢ < 1 and scalar field
not the reals, utilize average{H(h({): |{| = 1} instead of H(h) and
obtain lower bounds 0 (]#| > 1) and K|h|*> (Jh|< 1), K >0. We
leave details to the interested reader. For parts (b) and (c), note that

/B (Tf+1Tgl" +|Tf - (Tl — 2T S dv
> /B (TS + 1T +||Tf| - |Tg||? = 2T f|%} dv

> -/ |Tf|qdu——/ wvedv = o(t9).
(B'YNB B'

Here B' = {t|Tg| < |Tf|} and y; =|T f|9—(|T f|—t|T g|)?. Observe
that 15y,/t9 converges a.e. to 0 as t — 0+ and is majorized by
|Tg|? since a?/t? —(a/t—b)? increases with ¢t € (0, a/b) for a, b >
0,to b7 at a/b.)

THEOREM 6.1. Suppose 1 < p,g< o0, O# T € Z(E,F) and
0# fen(T). Let A=suppf and B=suppTf. Then:

(@ifp>2,Tge=0,

®)if p>q, Ty =0,

(©)ifg<2orp=1, Tgpe,y,=0,
except that the sub-case (a;) p > 2 and q = 1 of (a) may fail if the
scalar field is the reals. Furthermore the indicated ranges of (p, q) are
in general optimal (broadest possible).
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Proof. Let H(h) = |1+ h|?+|1—h|?—2 (h = scalar). When ¢q > 2,
simple calculus gives H(h) > H(ilh|) = 2(1 + |h|?)9/%2 = 2 > q|h|?,
via the mean value theorem. When 2 > q > 1, H(h) > H(|h]).
Hence H(h) > H(1)=29-2>0 (|| >1) and H(h) > q(q — 1)|h|?
(|h| < 1), via Taylor’s formula.

We may assume ||T|| = ||f]| =1 =||Tf||. Consider any g € E 4.
Let ¢ > 0. Apply the inequalities for H(h) to h =tTg/Tf on B,
multiply by |7 f|9 and integrate the result. Then add 2#9||15-7Tg|9 .
We get

(6.1) 2041y Tl + K2 [ T4 Tef av
B!

<|ITf+tTg|"+|Tf—-1tTg||"-2
<If+eglld+f —2gll? -2

=2(1+ 2| g|?)?/? -2

=0(t*) ast—0+.

Here (K, BY) is (g, B) (¢>2) or (g(¢—1), {{|Tg|<|Tf]}) (1<
g<2). Hence 1530T7g =0 when p>gq and 137g =0 when p > 2,
g > 1. This proves (b) and for g > 1, (a).

Let g = 1. Let { be any complex scalar with |{| = 1 and s any
real number. Let D(s, {) = H(s{). Then D(0,{) = Ds(0,¢{) =0
and for O0<s<1,

Dgs(s, &) = (J1 +s¢73 + |1 — s¢[73)Im {2
>2(1 +5%)7¥2Im¢)?
> |Im¢J?/V2.

Hence for |h| < 1, H(h) > 273/2|]Imh|?, by Taylor’s formula. With
this new estimate the method above gives (6.1), now with K =273/2 B!
unchanged and T'g in the integrand replaced by Im(7Tg -sgnTf).
Hence the last is 0 when p > 2. We may replace g by ig. So
13T g =0. This proves (a;) for complex scalars.

To prove (c), take g = fc, with any @ # C € F N A, instead.
Then the inequalities (6.1) hold with the last two lines replaced by

= S U+ felP(1+ 2zt ~ 1) ~2=0(2) (£ 0+).
z=%1
So 1pTfec=0if 2>g>1. Hence T3, =0. If p=1<gq, then
T is hyper-regular [10, Remark 4.3(i)]. So the same result follows
from equation (5.1).
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Now the optimality. For (b), T = diag(1l, 1): [,(2) — [4(2) is a
nonexample if p < g (use Lemma 3.2(ii) if p < ¢g). Optimality for (c)
follows from that for (a), by Lemma 3.1. For (a), let T: [,(2) — [,(2)
be defined by T(x,y)=(x+ty,x—ty),with t >0. Let p<2<gq.
With r = |y| we have

1T, DI, DI S LA+ )7+ 1= 2r9]9 /(14 rP) P < 218

for some ¢ € (0, 1]. For the last inequality notice that the middle
expression is strictly increasing, to oo, in ¢t > 0 for each r > 0. So
it equals 2!/9 for a unique ¢ = s(r) > 0 for each r > 0 and the said
inequality holds for ¢ = infs(r). We have 0 <t <1 as s(o0) =1,
0 <s(0+) (=00 if p<2or 1/y/g—1 if p = 2) and s(r) is
continuous (implicit function theorem). When p,qg <2, let t = 1.
Then

I7CL I, P 2Y90+ )2/ (1 + yP) P < 214

In either case, ||T| = 2!/, (1,0) € #(T) but suppT(0,1) =
supp7(1, 0). So the range p > 2 is optimal in (a). Let now the
scalars be the reals and assume (a;). Take t = 1. Then ||T(x, y)| =
2max{|x|, |y|}. The conclusions as before follow. So the result (a)
may fail in the sub-case (a;) for real scalars.

In the proof below the analysis is similar to the case co > p =g > 2
given in [11, §2].

LEMMA 6.2. Suppose 2 < g<p<oo, 0<a,b< 1, and o +
b? = 1. There is a unique t = t(a) in (0, 1) such that the operator
7: [,(2) — 1,(2) defined by t(x, y) = (a’P~'x+bP"ly, t(bx —ay)) has
norm 1 and also has two distinct directions of isometry, one of which
is (a, b). Moreover, t(a) is continuous in a.

Proof. For r > 0 and [{| = 1, define f(r, () = (b7~ !, —a?~1) +
r{(a, b). Then for a given positive ¢, ||7f(r, )|l = ||(r{, |4 =
r? +t?. Since ||(a, b)|| =1 = |z(a, b)||, we have |7|| =1 provided
A=|f(r, 0|9 —-r? > t?. Equality must hold for some (r, {) in
order that 7 be isometric in another direction. The problem therefore
is equivalent to proving that min{A: r > 0, [{| = 1} exists, lies in
(0, 1) and is continuous in a; #(a) thenis (minA)!/9 and is unique.

When g =2, let ¢t = (ab)?/>~!. Then

r=<z 'B)diag(ap/z‘l,bp/z‘l),
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where a = a?/2 and B = b?/2. The first factor is an »(2) isometry.
The second, by Theorem 4.3, is a norm-one operator from /,(2) to
[,(2) isometric on (a, 8b) (|| = 1). So, directly, we get this ¢ as
the one required.

Let ¢ > 2. If wewrite c=a”, d =b”, u=abr and z = Re(,
then

A=Au, z)
= {(u® +2zud + d*P1?|d + (u* — 2zuc + c})P/2|c}PI9 — w1 (ab)? .
Assume a > b. Simple calculus shows that for a fixed u > uy =
(¢c—d)/2, A is minimized at z = ug/u to
A(u, uo/u) = [(4 + cd)?* — u]/(ab)?,

which for these u, is in turn minimized at ¥ = uy to A(up, 1). On the
other hand for 0 < u < up, A is a decreasing functionon z € [-1, 1]
while A(0, z) =A(0, 1). These imply that A has a minimum, which
is attained on the compact subset [0, ug] x {1}. Now if 0 < u < up,
then A,(u, 1) = qui~1U(u), where

(d/u+1P"1/d - (c/u—1)P"1/c
{(d/u+1)p/d + (c/u—1)2/c}i=alp
U is an increasing function (the numerator in the fraction is increas-
ing and the denominator, decreasing), changing from —oo at 0+ to
[(c—d)"¥= —1]/(ab)? > 0

at ug. It follows that A attains a strict minimum at (w, 1), with w
uniquely defined by 0 < w < ¥y and U(w) = 0. From this, if we
write W = (d + w)?/d + (c —w)?/c, we get
minA = WP —w - w9~ /(ab)?
={(d+w)P !+ (c-w)p }/w-ar > 0.
Also, the last equation implies that W > the last numerator. Hence
minA < {(d + w)?~! + (c —w)?~1}9/P
<{(d+w)+(c—-w)}?=1.

By symmetry, similar results hold when @ < b. When a = b,
the argument gets simplified (change u; to 0) and we have minA =
A0, 1) = 2-(1=2/P)4 € (0, 1). The continuity of minA is now an easy
consequence of all these. (Use implicit function theoremon U(w) =0
when ¢ > d to obtain continuity of w in a, etc.)

U(u) = —(ab)™1.
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THEOREM 6.3. Suppose oo >p >qg > 1. Let T € Z(E, F) be of
norm 1.

(a) When p > 2, if the norm closed linear span of 4 (T) is E,
for some O # A€ F, then T is an extreme point of the unit ball of
ZE,F) and A=s(T).

(b) Suppose that T is disjunctive. When p > 2, it is extreme.
When p < 2, it is extreme if and only if either s(T) = X or T* is
also disjunctive.

Proof. (a) Let R € Z(E,F) with |[T+ R|| < 1. As F is strictly
convex, R = O on /#/(T), whence on E,. By Theorem 6.1(a) (b),
Tyy =Ry =0.S0 A=5(T), R=0 and T is extreme.

(b) By Theorem 4.3, span./(T) = Eqr). So T isextremeif p > 2,
by (a), or if s(T) = X, by the argument in (a). Let p < 2. If T* is
disjunctive, then 7*, and so T, is extreme by the case p > 2.

Assume s(7) # X and T™ not disjunctive. There is B € £ N
Os(T)\®F (Theorem 2.1). Let P4, 4 € ¥ Nns(T), be its OF -
measurable cover. We may assume the like cover of B’ = ®4\B to
be also ®A (else intersect B with this cover to get a new B). With
notation as in formulas (4.2), n = D(Ty4) = D(T)4. There are
disjunctive U, V € Z(E, F) such that D(U) = D(V) =n, Tgy =
Uo& and Ty, =V o for & -measurable functions &, { > 0 with
support 4. By (4.2), &9+ {7 = 14,. By Lemma 6.2 and taking
dual there is #(a) € (0, 1) continuous on a € (0, 1) such that with
b = (1-a%)'/ the operator (x,y)~ (a, b)x + t(a)(b?™', —ai~l)y
from [,(2) to /;(2) has norm 1. Take unit vectors u € EQ(T) and
g€E,. Define Wf=(f,u)g (f€E). Then ||W| =1 and

O#R=(Uot&)T — Votf)E™"yo W e Z(E, F).
Let A =s(T)\4. If f€E, then
ITf+Rf|4 = / (EF £ (@)L W 119+ |0 f F 1) W f9)n du
TSy
< / (ISP + WA /Py d + || T £ |
= T fal? + W £P)2 Y+ | T fg 4
— T4l + (W SP)V2 + £41)9
< (L4l + 10 foy P + £ )97
<A1

Hence ||T £ R|| < 1. So T is not extreme.
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REMARK 6.4. (i) Let p=¢g>1 or p>qg>1.If T is not hyper-
regular Theorem 5.1(a) (b) may fail. Even when &'(T) = {J, s(T)},
A(T) may not be linear if (p,q) # (2,2),andif p=¢g =2 itis
linear, being Ker(T*T—| T||*I) (use Hilbert space adjoint) by Lemma
3.1, but may not be as given in Theorem 5.1(a) with &'(T) replaced
by any sub-og-ring of ¥ . Take T in the proof of Theorem 4.2. Use
its notation, with » > 3 and ¢ < 0 close enough to —(n — 1) so that
a(c) < B(c). So (1,...,1) ¢ #(T). Take 0 # g € #(T). If no
coordinate of g is 0, interchange any two with unequal values. Else
swap a zero with a non-zero one. We get g’ € #(7T) not a scalar
multiple of g. & =span{g, g'} contains a vector # 0 with a zero
coordinate. So does 7.%°, as KerT = {0}. So .#(T) is not linear
if p>2 and g > 1, by Theorem 6.1, part (a), or if ¢ < 2, by
its part (c). This proves the claim for (p, q) # (2, 2). Finally the
orthoprojector P from /5(3) onto % = span{(1,1,1),(1,0, -1)}
has a 2-dimensional .#’(P) = % not containing any coordinate vector.
Our claim for p = g = 2 follows.

(ii) Consider complex scalars and 7': [4(2) — [l4(3) defined by
T(x,y) = (1,1, x + (ei*/3,e~7/3 _1)y. (This example origi-
nates from a perturbation of [10, Example 7.1], up to a scalar factor.)
For r >0 and { with |{| = 1, routinely we get

N, rOI* = IT(1, rO)|* = 6(1 = r?)2.
Thus 7 is not a scalar multiple of an isometry, #'(T)\{<J} is a
singleton which is finite, but 7 has infinitely many norming
directions: (1, ). These remain true for quaternion scalars (add
6r2[(Re {j)? + (Rek)?] to the R.H.S. of the equation). Such a phe-
nomenon does not seem to occur in real spaces.

Note. In the case of o-finite measures, Theorems 3.4 and 4.1(a) were
presented (in “Norm-attaining vectors of operators on L, spaces”)
at the International Mathematical Conference [23] held at National
University of Singapore, Singapore, June 1-13, 1981. Some of the
results, among other things, are contained in the author’s unpublished
manuscripts On norming vectors and norm structures of linear opera-
tors between L, spaces, I, II, Nat. Univ. of Singapore Mathematics
Research Report nos. 151, 171 (1984).
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