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The relation v defined on the lattice .%(.#) of varieties of in-
verse semigroups by Z v 7 ifandonlyif Z N% = 7 NE and
HNVE =7 vZ, where & is the variety of groups, is a congru-
ence. It is known that varieties belonging to the first three layers
of £ () (those varieties belonging to the lattice .Z(%2%) of vari-
eties of strict inverse semigroups) possess trivial v-classes and that
there exist non-trivial v-classes in the next layer of Z(.#). We
show that there are infinitely many v-classes in the fourth layer of
Z(F), and also higher up in .Z’(_7), that in fact contain an infinite
descending chain of varieties. To find these chains we first construct
a collection of semigroups in #', the variety generated by the five el-
ement combinatorial Brandt semigroup with an identity adjoined. By
considering wreath products of abelian groups and these semigroups
from ', we obtain an infinite descending chain in the v-class of
% v . B, for every non-trivial abelian group variety % .

1. Introduction. In [K1] Kleiman demonstrated that the relation v
defined on the lattice £ (.#) of varieties of inverse semigroups by
#v7 ifandonlyif # N¥ =2 N% and ¥ V¥ = 7 V%, where
Z 1is the variety of groups, is a congruence. He further showed that
the lattice .Z (%) of varieties of strict inverse semigroups is isomor-
phic to three copies of the lattice .#(Z) of varieties of groups and
that each of the intervals [, ¥V Z] and [#, % V Z], where ¥
is the variety of semilattices and % is the variety generated by the
five element combinatorial Brandt semigroup, is isomorphic to (%)
(and so, as a result, (%) is a modular lattice). Consequently, for
any variety 7 in (%), the v-class of 7 is trivial. Z(%27) is
sometimes referred to colloquially as the first three layers of the lattice
Z (). The “fourth” layer, [Z!, B! Vv Z], where &' is the variety
generated by the five element combinatorial Brandt semigroup with an
identity adjointed, is not nearly as nice. While it is a modular lattice
(the collection of congruences on an inverse semigroup which have the
same trace forms a complete modular sublattice of the lattice of con-
gruences on that semigroup), the v-classes of its members are not all
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trivial and, as a result, .#(#' V%) is not modular, and hence #(.¥)
is not modular (Reilly [R2] provides an example which demonstrates
this). In this note we show that the v-class of #!v.&7 , for any abelian
group variety .« , contains an infinite chain of varieties and so is far
from being trivial. The technique used is interesting in that we are
only required to know the structure of the Z-classes (as reflected by
their Schiitzenberger graphs) of a given collection of words with re-
spect to #! (and not the entire % !-free object on countably infinite
X)) in order to construct inverse semigroups which are then shown
to generate distinct varieties. We remark that the variety %! has
proved to be rather enigmatic. Even though it is generated by a smalil
(6-element) inverse semigroup and Z(%#!) is just a 4-element chain,
its members are not easily characterized and, as Kleiman proved in
[K2], it is not defined by a finite set of identities.

Section 2 is devoted to preliminary material. In §3 we construct a
collection of inverse semigroups each of which belongs to the variety
%' but not & . From these semigroups we construct in §4 a collection
of inverse semigroups belonging to #!os,, n € w, butnot Z'v.,.
In the final section we use the semigroups of §4 to construct an infinite
chain of varieties in the interval [Z!V .« , &, 0 %!] which is the v-
class of #! V.o, (by a theorem due to Reilly [R1]). Using this result
we can then show that a larger collection of v-classes which are also
intervals in .#(#) possess an infinite descending chain of varieties.

2. Preliminaries. We assume that the reader is familiar with the
basic notions of inverse semigroup theory for which Petrich [P] is a
standard reference. For the basic results concerning varieties we refer
the reader to [BS]. We will consistently use the following notation:

# — the variety of all inverse semigroups

& — the variety of groups

B,— the five element combinatorial Brandt semigroup

#B— the variety generated by the five element combinatorial

Brandt semigroup B,; it is defined by the identity xyx~! =

(xyx~1)?

B}— B, with an identity adjoined
B'— the variety generated by B}
& — the variety of abelian groups

o,— the variety of abelian groups of exponent n
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F%(X)— the #-free object on X in the variety
p(%)— the fully invariant congruence on F_#(X) corresponding
to the variety Z
c(w)— for any w over X U X!, the content of w which is the set
{x e X:xor x~! occurs in w}

w € E— for a word w over X U X!, the identity w = w?

Throughout this note X = {x;: i € w} is a fixed countably infinite
set.

For any congruence p on an inverse semigroup S, define the kernel
of p, ker p, and the trace of p, trp, by

ker p = {s € S: spe for some idempotent e in S}
={seS:sps*t={seS:s5p=(sp)°},
trp=pNn(Es x Eg).

Every congruence p on an inverse semigroup S is completely deter-
mined by its kernel and trace, [P; II1.1.5].

An inverse semigroup S is combinatorial if # = ¢ in §. The
variety 7~ is said to be combinatorial if all members of 7 are com-
binatorial. The variety #! is a combinatorial variety. Moreover,
P Cymax = [ = w?: w =w? isalaw in %] for all group varieties
% (see [PR]).

Let S be an inverse semigroup. A transformation p on S is a right
translation of S if, for all x,y € S, (xy)p = x(yp). Likewise, a
transformation A is a left translation if A(xy) = (Ax)y,forall x,y e
S. If, in addition, the left translation A and the right translation
p satisfy x(iy) = (xp)y, for all x,y € S, then the two are linked
and the pair (4, p) is a bitranslation. The set of all bitranslations on
S under the operation of componentwise composition is an inverse
semigroup and is called the transiational hull of S [P; V.1.4]. We
denote this semigroup by Q(S).

For any s € S, the functions A; and p; defined by A;x = sx and
xps = xs, for all x € §, are left and right translations, respectively.
In fact, (4, ps) is a bitranslation and so is a member of Q(S). The
mapping

n:s— (As, ps) (s€S)

is a monomorphism of S into Q(S) and is called the canonical ho-
momorphism of S into Q(S).
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If S is an ideal of the inverse semigroup V then V is an ideal
extension of S (by the Rees quotient semigroup V/S).
Let V be an ideal extension of S. For each v € V', define

A's=wvs and sp’ =sv (s €Ss).

Then the mapping
T(V:8): V — Q(S)

defined by
vt(V :8)= (A", pY) (veVl)

is a homomorphism of V into Q(S) which extends n. Moreover,
7(V : ) is the unique extension of 7 to a homomorphism of ¥ into
Q(S) [P; 1.9.2]. We call 7(V : S) the canonical homomorphism of V
into Q(S).

Let S and T be inverse semigroups and suppose that 7 is an
inverse subsemigroup of .#(I), the symmetric inverse semigroup on
I. Let 'S denote the set of functions (written on the right) from
subsets of I into S. For any w € S, denote the domain of ¥ by
dy . Define a multiplication on IS by

i(y-y')=(iy)-(iy") [liedyndy'].

For any g €.#(I) and v €S, we define a mapping #y by

iPy)y=(iBy [icdB, if cdyl.
The (right) wreath product of S and T is the set

SwrT ={(y, B)e€!SxT:dy =dp}
with multiplication given by

W, B)-(v', B) = (WP, BB).
If T is an inverse subsemigroup of .#(I), we will sometimes write
(T, I) for T if we wish to emphasize the set / on which T acts.
Our definition of wreath product follows that of Houghton [H]. In

[H] the wreath product W (S, T) of inverse semigroups S and T
is, in our notation, Swr (7T, T) where T is given the Wagner repre-
sentation by partial right translations. Our notation follows Petrich
[P; V.4]. It is not difficult to verify that if S and (T, I) are inverse

semigroups then Swr (7T, I) is also an inverse semigroup. In fact, if
(v, p)eSwr(T,I) then

(v, B =, gh



VARIETIES OF INVERSE SEMIGROUPS 25
where w—! €1S and f~! € T are defined by

dp~ ' =dy~ ' ={ip:icdp},
p~!is the inverse of #in T and

iy =gyt (fedph.
Equivalently, we may define y~! by
By~ =(w)Tt (jedp),

For any (y, ) belonging to Swr (T, I), we have written (v, #)~!
as (w1, B~1) even though the definition of w~! depends upon S.
This is not to suggest that if (w, B') is another member of Swr (7 ,1),
then the first coordinate of (y, )~! is the same as the first coordi-
nate of (v, f)~!. We use y~! to avoid notational difficulties and
simply note that when w~! is used, the member of (T, I) to which
it is paired will be understood.

Let  and 7 be varieties of inverse semigroups. The Mal cev
product of % and 7°, denoted by # 07", is the collection of those
inverse semigroups S for which there exists a congruence p on S
with the property that ep € Z for all e € Eg and S/p € 7. In
general, Z o7  is not a variety. For example, if 7 is any nontrivial
group variety and Z =.% then the five element combinatorial Brandt
semigroup B, is a member of (Z 0%") but B, is not a member of
% o7". However, when % is a variety of groups, #Z o7 is a variety
(see [P; XII 8.3] or [B]). Note that, if 7° and #  are varieties such
that 27 C 7 then, for any variety ¥ , # oZ CZ o#%# and Z o% C
Vo .

Mal'cev products play an important role in our efforts here, par-
ticularly in the context of the congruence v on (). If Z isa
group variety and 7” is a combinatorial variety, then Z 0% is the
maximum variety in the v-class of V%, where v is the congruence
on .Z(5) defined by Z{v%; ifand only if Z1N¥% = 2 N¥% and
NVE =2Vvg, foral 77,75 € Z(F) (see, for e.g., [P; XIL.2,
XII1.3]). By a result due to Reilly [R1], if # is a variety of groups and
7" is a combinatorial variety, then [Z V7", # o 7"] is the v-class of
7"V % . For further information on Mal'cev products we refer the
reader to [P] or [R1].

Define the binary operator Wr on the lattice of varieties of inverse
semigroups by

Wi%,7)=(Swr(T,I):Se#% and T € 7') (%, 7 € Z(F)).
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If % is a group variety and 7~ is a variety of inverse semigroups then
Wr(%,7)=%o7 (see [C]).

We find it convenient in our investigations to make use of the graph-
ical representation of inverse semigroups introduced by Stephen [S],
which he calls the Schiitzenberger representation of an inverse semi-
group with presentation. Schiitzenberger graphs are defined as follows:

Let P = (X; R) be a fixed presentation of the inverse semigroup
S with 7 the corresponding congruence on F.#(X), the free inverse
semigroup on S. Let w € § and R, the #-class of win S. The
Schiitzenberger graph of R,, with respect to P is the labelled digraph
I'(w), where

V(I'(w)) = Ry ,
ET(w)) ={(vy, x,v2): v, ERy, xeXUX!
and v;(xT) = v3}.

The Schiitzenberger representation of w (with respect to P) is the bi-
rooted labelled digraph (ww~!, I'(w), w), where ww™! is the start
vertex and w is the end or terminal vertex. The Schiitzenberger
representation of the semigroup S is the family of birooted graphs
{(ww~!, T(w), w): w € S}. Schiitzenberger graphs enjoy the fol-
lowing properties:

Let v € S, T'(v) be its Schiitzenberger graph with respect to P,
vy, V2, V3 €ERy and w € (X UX)T (see [S]).

(a) if (vy, x, v,) is an edge in I'(v) then (v,, x~!, v;) is also an
edge in I'(v);

(b) if (vy, x, v3) and (v, x, v3) are edges in I'(v) then v, = v3;
(¢)if (vy, x, v;) and (v3, x, v;) are edgesin I'(v) then v, = v3;
(d) vi(wt) = v, if and only if w labels a v; — v, walk;

(e) (wt) > v if and only if w labels an e — v walk;

(f) v1 Z v, if and only if I'(v;) is isomorphic to I'(v,);

(g) vi Z v, if and only if there exists an isomorphism from I'(v;)
to T'(v;) such that vyv;! is mapped to vyv;';

(h) v{ £ v, if and only if there exists an isomorphism from I'(v;)
to I'(vy) such that v; is mapped to v,.

We will only be considering Schiitzenberger graphs of the % !-free
inverse semigroup on (countably infinite) X with respect to the pre-
sentation P = (X; p(#!)). For further properties and a detailed
discussion of Schiitzenberger graphs we refer the reader to Stephen
[S].
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3. The variety %!. In this section we construct inverse semigroups
which belong to the variety %' which, in subsequent sections, will be
used to construct inverse semigroups in Wr(% , %#!), where % is a
variety of abelian groups. These semigroups will be used to define an
infinite collection of varieties in the interval [# v &!, Wr(% , #1)].
Throughout the remainder of this note p will denote the fully invari-
ant congruence on F._#(X) corresponding to ! .

Before we proceed, we require some notation. For any word w €
X U X-!, denote by w, the word obtained from w by deleting all
occurrences of variables not in 4. For example, (x)xx; 1x3x2x1){ x}

is the word x;xy'x; .

LeEMMA 3.1. Let w and v be words over X UX~!. Then wpv if
and only if c(w) =c(v) and forall AC c(w), A#T, wyp(F)vy.

Proof. w pv if and only if B} satisfies the equation w = v . Since
le possesses an identity, B} satisfies the equation w = v if and only
if B, satisfies w, = v, forall 4 C c(wy) = c(v,). This is equivalent
to c(w) =c(v) and forall 4 Cc(w), A# T, wyp(L)vy. m]

COROLLARY 3.2. Let w and v be words over XUX~'. Then w pv
if and only if c(w) =c(v) and for all A C c(w), A+ D, wypvy.

Proof. If wpv then by Lemma 3.1, ¢(w) = c¢(v) and for all
ACc(w), A# D, wyp(#F)v,. But then for any 4 C c(w) = ¢(v),
forall BC A, B#OJ, wgp(F)vpe and so by Lemma 3.1, wypvy.
On the other hand, if c¢(w) = ¢(v) and for all 4 C c(w), 4 # D,
wy p U4, then in particular, W = W) P Ve(w) = Ve(v) = V- O

LEMMA 3.3. If S € B! then S' e #!.

Proof. Suppose that %! satisfies the equation w = v, where c(w)

=cw)={x1,..., xy}. Let sy, ..., s, bearbitrarily chosen elements
of S! with repetitions allowed. Suppose that Si 5 ..., 8 are those
s; that are the identity of S!. Then S! satisfies wis;, ..., sn] =
v[sy, ..., s,] if S satisfies wy[s;, ..., sy] = v4[s1, ..., sn], where
A= {xi,.... % }\{x; , ..., x; }. Since S € #!, S does satisfy
Wylsy, ..., Sn]l = vy[s1, ..., sp] by Corollary 3.2 and so, as a result,
wisy, ..., Sn] =v[s1, ..., sy] istruein S!. Since the s; were chosen

arbitrarily, S! satisfies the equation w = v . Therefore, S! € Z!. O

We require some further notation for this section. Let w €
(XUX~1)*. We write w =v tomean w and v are identical words,
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letter for letter, over a common alphabet (in this case X U X~!). We
say that the word v is a cyclic shift of w if w =uu; and v = wpu,
for words u;, u, over the alphabet of w. For each n € w, we de-
note by 7, the equation x;x; - x,x; 'x; ! --x;! € E. Observe that
if w is the word xyxy - Xxpx7 x5!+ x;! then any cyclic shift of w
can be written »;yy---yuy7 vy -yl (where the y; all belong to
Oy s xns X7 X

The remainder of this section is devoted to a construction of a
family of inverse semigroups {S(7,): n € w} each of which belongs
to the variety #~!. For each n € w, S(t,) is obtained from
the #!-free inverse semigroup by first identifying the ideal consist-
ing of those elements whose Z-class does not lie above the Z-class
of xixy-+ Xxpx7'x71 - x;71p (which results in an ideal extension of
the principal factor of the Z-class of x;x;-- -x,,xl‘lxz’1 xylp,a
Brandt semigroup) and then mapping this semigroup into the trans-
lational hull of the principal factor corresponding to the Z-class of
x1X2 - xpxy ‘x5 p. In order to do this we require some knowledge
of the Z-class of x1x3 -+ Xux7 ' x5 x7lp.

LEMMA 3.4. Let w = x1Xp-xpx] ‘x5 x; ! and suppose that
v=yy2vayyvyt oyt ds a cyclic shift of w. Let ae XUX !,

(a) vp is an idempotent,

(b) (vap)Z(vp) ifand only if a=y, or a=y,.

Proof. (a) As we remarked in §2, ! is contained in #™* (be-
cause it has E-unitary covers over the variety .2 of abelian groups
of exponent two; see [PR]). Since % satisfies the equation v = v?2,
2,m3 and hence %! satisfies v = v2. Thus, vp is an idempotent.

(b) Since vp is an idempotent, if a = y; or a = y, then
(vap)Z(vp). On the other hand, suppose that (vap)#(vp). Then
vaa v~ 'pvv~! and so c¢(va) = c(v). Thus, a € c(v). But
(vap)Z(vp) also implies that vaa~'pv. If a = yl.‘1 for some i,
then (vaa=')gy = yiy; 'y 'vip(B)y?, while v,y = yiy;' H(B)Y?
and so, by Lemma 3.2, vaa~! pv. Therefore, a = y; for some i.
If 1 <i<nthen (vaa )y , ,y = vivveyy'v;'yilviy;! and
Uiy y.vy = V1Vivayy 'y vyt If b is any non-idempotent element
of B,, then substituting b for y, and y, and substituting b~! for
vi, yields that (vaa™')g, )y #(B)vg, ) 5 ) - As a consequence, ;
must be either y; or y,. a
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LeEmMMA 3.5. Let w = x1x3 -+ -xnxl“xz‘1 . '-x,,“1 and suppose that u
is a proper initial segment of w with w = uu'. Let a€ X UX1.
Then wup Z wuap if and only if a is the initial letter of ' or a1
is the terminal letter of u in the case that u is not the empty word,
and in the case that u is the empty word, a is the initial letter of '
or a~! is the terminal letter of u'.

Proof. If u is the empty word then the statement follows immedi-
ately from Lemma 3.4, so assume that u is not the empty word.

First suppose that wup Z wuap. Then wup = uv'up L v'up
since #'u is a cyclic shift of w and any cyclic shift of w is an idempo-
tent modulo p. Therefore, wup % wuap implies that u'up F v'uap
(this follows from the more general result that .%s implies that
t# ta if and only if s# sa). Since u'u is a cyclic shift of w, we
have by Lemma 3.4 that a is either the initial letter of #' or a~! is
the terminal letter of u.

For the converse, first note that if a is the initial letter of '
then ua is an initial segment of w and so, since wp is an idem-
potent, wup Z wuap. If a~! is the terminal letter of u then letting
u = u*a~'! we obtain that wua = wu*a 'a = u*a 'w'u*a~'a. Since
a~'u'u* is a cyclic shift of w, a~'w'u*p is an idempotent by Lemma
3.4(a) and as a result,

1, % —1,,1,,% * =10, ,%

la=wa YWualapuralaa W puta='vu

wua =wu*a”
= wi'u* = wu*.
It is now immediate that wup Z wu*p = wuap. O

1 I

LEMMA 3.6. Let w = X1Xp+ - XpX| X5 -~-x;1. For any word v
over XUX™', wp Zvp ifand only if v pwu for some initial segment
uof w.

Proof. Suppose that wp Zvp, say wa,---a; pv, where ay, ...,
a, € X UX~!. We prove by induction on k that wa;---arpZ wp
implies that wa;---aq; pwu for some initial segment u of w. If
k =1 then wa;p%Z wp implies by Lemma 3.4 that a; = x; or Xx,.
If a = x; then a; is an initial segment of w already. If a; = x,
then wa, pwwx, . Now

_ -1 ~1 41 —1 -1 1,—1
WWXp = X1 Xp X X (X X0 XuXy X 211X, X

1 -1

- -1 -1 -1
pxl...xnxl ...xn_l[xn xl...xnxl ...xn_l
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since [x;'x; - xax7'-o-x 1] is a cyclic shift of w and so
[x;7 %1 xpxy - x ! ]p is an idempotent.
But
Lyl

-1 -1 -1 -1 -1 17— -
xl...xnxl ...xn_‘l[xn xl...xnxl ...xn_l]zwxl...xnxl ...xn_l

and so as a consequence, U p WXy -+ XX XL

Now suppose that & > 1. wa; --aqpZwp implies that
wpZway---a,_;p and so, by the induction hypothesis, way---
ai_; pwu for some initial segment u of w =uw'. If u is the empty
word, then way - - appwa, £ wp and this is the same as the case
k = 1. Otherwise, by Lemma 3.5, wup % wua;p implies that a;
is the initial letter of u' or a;‘ is the terminal letter of u. If a
is the initial letter of «' then v pwa, - -a; pwua, and ua; is an
initial segment of w. If a,:l is the terminal letter of u then setting
u=b,---b, we obtain that v pwa; --- a;, pwua;, and

wua, = wby - - bmb;,l
= b1 s bm_l[bmu'bl tee bm_l]bmb;ll
pbi- by 1[bm'by by 1]

since [b,u'by---b,_1] is a cyclic shift of w and so must b an idem-

potent modulo p. But by by_1[bpu'by---by_1] = why -+ by

and so v pwby---by_y and by ---b,_; is an initial segment of w.
Since wp is an idempotent, the converse is immediate. O

Schiitzenberger graphs provide a concise, visual representation of
a D-class. Because of this, in the following theorem we describe the
D-classes of the words {x1xz- - xxx]'x;': n € w, n > 1} relative to
the variety #! in this way.

THEOREM 3.7. Let w = x1Xp -+ XnX{ x5 x71. The following
graph is isomorphic to the Schiitzenberger graph of w relative to &',
where vy is both the start and end vertex.

v V. V. v v v
1 2 3 4 n=2 n—1
X X2 X3 Xn—1
O O~ 30 @ — — —
X, Xn
o— 0 — —— © 30 -,1
v, X1y Xu-2 v *2 v % v

FIGURE 3.1
The Schiitzenberger graph of w = x,x,---x,x x; ' -+ x "
with respect to % b,
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Proof. By Lemma 3.6 there are at most 2n vertices in the Schiitzen-
berger graph I' of w relative to #! as there are 2n initial segments
of w not identical to w. It is a simple exercise to verify, using
Lemma 3.1, that if ¥ and #' are two proper initial segments of w
(that is, neither u# nor #' is identical to w ) then wu pwu' implies
that ¥ = «'. By Lemma 3.5, (wu;p, x, wuyp) is an edge of I' if
and only if x~! is the terminal letter of u; or x is the initial letter of
u|, where uju) = w. If x is the initial letter of #/, then wu, and
wu,x are p-equivalent with both u;x and u, initial segments of w .
Thus, u;x = uy. If x~! is the terminal letter of u; then writing u; =
ujx~! we have wujx~!x pwu,. Since wujp Z wu; = wuijx~p, we
have that wu} pwujx~!x pwu,. Since both u} and u, are initial
segments of w, wuj] = wu, and so wupx~! = wu; . Finally, if u;
is the empty word and x~! is the terminal letter of w then x~! is
the terminal letter of ww = ww*x~! pw and ww*x~1x pwu,. But,
ww*x~1x pww* and both w* and u, are initial segments of w, so
wuy = ww*, whence wurx~! = ww.

It follows from these remarks that I" is isomorphic to the graph
described above via the map which sends wup to v, , for all proper
initial segments u of w. m}

DEFINITION 3.8. Let F be the % !-free inverse semigroup on X =
{xi:i € w}. Let w, be the word X;---xpx'---x;! for each n €
w. Denote the ideal {v € F: J, % Jy p} of F by I(t,) and let
J(tn) = F/I(zy). Now J(t,) is an ideal extension of JQ , Which is
isomorphic to B({1}, 2n). Let S(t,) be the image of J"(rn) under
the canonical homomorphism into the translational hull Q(JS,H p) of

0
9 ,.

LEMMA 3.9. The semigroups S(t,) and S(t,)! belong to &', for
all new, n>12.

Proof. The semigroup S(t,) is a homomorphic image of the .%!-
free inverse semigroup on X and so is an element of #!. The semi-
group S(t7,)! € #! by Lemma 3.3. |

In the following section we will use the S(7,) to construct a family
of inverse semigroups which belong to Wr(s4,, #!) but not to %, V
&', for m € w. Before we do so, we describe the S(t,).

The inverse semigroup S(7,) is isomorphic to the Wagner repre-
sentation of the #!-free inverse semigroup on X restricted to Ry ».
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That is, if ay, is the element of #(F#!(X)) corresponding to wp
in the Wagner representation of F%!(X), then in the restricted (to
an,,) Wagner representation, «}, corresponds to wp, where do), =
{up € dow: up £ wyp and (up)ay £ wyp} and for all up € daj,,
(up)oy, = (up)ow -

An added advantage to using the Schiitzenberger graph description
in Theorem 3.7 is that we can read directly from the graph the im-
age of any word of J(7,) under the canonical homomorphism into
QJY ») = F(Ry p). The inverse semigroup S(7,) is generated by
the ir”nage of the x; under the canonical homomorphism and, for
each i =1, ..., n, the domain of the image of x; is the set of ver-
tices v for which there is an edge labelled by x; starting at v and
v 1s mapped to the terminal vertex of that edge. It is straightforward
to verify that S(t,) is (isomorphic to) the inverse subsemigroup of
F (Ry p) generated by {o;:i=1,..., n} where for each i,

-1 -1
do; = {WnX1 - Xiz1 P, WnXy - XnX{ - X7 p}
and .

WnXy - Xj—1 PO = WXy -+ Xi P
wnxl . ._xnxl—l ...xl_—lpai
= WpXy o Xp X X7 X pwexy o xpxy o xhL

4. Inverse semigroups in Wr(s%, , #'). The semigroups constructed
in §3 can be used to construct semigroups in Wr(.%,, #!) for m € w.
Since S(t,) is isomorphic to the Wagner representation of FZ!(X)
restricted to Ry 0> it can be represented as an inverse subsemigroup
of F(Ry p) for all n € w. Thus, for any group G belonging to
A, m € @, GWr(S(Th), Ry ) € Wr(y, #1). The semigroups we
construct in this section are inverse subsemigroups of semigroups of
this form and so belong to Wr(.%,, &!).

Foreach ne w, n > 2, let C, denote the cyclic group of order n.

DEFINITION 4.1. Let m,ne w, m, n > 2. Let 1 denote the iden-
tity of C,, and let g be a generator of C,, . Let
Am,n € Crywr (S(tn), Rw,,)
be defined as follows:
Let {a;:i=1, ..., n} be the generators of S(t,) as described at
the end of the previous section. For i =1, ..., n—1, define the map
¢; from R, into C,, by setting

~1 -1
do; =da; = {WnX1 -+ Xjm1p, WXy -+ XpX[ -+ X[ P}
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and defining (wpx1 - Xi—19)$i =1, (Waxy - Xux; ' x71p)gps = 1.
Define the map ¢, from an into C,, by setting d¢, = da, =
{wnx - Xp-1p,wnp} and defining (WnX1 - Xp-19)Pn=1, (WnP)Pn
= g. Then (¢;, a;) € Cuwr(S(1s), Ry ) for i=1,...,n.
Let
Am,n={(v, B) € Cnwr(S(tn), Ry,): [dy|=|dB| < 1}
U{(¢i,a;):i=1,...,n}

Define Ty, » to be the inverse subsemigroup of Cp, wr(S(7n), Ry )
generated by A4,, ,. Observe that T, , is an ideal extension of a
Brandt semigroup over the group C,,. It is not difficult to see that
Tm,n 1is in fact the following:

{(w, B) € Cuwr(S(tn), Ry ): |ldy| = |dB| < 1}
U{(i, i), (¢, a7t (¢, i) (i, i)™t
(¢is i) Noi,ai)ri=1,...,n}

LEMMA 4.2. Foreach m,new, m,n > 2,
(@) Tm,n € Wr(y, B) but Tyy.n ¢ B,
() T, € W(Hpn, B!) but T}, , ¢ B
(€) Hm VR C(Tm n) C Wy, B);

(d) VB C Ty n) C Wr(l, B').

Proof. T, , is an inverse subsemigroup of Cy, wr(S(1x)!, Ry )
and S(t,)! € #! by Lemma 3.9. Thus, T} , € Wr(%,, &) by the
definition of the Wr operator. As a consequence, Ty, , € Wr(%, , &)
since T, , 1S an inverse subsemigroup of T,},, » - On the other hand,
Tm.n is an ideal extension of a Brandt semigroup over C, and so
contains a subgroup isomorphic to Cp,. Thus, Ty, , ¢ &' since Z!
is a combinatorial variety. Since T,, , is an inverse subsemigroup of
T, , we also have that T}, , ¢ #!. This proves both (a) and (b).

Both T, ,}1’,, and T, , contain subgroups isomorphic to C, and so
Ay C (T,},,,,) and &, C (T)n,») since &4, is generated by C,,. The
natural homomorphism onto the second coordinate maps 7,, , onto
an inverse semigroup isomorphic to S(1,) € %!, and maps T, ,
onto an inverse semigroup isomorphic to S(t,)! € #!. Since both
S(tx) and S(7,)! contain copies of B}, it follows that &' C (T}, ,)
and #! C (T,,.n). Consequently, we have that %, VB! C (T, »)
and 4, VB! C (T,,‘“,) . It is immediate from parts (a) and (b) that
(Tm,n) € Wr(y, ') and (T} ,) € Wr(sp,, #'). This completes
the proofs of (c) and (d). O
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LEMMA 4.3. Let m,n € w, m,n > 2. Neither Tp n nor T} ,
satisfies the equation 7T, .

Proof. Substitute (¢;, a;) for x;, i=1,...,n. O

In the following lemma we use the term kernel to mean the mini-
mum nonzero ideal of an inverse semigroup, if it exists.

LEMMA 44. Let m,new, m,n >2. T, , satisfies the equation
T, for k< n.

Proof. Towards a contradiction, suppose that 7, , does not satisfy
7, for some k < n. Assume that k is the least such integer and let

(WI ’ ﬂl): cee s (Wka ﬂk) € Tm,n be such that
Xy xexy X w, By s (Wi, Bl = (v, B)

is not an idempotent in Ty, ,.

We first make a few observations.

(1) |[dB| =1: If |df]| = O then we immediately have that (y, f) is
an idempotent. If |dB| = 2 then the (y;, ;) all belong to the same
D -class, namely, the Z-class D of (y, B). [This is because Tp, , is
completely semisimple and so 2 = _# . Thus, the Z-class of (v, 8)
is contained in the Z-class of (y;, f;) forall i. Butif |[df| = 2, then
the D -class of (v, B) isamaximal Z-classin T, , andso (¥, f) is
Z-related to (y;, B;) forall i.] But D? is a Brandt semigroup and as
such satisfies 7. Since x;---xex7 ! X7 (Wi, Br)s --e s (Wi, Bi)]
= (w, B) in D% and (v, B) # 0, we conclude that, in this case,
(v, B) is an idempotent. The only remaining possibility is that
ldg|=1.

(i) If dp = {v} then v = v and vy is not an idempotent.
We know that B is an idempotent of (S(7n), Ry ) since the nat-
ural homomorphism of T,, , onto its second coordinate has image
S(t,) which, by Lemma 3.9, is a member of #! and #! satisfies
the equation 7, . Thus, v =v. Also, vy is not an idempotent lest
(v, B)= (v, B)*.

(iii)) If (w, B) is not an idempotent then for any cyclic shift
yl...ynyl_l y;l Ofxl"'xkxl—l _xk_l Wehavethat Vi ynyl_l
yill(wi, B1)s ..., (Wi, Bx)] is not an idempotent. To see this

note that if y;---y,y;' - y;! is a cyclic shift of x;---xexy !+ x!
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then y, ynyl_l y};I[(Wl > ﬂl): cery (l//ka ﬂk)] = (V/ls ﬂ,) can be
expressed as (@1, 71)(@2, 72) where (¥, B)=(92,72)(¢1, 71). If {v}
= df then vy, € df’ and vy,B' = vy, because vy, = V>
since vy,y; =vf =v. Then

vy = (V201)(Vy271902) = (VY201)(VP2) = (Ve2)(VP201)

since C,, is abelian. But (vg;)(vy,¢;) = vy which is not an idem-
potent and so, as a result, (y’, #’) is not an idempotent.

(iv) For some i€ {1, ..., k}, (w:, Bi) = (@n, an) Or (@, an)” .
By (ii), if df = {v} then vf = v. Therefore, if (¥, f) is not an
idempotent then vy is not the identity of C,,. The only elements
of T,,,» which can contribute non-identity elements to vy are those
(v, B) for which |[df| =1, (¢, an) and (#,!, a;'). Now

vy = (V)W) (VB B Wi) (VB Brw )
(B BB ws ) (B BB Bl ).

If (y;, B;) issuch that |df;| = 1, then in this factorization of vy, y;
contributes vf; - Bi_1y; = g, say, and v - Bt B v =
g~!, since g~! is the only element of ry;”!. Thus, the contributions
to this factorization of vy by w; cancel and so, if (¥, ) is not an
idempotent, one of the (y;, f;) must be (¢,, an) or (¢n, ay)~!.

(v) None of the (y;, 8;) is an idempotent. This follows from the
general observation that if e = e2 and aebec is not an idempotent
then aebec = aea™!(abc)c~lec and so abc cannot be an idempotent.
Thus, (y;, B;) an idempotent contradicts the minimality of k.

As a consequence of the aforementioned observations, the following
assumptions concerning the (y;, 8;) can be made. First of all, by
(iii) and (iv) we may assume that (y, f1) = (¢n, an). Secondly,
assume that the k-tuple ((w, B1), ..., (Wk, Bx)) contains a maximal
number of elements from the kernel of 7}, , among the collection of
k-tuples from T}, , whose first element is (¢, , a,) and which witness
that 7}, , does not satisfy 7.

There are two stages to the remainder of the proof. The first stage
is showing that exactly one of the (y;, ;) is a member of the kernel
of Ty, ». We do this in four parts.

(1) Forany i e {1, ..., k}, both (y;, ;) and (w;;1, Bi+1) do not
belong to the kernel of 75, ,.

Suppose that both (y;, ;) and (v, B;.1) belong to the kernel
of Ty n. If df; = {v;} and df;;; = {v;y} then v;8; = v,y since
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BiBir1 #0 and vy 1Biy =v; since BB #0. It follows that

viBiBiy1 =v; and v BB =vin

and

= (i) (i BL wir) ™!
= (Vi) (Wir1Wir1)”
= (Vis1Wis1) " L)~ (since G,y is abelian)
= [(iy)) Wir1 Wi )
As a consequence of this we have that

i1 DN B W) = WiBiw H(viv )
-
1

-1 -1 ,-1 -1
xl"'xi—lxi+2'”xkx1 ...xi_le_z...xk

(w1, B1)s oo s (Wit Bic1)s (Wivas Biv2)s -+ s (Wi Bl

is equal to (y, f), which is not an idempotent by assumption. Thus,
T n does not satisfy the equation 7;_;, contrary to our choice of k.
Note that under these conditions, k > 3, by observation (iv). In the
case k = 3, the conclusion is that T}, , does not satisfy 7; which is
absurd since all inverse semigroups satisfy the equation xx~! € E.
(2) If (y;, B;) is an element of the kernel then
(i) if dB; = {wx;---x;p}, then wxy---x;pfi = wxy -+ Xpx; '+
x;i'p;

(it) if dfi = {wx;---xux7'--x;7'p}, then wxy-- XXy -

xj_lpﬁi = WXy Xip.

(i) We have assumed that (v, B1) = (¢n, Brn) and so i # 1. Let
dBi—1 = {v1, va} (by (1) |dB;_1| = 2), and suppose that v ;| = u;
and v,6;_1 = up. Now, B;_18; # 0 so one of u; and u; must
be wx; - X;p, say u; = wx;---x;p. Also, B 871 # 0 so one
of v and v, must be wx;---xjpB;. If vi = wx;---x;pp; then
(Wi_1, Bi—1) can be replaced by (7, ) where df = {v,} and np =
u; and vy = viy;—;. This new substitution witnesses that 7, ,
does not satisfy 7. Following the argument in (1) above, we obtain
that 7,, , does not satisfy 7,_,, contradicting the minimality of k..
Thus, v; = wx; --- x;pf;. By observation (v), f;_y is a, or a,! for
some pe{l,...,n}.

If Bi.1 = ap then v,y = wx;---x;p implies that v, x,p =
wx;---Xx;jp and hence that either p = j and v, pwx;---x;_; or
j=n,p=1 and vi pwx; - xpx;'. Thus, wx; - -xjpfi = v =
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wxl-"xnxl‘l‘--xj"p, by the definition of a, or wx; - -x,pf; =

v, = wp, which is what we want to prove.

If Bi-i = o, then viB;_y = wx,---x;p implies that v;x,!p =
wx;---Xx;p and hence that vipwx;---x, and p = j+ 1. Note
that in this case j # »n since if u is an initial segment of w,
then wuxp‘1 pwXxy - X, is impossible by Lemma 3.5. Therefore,
wx; - X;phi = vy = wxl"'anl_l"'xp__llpwxr"xnxfl"'Xj_l,
by the definition of o !.

(ii) As in (i) we can assume that df;_, = {vy, wxl'--x,,xl“l--'
x7'pBi} and that vifiy = wx;-- Xux; '+ X7 p. Again, by obser-
vation (v), we may assume that 8;_; =a, or a;,'.

If Bi-1 = ap then v1Xpp = wx; - Xyx;'---x7'p and hence p =
j+1 and vy pwxy - xpxy? X7} Note thatif j=n, wxy - XXy !
---xj‘1 pw and so for any initial segment u of w, wux,pw is
impossible, by Lemma 3.5. Therefore, by the definition of o,

~1 -1
WX XXy c X pPi=wxy - Xjp.
- - -1 -1 .
If By = a,! then vix,!p =wx; - xnx; ~+x;7 ' p and 50 p = j
and vlpwxl---x,,xl“---x,,xl‘l---xj‘_ll or j=n,p=1, vipwxy.
s -1 -1 -1 -
By the definition of a, ", wx; - XuX; e X pBi=wx;---x;p and

if j=n,p=1, wphi=vy=wx1- - Xup.

(3) At most one of the (y;, ;) belongs to the kernel of T}, .

Suppose that (y;, 8;) and (y;4p, Bj+p) are two members of the
kernel of T,,, , and they are the first two such elements appearing in
the sequence {(WI s ﬂl)a seey (Wk5 ﬂk)} Let dﬂj = {vl}: dﬂj+p =
{ur}, v1fj=vy and vy, = g1, and uy B4, = U and U Y4y = &>.
The claim is that if (v, B) is not an idempotent then neither is the
following:

CaxTloxTl g x !

Xp Xjoa Xy X 1 Xl Xk X
L x; REEE
S XX Xjap— 1 Xy X

when (y;, B;) is substituted for x; for all x; appearing in the expres-
sion. Call this element (y’, f’). If the claim is correct then 73, ,
does not satisfy 7;_,, contrary to our assumptions. We first show that
dp’ 2dp and p’ equals f on df. Now, with df = {v},

vy Bj-1 =1;
V) € dxja.ll ot 'x;_(}p_l[(l//j+l ’ ﬁj+1), ey (l//j-f-p—ls ﬁj-}—p—l)] and

-1 -1 _ .
viB Bl =
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Uy € Axj pr1 Xy X (Wikpets Biape1)s oo (Wies Bi)»
(Wi, B)s - s (Wim1s Bj-1)]

urBiiper - BBy =2

vy € dxjiy "‘xj+p—l[(W]+l s Bis1)s oo s (Wigp—1, Bjsp—1)] and

Va1 Brep—1 = U1

U € dx]+p+1 X U (Wapats Bisp+t)s oo (Wi, Bx)] and

U ]+p+1 ﬂk =vB=v.

Thus, v € df’ and vf’ = vf = v. By calculation one sees that
vy must be equal to vy'g 8287 '85!, since Cy, is abelian, and thus,
vy = vy'. Therefore, if (y, f) is not an idempotent, then neither
s (¢, B'). It now follows that at most one of the (y;, B;) belongs
to the kernel of T}, , .

(4) Exactly one of the (y;, ;) is a member of the kernel of 7}, ,.

First of all, observe that if none of the (w;, B;) belongs to the
kernel then each (y;, B;) is (¢p, ap) or (¢p, ap)~! for some p. By
the definition of the a,, if vB;--- B € 4B then vf -+ B! =
v. This is because if v = wup for some initial segment u of w
then vf,--- B = wu'p for some initial segment u' of w and the
difference between the lengths of # and #' is not greater than k
and hence strictly less than n. It follows that vf; - -, must be
vf;. By the same reasoning we can conclude that, for all 1 < i <
k, vBr- BByt Bt = vy Bioy. Since df = {v}, we can
replace each (y;, B;) with an element of the kernel and conclude that
f (v, B) is not an idempotent then neither is the result of this new
substitution. But this cannot be since the kernel of 7}, , is a Brandt
semigroup over an abelian group and so satisfies the equation 7, .
Therefore, exactly one of the (y;, ;) belongs to the kernel of T, .
This completes the first stage of the proof.

Let (y;, B;) be the only member of {(wi, 1), ..., (Wi, Bk)}
which belongs to the kernel of T}, ,. Let dB; = {v{}, v 8; = v, and
vy, = g . We consider the following two cases: (i) v pwxy - Xp3,
and (ii) vy pwxy - Xux7 et :

(i) If vy pwx,---x, then vy = wxy -+ X,x; '+~ x,1p by the first
stage, part (2). Since (yi, B1) = (¢n, @n) and k < n, by the con-
straints on the (y;, B;) discussed thus far, for some 1 < g < j,
(Wq, Bg) = (¢n>an)~'. [That is, because for i = 1,...,j -1,
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(wi, B;) is either (¢, o) or (¢, ay)~!, for some %, and the pro-
jection map of T, , onto its second coordinate has image S(7,), we
have that v, - B = vx; X, ---xi_ p, for some x; , x;,...,
xi  €EXUX 1, and that x; x; - +x;_, labels a path in the Schiitzen-
berger graph of x1~--xnxl‘1 -x;lp from v to wx;---xp,p. Since
j—1 < k < n, this path must traverse the edge labelled x;!
with terminal vertex v. Thus, for some 1 < g < j, (¥, By) =
(¢n, an)~1.] Assume that g is the least such integer. Because
k < n and each of the (y;, ;) is either (¢, ay) or (dy, a)~ !,
for some A, for 1 < i < ¢, as a consequence of the definitions
of the (¢, ay), we have that v, -, = v and (v )(vVBiy2) -
(vBy--- Bg-1¥y) = 1. In a likewise manner we obtain that

B~ BB - By =vpi-- By

and
(B Be)w N(wBy -+ Br) BT ws ']
(B BB B v =L
Asaresult, xg1 - XX X7 [(Was1s Bgs1)s -+ » (Wk» Bi)] is ot

an idempotent if (', B) is not an idempotent, contrary to our choice
of k.

(i1) If vy pwxy ---xnxl‘1 ---xp‘1 then v pwx; -+ Xxp. Using a sim-
ilar argument to that used in (i) above, we can assume that (y;, f;)
is the only (y;, B;) equal to (¢,, an) for i < j. Moreover, the same
argument can be used to show that at most one of the (y;, B;) is
equal to (¢, a,) for j < i < k. In this case, by the constraints on
the (y;, B;) and the definitions of the (¢;, ;) and their inverses,
(W, Br) 1s equal to (¢, a,). Thus, the only (y;, B;) equal to
(¢n, an) are (y;, f1) and (¥, Bir). But for any inverse semigroup,
axaa~'ya~! is not an idempotent implies that xy is not an idem-
potent. It would then follow that 7;, , does not satisfy the equation
Tix_2 , a contradiction.

Since every inverse semigroup satisfies 7;, the proof is complete
if we can show that, for n > 2, T,, , satisfies 7,. This is not dif-
ficult to verify directly: Suppose that (¥, f) € T,,,, is such that
(bn» an) (W, B)(&n, an)"Y(w, B)~! is not an idempotent. Since B!
does satisfy 7,, we have that a,Ba; !~ is an idempotent. Thus,
for all v € dapfo;!f~! C day, vayfa;'B~! = v. Therefore, both
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v and vay, (which are not equal) are in the domain of f. For either
v in the domain of «,, there is no pair (¥, f) in T, , such that
df ={v, va,}. It follows that T}, , must satisfy 7,. |

LEMMA 4.5. Let m,n€w, m,n > 2. T,}1 ., satisfies the equation
Ty for k <n, but T), , does not satisfy the equation ) for k > n.

Proof. This is an immediate consequence of Lemmas 4.4 and
4.3. ]

REMARK. The only property of the varieties 24, that we used in the
construction of the T}, ,’s was that they each satisfied the equations
T,, n € w. This is also true of the variety %% , the variety of abelian
groups. Thus, in a similar way, we can construct a family of inverse
semigroups {7}} such that, for each n, T, satisfies the equations
7, for k < n,but T,! does not satisfy the equations 7, for k > n.
Moreover, for each n € w, ¥V B C(T}) CZ o B! .

5. A class of varieties in the interval [%/,, #']. The inverse semi-
groups defined in the previous section can be used to define an infinite
collection of varieties in the interval [.%,, %']. Once it is established
that the interval [%,, %] is infinite, it can then be shown that other
intervals which coincide with v-classes are infinite.

NoTtATION 5.1. Let m € w. For each n € w, define the variety
Zm . n t0 be the variety of inverse semigroups generated by {7’ ,111 pi k>

n}.

PROPOSITION 5.2. Let m,ne w, with m,n > 1.

() Zm n satisfies T for j<n;
(b) Zm,n does not satisfy t; for j>n;
(€) Zn,n D Zm . n+1 (the containment is proper).

Proof. (a) By Lemma 4.5, T! , satisfies 7; for j < k. There-
fore, each generator of 7}, satisfies T ; for j < n,and hence 75, ,
satisfies 7; for j < n.

(b) By Lemma 4.3, T, ; does not satisfy t,. Since 7, ;, j>n,
is a generator of 7y, ,, the equation 7; is not satisfied by 7 s for‘
all j>n.

) {T), ;:k>n}yD{T, ;tk>n+1} andso Zp »= (T, ;1 k>
n) > (T, ,:k >n+1) =7y »1. That the containment is proper
follows from parts (a) and (b). 0
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As a consequence of Proposition 5.2, the collection of varieties of
inverse semigroups {7y, ,: n > 1} forms an infinite chain in the lat-
tice of varieties of inverse semigroups. Furthermore, by Lemma 4.2,
Ay N B C Vpy.n C Wr(y, ). Since Wr(s4,, B') = 4,05,
and the v-class of &7, V.#! is the interval [/, V&', %,0 %], we
have the following result.

THEOREM 5.3. The v-class of the variety 4, V B' possesses an
infinite descending chain of varieties.

Using Theorem 5.3, we can show that other intervals in .#(.#) are
infinite.

LEMMA 5.4. Let 7 € [, VE", o4, 0 B, where o4, is the variety
of abelian groups of exponent m, and let % € (4N B, #P*]. Then
kerp( V7 )=kerp(Z') and trp(UNZ)=trp(¥).

Proof. 4, C 7 and so &3 C z'™Max  Therefore,
YV CUNY CAMRN Y C YRy g = gmax,

Since ker p(77) = ker p(Z'™#), it follows that kerp(% v 7°) =
ker p(77).
Also,
UCUNY CUNI NG =UN (G NBIVNEG =%V Z.

Since trp(%)=trp(# V%), we have that trp(# V7 )=trp(%). O

THEOREM 5.5. Let % € [y V B, %P3]. Then the interval
%, (o BV U] contains an infinite descending chain.

Proof. The function 6: [%, VB!, %, 0B — (¥, (%o B VU]
defined by 0 = 7 vV # is one-to-one on [, V. B!, &, 0 F!] by
Lemma 5.4 and the fact that all varieties Z” in this interval are such
that tr p(7) = tr p(, V. B!). Clearly 6 is order-preserving, and the
result follows from Theorem 5.3. ad

COROLLARY 5.6. Let % be a combinatorial variety contained in
M3 and containing B'. Then the v-class of % NV sy,, that is,
(% V Sy, , Apo?], contains an infinite descending chain.

Proof. By Theorem 5.5, since % V &4, € [y V B!, #P*] and
(o BNV Y C Ao . O
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REMARK. The results of this section are true for the variety &%
as well. That is, if 7; denotes the variety of inverse semigroups
generated by {T,}: k > n}, the analogous results to Proposition 5.2
hold and the remaining results of this section are true when we replace
Sy by AZ .

(B]
[BS]

(€]
(H]

[K1]
[K2]

(P]
(PR}

[R1]
(R2]

(S]
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