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This paper determines the surgery obstructions for all surgery

problems of the form

idxo: M? x K¥+2 o M" x S¥+2

as explicit elements in the surgery obstruction groups Lﬁ+2 where
o: K¥%+2 _ §%+2 js the usual Kervaire problem and M" is a closed,
compact, oriented manifold with n;(Af) finite. Due to the well known
observation that the surgery obstruction for a surgery problem on
a closed manifold depends only on the resulting cobordism class in
Q*(B,”( m) X G/TOP), this is the fundamental step in obtaining the
surgery obstructions for all surgery problems over closed manifolds,
as long as 7,(M) is finite. (In the case 7,(A/) infinite, the situation
is much more complex. A key part of the question would be resolved
if one could prove the Novikov conjecture though.)

One of our main results is that only three types of obstruction can
occur. This is, in fact, the first step in proving the oozing conjec-
ture. The proof is completed in part II of this paper where we give
characteristic class formulae for evaluating these obstructions.

In 1965 Dennis Sullivan proved a surgery product formula which
made it possible to write down characteristic class formulae for eval-
uating the surgery obstructions of degree 1 normal maps over simply
connected manifolds. Then in [W2] C. T. C. Wall made a prelimi-
nary study of the problem of characteristic class formulae for surgery
in case the base is a closed manifold with finite fundamental group.
He was able to show that formulae similar to the Sullivan result must
exist in theory, and, moreover, are completely determined if they are
known when the fundamental group is a finite 2-group.

W. Pardon [P] and G. Carlsson-R. J. Milgram [C-M] showed that
if one looked at the surgery obstruction groups Li(Zn) relevant to
the problem obtained after crossing a given surgery problem with a
circle S! then these groups are determined entirely by the rational
representation ring of 7 whenever 7 is a finite 2-group. Based on this
I. Hambleton [H], and independently B. Williams and Larry Taylor
[T-W], gave an explicit identification of all possible obstructions for
the S x () problem, and showed that there were examples for which
each was realized. However, the general case remained out of reach.
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66 R. JAMES MILGRAM

In a sense this was surprising since Hambleton-Milgram [H-M],
had already given effective methods using the L?( ) groups above,
together with a second explicit functor of the rational representation
ring, to obtain descriptions of the surgery groups Lﬁ(Z(n)) relevant
to the original problem. What resulted were approximately 23 distinct
types of classes which could possibly be obstructions for problems over
closed manifolds, and what was needed was a method for determining
exactly which among them actually occur.

In this paper we consider this question in the basic case of products
with the Kervaire problem, that is, we analyze all problems of the
form

(0.1) idxo: M" x K*+2 prn i §4+2

where ¢: K%+2_8%+2 ig the simply connected Kervaire problem
and m;(M") is finite. In these cases we give explicit recognition for-
mulae for showing exactly which surgery obstructions are possible (ex-
actly 3 of the types above).

In part II, [M4], of this paper we apply these results together with
some explicit calculations to obtain cohomology characteristic class
formulae in the manner of Sullivan’s original theorem. As an imme-
diate corollary we then have the proof of the (codimension 3) oozing
conjecture (which will be explained further below).

In order to complete the study of surgery problems on closed mani-
folds with finite fundamental group there remains only the problem of
studying the obstructions in L(Z(n,(M")); Z/2) which arise from
problems of the form

(0.2) idx7: NY x (S! x7 K¥*2)— NY x (S x7 $%+2)

where NY is a Z/2-manifold and 7 represents the twisted Kervaire
problem [M2], [M-S], [T-W].

Implicit in our results on the ordinary Kervaire problem are the
necessary techniques to analyze the twisted Kervaire problem. We
do not discuss these results here primarily because the length of the
paper would become excessive, but we will present them in part IIL
[H-M-T-W], which represents joint work with Hambleton, Taylor, and
Williams.

Among the consequences of these results are an effective determi-
nation of the set of homotopy triangulations of a given manifold M
which completes the classification theory for all oriented manifolds
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with finite fundamental group, since it gives an effective determina-
tion of the map O in the surgery exact sequence

E
= Lh (Zry (M™)—HT(M")

n+1
—[M", G/{TOP or PL}] > L"(Z(z,(M™)).

Additionally, using the Quinn-Ranicki assembly maps there are spec-
tra L(Z(m)) whose homotopy groups are the surgery groups L,’Z(Z( T)).
The surgery exact sequence above can be interpreted in terms of a map
of spectra

(0.3)

8: M, AG/(TOP or PL)—L(Z(r))

and the cofiber of 9 is a spectrum closely connected to F(A)/ Block
Homeo (M), where F(M) is the space of homotopy equivalences of
M and Block Homeo (M), the space of block homeomorphisms of
M . In this respect, our results lead to an explicit determination of 9
on the space level as well, and consequently to an explicit determina-
tion of the homotopy type of the cofiber. Again, we defer a complete
exposition of these results to the sequels.

Before we describe the main result of part I we give more detail on
the history of the problem.

It had become quite clear in the mid ‘70’s that the key question was
to evaluate the obstruction for problems of the form 0.1. In view of
Sullivan’s Characteristic Variety Theorem the original way of thinking
about these obstructions was to try to relate them to simply connected
obstructions on various codimension k submanifolds of A" .

From this point of view J. Morgan originated the so called oozing
conjecture which, in its original form, asserted that codimension 2
submanifolds would suffice. This was shown to be false by Cappell-
Shaneson [C-S], when they showed that the surgery problem

(87/Q8) x K¥*2—(8%/Qg) x S¥*+?

was non-trivial and had to be detected on a codimension 3 subman-
ifold. (Here, Qg is the ordinary quaternion 8 group, and the action
on S3 is the usual one.) However, the only other types of examples
known at that time were the original example of C.T.C. Wall [W3]

RP4i+l x K4k+2—'>RP4i+l x S4k+2
which he proved represented the non-trivial element in

LY(Z(Z/2)) = LY(Z(Z/2)) = Z/2,
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and the somewhat unexpected example of Morgan-Pardon (see e.g.
[M-R] for a discussion) which has the form

RP4i+l % L2j+1 x K4k+2 RP4i+l % L:j-l-l x S4k+2

where Lj/*! is the Z/4-Lens space S*+!/(Z/4). This example rep-
resents the non-trivial torsion element in

LNZ(Z)2x Z/4) = 2°®Z/2.

In [H], [T-W] the question was understood for L?(Z(r)). The result
was that either the problem was already non-trivial when regarded as a
simply-connected problem (hence determined by the previous results
of Sullivan) or there was a homomorphism

¢: n—Z/2

and the induced (pushed foreward) surgery problem was non-zero and
determined by the formulae of [W2]. (In particular, both the Cappell-
Shaneson example and the Morgan-Pardon example become trivial
when crossed with S!.)

This prompted an energetic attack on the general problem. First,
new examples were actively sought. Then extensive studies of the
homology of finite two-groups were attempted to see if there were
some limits on the types of classes due to homological restrictions.
Both attacks failed. This is not surprising since we will prove that
all examples are either of the types above or are induced up to larger
groups from subquotients where they have the types above.

Assume that we are given a closed, oriented, manifold M together
with a homomorphism f: 7y(M)—n for a fixed group 7. This data
determines a surgery obstruction class o(id xo) € Lgim( M) 1o(Zm).
If N is a subquotient of 7, i.e. there is a subgroup H C 7 and a
surjection ¢ : H—N,

H — =

I

then there is a corresponding operation on Af: take the induced H
cover M with fundamental group f~!(H), together with the homo-

~

morphism ¢o f|: 7 (M)—N,
(M, f) = (M, $o f)).
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This gives a new surgery obstruction oy, s(id xa) € Lgim( w2 (ZN).
In what follows |n| < oo and we are only interested in two special
classes of subquotients:

(1) N is a quaternion group of order 2", or

(2) N is an abelian quotient of the 2-Sylow subgroup Syl,(7) itself.
Our first main result is

THEOREM 0.4. Let (M, f) be given as above with = finite and
suppose dim(M) # 2(4). Then the surgery obstruction or(id Xa) is
non-trivial if and only if one of the obstructions 6, s(id Xa) is non-zero
as N runs over quaternion type subquotients as above, Z/2 quotients
of Syl,(m), or dim(M) = 0(4) and the index of M is odd.

(This is a combination of Theorem 6.1 and Corollary 8.7 in the
body of the text.)

In more detail, the quaternion subquotients correspond to the
Cappell-Shaneson example and give non-trivial elements only for

dim(M) = 3(4),

(6.1 and 6.12). The Z/2 quotients of Syl,(7) correspond to Wall’s
example and give elements only for

dim(M) = 1(4).

Moreover, the images g,(id xo) generate a subgroup of Lé‘(Zn) iso-
morphic to H,(Br; Z/2), (6.13). The remarkable fact that

or(idxg) = 0 if dim(M) = 0(4)

and the index of M is even is demonstrated in §8. Of course, if the
index of M is odd, then Sullivan, in his thesis, showed that the simply
connected surgery obstruction, g,,,(id X&) is non-zero where eo f is
the projection of 7;(M) onto the trivial group.

If the dimension of M is = 2(4) the situation is somewhat differ-
ent. In order to explain it we must describe the techniques actually
used to prove 0.4.

We introduce certain intermediate L-groups, L"(Z(A)r), in §1 and
show that the product formulae discussed above factor through them.
More exactly, it is known, [W2], that the surgery obstruction above
depends only on the bordism class of (M, f) in Q.(B;) and we
construct homomorphisms

e1: Q.(Br)—LNZ(A)m),
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(see e.g. (1.17)), and homomorphisms tx: LE(Z(A)n)—L! ,(Z7) so
that the composite tx o ¢;[(M, f)] = o,(id Xxg). Most of our effort
here is devoted to calculating the groups L”(Z({3)n) (a special case
of 1), and the map 7.

Within these intermediate groups we show that only the classes cor-
responding to the examples above survive to generate candidates for
non-trivial product obstructions when dim(M) # 2(4). This gives
most of the results above. Explicit calculations for certain model
groups are necessary to complete the proof. These are given in §8.

When dim(M) = 2(4) we find, corresponding to the Morgan-Pardon
example above, that further cases are necessary. We prove

THEOREM 0.5. Let n be finite, then
im (e, : Quisa(Ba)—LA(Z(L5)m))

is contained in the torsion subgroup and there is a “kernel” V, C
tor(LA(Z({3)n)), natural with respect to restriction and projection, so
that if e; (M, f) € Vs then txoeg (M, f) is zero in LI(Zn). More-
over, the composite map

Quiva(Br) ~ tor(LA(Z(¢3)m))— tor(LA(Z(¢3)n))/ Vs

is non-zero on {(M, f)} € Qq;12(Br) if and only if there is a subquo-
tient o
Z/2xZ)2 —~H—n

s0 that eg (M, ¢o f]) # 0 in tor(LA(Z(3)Z/2 x Z/2))/Va = Z/2.

(This comes from 6.1, (7.3) and 7.9.) Using (7.3) and 7.11 we see

. . ¢ .
that, given a subquotient Z/2 x Z/2 +— H — n, the map above will
be non-zero whenever there is a homology class f € Hy(Br; Z) so
that, under the composite map

B
0B, — 2By —3 2%Bz/2x2)

we have tr, o(X0B;).(B) # 0 in H?(Bz/ixz/2; Z) = Z/2. (In [M4]
we show the converse.)

Thus we identify the image of e;, in Lé’(Z(C 3)m), and the resulting
surgery obstructions are then given as

k| im(eg ) —L§(Zn).

We know from the Morgan-Pardon example that 7x is non-trivial in
some cases. However, we do not, at this time, know exactly when an
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element in im(e; ) lies in Ker(tg) for an arbitrary finite 2-group =« .
Hopefully 0.6 will clarify this statement.

REMARK 0.6. The dihedral groups D,» for n > 3 give examples
where the map ¢; : QZ(BDZn)—>L§(Z(Q)D2n) is non-trivial. In par-
ticular, these dihedral groups give examples in dimensions congruent
to 2 mod(4) where non-trivial restriction and projection are neces-
sary to detect what is happening. Unfortunately, for these classes the
image of 7x 1is zero, so they do not give examples where the actual
surgery obstruction is non-zero. It is currently unknown whether such
examples exist.

The intermediate groups, L”(Z(A)rn), play a crucial role in part II,
([M4)), as well. Indeed, we will actually prove a strengthened form of
the oozing conjecture there which holds at the level of the intermediate
groups themselves and pushes forward to the surgery groups to give
the original conjecture—that codimension 3 ooze suffices when 7 is
finite—as a corollary. In other words, in part II we will study the map
e, and, based on the calculation of the groups L?(Zn) here, will give
characteristic class formulae to determine ¢; .

It seems that these intermediate groups provide a new and pow-
erful invariant for closed manifolds. By way of further illustration,
in part III, ([H-M-T-W]), we will construct a second type of surgery
factorization, using the same kinds of intermediate surgery groups.
This factorization enables us to analyze the Z/2-surgery obstructions
in (0.2). But that essentially completes the analysis of ( 4-cobordism)
classification when x; is finite!

There still remains the more delicate problem of s-cobordism clas-
sification, but the current techniques seem to even have implications
here. For these intermediate L-groups it seems to be possible to an-
alyze the Lj () groups. (We have already analyzed the L;( ) groups
here and only certain SK; ( ) groups need to be understood to get to
the s-cobordism category, but results of Oliver {O] imply that this is
within range.) Thus we appear to be very near complete understanding
of classification for manifolds with finite fundamental group.

This work evolved primarily during visits at The University of
Edinburgh, Northwestern University, and McMaster University. In
particular I would like to thank J. Davis, I. Hambleton, A. Ranicki,
and B. Williams for their help and hospitality.

1. The Clauwens factorization and its refinements. We begin by de-
scribing a universal construction based on the following observation
which I believe is due to Max Karoubi.



72 R. JAMES MILGRAM

ProrosiTION 1.1. If A is a ring with involution—for which there is
a central element o with o+ a =1 then the natural inclusion

L.(A, -)—L*(A, )

is an isomorphism where L.(A) is the surgery obstruction group and
L*(A) is the Mishchenko-Ranicki symmetric L-group.

Proposition 1.1 holds with any of the usual decorations, s, 4, p,

’. Let A be any ring with involution. Define a new involution on
the polynomial ring A[s] by setting as’ = @(l — s)* and define the
map

(1.2) v: L*(A)—L.(A[s])

as the composite

N 1®(s) N r
L*(A) — L*(A) ® L(Z[s]) — L.(A)[s])
where r is the Ranicki pairing and 1 ® (s) sends the n-dimensional
symmetric Poincaré complex (C, ¢1), {q&’ : C"J—Cj,y, satisfy the
conditions

B¢k + (=116 + (=1)" 1 gy + (=)0 G, T =0

where 6n-, = (—1)/9 1 C"/—C"~/*!} to the complex (C, ) ®
(Z[s], s). (Again, see [R2], in particular p. 91, for more details on the
definitions and properties of (C, ¢!).) Explicitly, the correspondence
is given by sending C, to the tensor product with Z[s], and ¢i to
i ®s,

(C s ¢)_’(C Xz Z[S] s ¢* ® S)'

Before we can exploit (1.2) we need to examine a somewhat more
general construction. The modules and maps we are about to intro-
duce are not difficult when dealing with free 4A-modules, but we need
them for a wider class of 4-modules in our applications.

Assumptions. A is a unitary ring with involution 7, S C A is
a central unitary subring fixed under 7, N is a finitely generated
free S-module, p(s) € S[s] is a polynomial fixed under the extended
involution on S[s], (i.e. p(s) =p(1 —s)).

Let o € Homg(N, N) satisfy p(a) = 0, then we see that

(1) if B € Homg(N*, N*) is 1 —a, {N* = Homg(N, S)}, then
p(B)=0.
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(2) o defines an (obvious) action of S[s] on N by (3 b;5s%)(n)
(X bia')(n), b € S, which factors through the quotient S, =
S[s1/(p(s)) -

(3) Similarly, B defines an action of S, on N*, and we will assume
these actions in the remainder of this section.

We use the notation A, = 4®s S, , and define functors

Ra - ApC__’ AC, ®ﬂ : APC—> AC
by ®.(M) =M ®s N, and ®(M) =M ®s N*. (This makes sense

since S, is central in A,.) Also, define a map ¢, : M*x N*—
Map(M x N, A) by the rule

(1.3) [ec(¢ x p)I(m x n) = p(¢(m)@L n) = $(m)p(n).
LEmMMmA 1.4. (a) e factors through a map e. : M* ®s, N*—
(M ®sp N)* .

(b) e is an isomorphism if M is a projective A, module.
(c) Suppose A € Autg(N, N*) and B = Aai™!, then ¢ : M—M*
given implies that
(pxA): Mx M—M"* x N*
factors through a well defined map (denoted ¢ ® 4 by a mild abuse of
notation since the two tensor products are over Different actions)
PRA: M®sp N—M* ®Sp N*
and (@ A)* = ¢* ® A* when M s projective.

Proof. To check (a) one verifies the following three equations:

(1) ec(p x p)(smxn—mxan)=0

(2) (ec(sp x p) —ec(p x Bp))(mxn)=0

(3) (ec(ag x p)) = a*(e(¢ x p))(m x n).

To prove (b) it suffices to check on free modules since ® preserves
direct sums. Indeed, in this case the elements e.(¢ x 7) are dense in
the Hom group, and the finite dimensionality of N over S implies
the result.

To prove (c) note that

(dxA)(smxn—-—mxan) = (s¢(m) x A(n) — ¢(m) x fA(n))
for all m, n if and only if Aa = BA.
REMARK 1.5. e. induces a natural transformation (again called e.)
€ Q—Qp
and on the subcategory of projectives (e.)? = id.
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ExAMPLE 1.6. Suppose an isomorphism A: N—N* isgivenas A =
6 + 6* (so 6 represents a non-singular + symmetric quadratic form
on N). Thenifweset = 17! wehave f = 1—a* = 1F6*A7!
but 6* = (A -0) so

B = 04! = il

and non-singular quadratic forms over S provide non-trivial examples
of the functors e, ®., ®p as discussed above.

Given 6 as above we can define a mapping 75 on quadratic com-
plexes (C., ¢.) over A, where the C; are projective A, modules
by the correspondence

79((Chs @4)) = (8a(C), 1®4ec(¢o))

and the ¢; are maps
Cn—*—i___)C* ,

with ¢g a chain map. By naturality we thus have

THEOREM 1.7. 19 induces maps of L-groups,

t: LM P (Ap)— L3k (A).

Now, consider the composite
(1.8) T L*(A)— L, 151)(A®B).

THEOREM 1.9. The following diagram commutes

Lk(4) L Li(4p)

Jl@(@) th

(x)
L¥(A)® Luz1(B) —— Liyazn(4)

where (Xx) is the Ranicki product pairing.
Proof. If (C, ¢) represents a € L*(A) then u(a) is represented

by (C ®4 A[s], ¢s). Consequently, tou(C, ¢) is represented by
(®a(C), ec(¢ps ® 4)), but

ec(¢ps ® ) = {$o ® Ao} = {¢o ® 6},

and the result follows since this is the definition of the Ranicki prod-
uct (x).
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REMARK 1.10. In case k is even and p = 0, the above construc-
tion and factorization of (x) is a direct generalization of a construc-
tion due to F. B. J. Clauwens [Cl]. Of course, in that same paper
Clauwens actually proves that his map 74 depends only on the class of
8 € L;1+1)(S) when k is even. However, in the refined factorization
above, 74 most definitely does depend on the particular representative
chosen within its class in L(;£)(S), as we will see in Example 2.5.

In the remainder of this paper the key example is the Kervaire-Arf
form

11
(1.11) K = (o 1),
a quadratic reduction of the non-singular skew-form (%)) = 4.
Note that

0 -1 11 0 -1

-1 _ _

ax=(10) (1) = (07

and this latter matrix satisfies the characteristic equation p(x) = x2—

x + 1. But this is the irreducible equation of the 6th root of unity
—{3. Consequently

Z[s]/(p(x)) = Z(E3),

and from the naturality of the map 7 in 1.9 we have

THEOREM 1.12. For the Kervaire form in (1.11) we have the factor-
ization of the Ranicki product

LYZ(r)  —— L(Z()(m)

J1®(K) JTK

LKZ(1) 8 (K) —  Liya(Z(m))

where (K) represents the Kervaire form and Z({3)n is given the invo-
lution (3 o;8)* = > ai(g)™".

REMARK 1.13. There is nothing magical about Z({3) in 1.12. In-
deed, if we choose alternate representatives for the Kervaire form we
factor through other quadratic extensions of Z. For example if we

set U
7= (o 1)
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then this also represents (K) when n is odd, but the associated ex-
tension is
z (1 +/(0- 4“n‘)'>
2 2

and since n is odd, 1 — 4n is congruent to 5 (mod 8). Thus, there
will be a factorization for each quadratic extension

Z<1+\/17>
2
where v = 5 (mod 8). Indeed,
~1++v-3
C3 = T

is only singled out for convenience.

In [H-M-T-W] the factorization that will be used is through
Z(1+3), a ring in which the fundamental unit ¢ = 153 satisfies
g€ = —&¢~!. But this implies that Ly(Z(¢), —) = Z/2, and conse-
quently 2 x L.(Z(e)n,—) = 0 for all n. This extra relation gives
a factorization of the twisted Kervaire problem, and allows us to
handle the remaining questions on surgery with finite fundamental
group there. However, it turns out, [M-O], that the natural map
LYZ[sIn, —=)—L"(Z({3)m, —) is very close to being and injection,
and hence, the information we obtain about L"(Z({3)n, —) gives us
the basic structure of the universal groups L?(Z[s]n, —) themselves.

ExamprLE 1.14. Let C, be the chain complex

AG)" = € — C) = A(y)"

for some A({3)-map 9, and (C., ¢g, ¢;) be a non-singular symmet-
ric complex representing the formation (C; @ C!, C9), (in Ranicki’s
terminology [R2], this means that the chain map ¢ is a chain ho-
motopy equivalence, and the inclusion C°—C; @ C! is just the pair
(¢§, 8)), then if we set

¢ = ¢1.1+ 91,283,
0 = 01+ 003,

the representatives for tx((C; @ C!, C?)) are given by the maps

®1,1 (_01 é) + @21 ((1) }) ,
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10 0 -1
51(0 1)+52<1 1).

Note in particular that the coboundary maps are what one would ex-
pect from just tensoring, but the matrices multiplying ¢; ; and ¢;
have been modified by multiplying with A.

REMARK 1.15. We should also note that the correspondence
Rk 1 M—M @,k A’

is just the forgetful map taking any A({3)-module M to the same M
but now just regarded as an A-module.
The Ranicki pairings

L¥(A) ® LS(S)—LF*s(A),
L*(A) ® Ly(S)— Ly, 4(A)

behave nicely with respect to u. Indeed it follows directly from the
definitions that the following diagram commutes

LKZm)® L¥(Zmy) —  LF(Z(m x m))
(1.16) J(l@u) J(u)

Li(Zmy) ® Ls(Z({3)my) — Ly s(Z(83) (w1 X 72))

The case m; = 1 is especially important. Here, Ranicki’s map from
bordism to symmetric L-groups gives the comutative diagram

Q@ Q(B,) — LNZ)®L(Zr) — L(2)®LJ(Z({y)m)

w T

Q. B) — LaEm — L, (Z()n)

In particular, (1.17) plays a key role since for & > 2 Ranicki shows
[R2] that

Z 0 (mod 4),
LKZ) = Z/2 k =1 (mod 4),
0 2 (mod 4),

0 k =3 (mod 4).
Note that the product pairing above implies that the class y in
L4+1(Z) when tensored with the Kervaire problem K must give 0
in Ly4;,3(Z) = 0, so that, by the associativity of the product pairing,
the product y» ® K =0 in L.(Zrn) for any b € L*(Zn). Hence, we
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have

COROLLARY 1.18. tx(yB) is not in the image of L*(Zn) ® K for
any b e L.(Z({3)7).

REMARK 1.19. Recent work of W. Liick and A. Ranicki, [L-R], in-
terprets the construction just given of 7x as a transfer map associated
to a specific quadratic form. They also construct transfers associated
to quadratic formations (H® H*, K), again see [R2] for a definition.
These transfers have the form

T(HG}H' ,K) . L*(Aﬂ)———*L*:H (Bﬂ)

for appropriate rings 4, B. Indeed, this odd dimensional transfer is
the actual tool used in [H-M-T-W] to study products with the twisted
Kervaire problem. However, for that application, as was indicated in
1.13, one can construct the required map explicitly, taking advantage
of the fact that & = —e~! gives an explicit reason for the triviality
of multiplication by two in the group L.(Z(¢)n, —). This was the
approach originally taken by the author.

2. The evaluation of 7. There is an involution defined on Ky(A(n))
by the rule {P} < {P*}, where, as usual, P* = Homy, (P, A(r))
made into a left A(n) module via the involution on A(x). This
involution makes Ky(A(n)) into a Z(Z/2)-module, and we have the
Tate homology groups ﬁ*(Z/ 2; Ko(A(m))). Likewise, the involution
gives rise to an involution on K(A(x)) and the quotient Wh(A(7)) =
K (A(n))/{U(A) -n} where U(A) is the group of units in A, induced
from the operation of taking a matrix to its conjugate-transpose, and
we have the Tate homology groups H.(Z/2; Wh(A(n))(A(x))). These
groups are periodic of period 2 and become the relative terms in the
exact sequences

+—H{(Z/2; Ko(An))— L (An)—L? (Am)
—H;_((Z/2; Ko(Am))— L | (Am)— - --
.. —H;(Z/2; Wh(An))— L (An)— L" (An)
—H;_(Z/2; Wh(dn))—L§_,(An)— - --
Let A be one of the rings Z, Zp, Q, Qp , or a subring such a3
Z(1/6). Let
e: Ko(A({3)m)—Ko(Am),  e: Wh(A({3)n)— Wh(4n)

be the forgetful maps. Specifically, regard an A({3)-module M as
an A-module, and A4({3)-module maps M—N as A-maps. e is

(2.1)
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involution preserving since inner automorphism induces the identity
map on K,( ) and hence induces maps

e.: H(Z/2; Ko(A({3)m)—H(Z/2; Ko(Am))
e.: H.(Z)2; Wh(A(L3)n))— H,(Z/2; Wh(AT)).

We now have the preliminary

LEMMA 2.2. There are commutative diagrams
e B(Z/2; Ky A)m) — LI — LPA)m) —

i T
—  H(2/2;Kj4n)) — LMy — LPan) —

1

H,_,(Z/2; B(An) — LI (ALy)m) — -

X I
A,_,z/2;Rdn) — L' (4m) — ..
c——  H(Z/2; Wh(4({y)n) —  Li(A({)n) — Lf'(A(Cg)ﬂ) —

I oo
.—  H/(Z/2; Wh(4m)) —  Li(4n) — LM4n) —
A, \(Z/2; Wh(A(G)m) — LI (A(ym) — -

FI*_I(Z/ZJ; Wh(dn)) — Lf’_]l(An) —_

Proof . It suffices to check that the diagram commutes at the Tate ho-
mology groups. So first we recall the maps ﬁ*(Z/ 2; Ko(B))—L!(B).
These are given as follows. If % is even then [P] represents S
in ﬁ*(Z/Z; Ko(B)) implies that P @ P* is free and we have that
ap = (P& P*, ¢) where ¢(a, b) = b(a). Similarly, if = is odd, then
[P] represents S in ﬁ*(Z/2; Ky(B)) means that P = P* and we
have that

op={(Po(-P")®(P*®(-P)), P®-P}.

Suppose * is even and B € LY(B) is represented by the pair (P, ¢)
with P a finitely generated projective and ¢ : P — P* a B map
such that ¢ +£ ¢ = A is an isomorphism. Then 8(P, ¢) = [P]. On
the other hand, if * is odd and B € L{(B) is represented by the
formation (P& P*, Q), then

PP, Q) = [PI-[Q]
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From these definitions it is clear that the diagrams above commute
for the first sequence. The commutativity of the second sequence is
similar.

Next we need

LeEMMA 2.3. The diagram of localization sequences below commutes
for A = Z or Z, and S any multiplicative set in A,

o= LEA(G)n) — LAST'A(G)n) —

Tk Tk

o= L2(An) —  LNS7'd4m) —
LM A(G)r, S) — LI (A(G)n) — -

Tk Tk

L2"(A4n,S) — LY (Am) —--

(This is direct from the fact that the definition of tx was carried
out for chain complexes. See e.g. [R2] for the requisite naturality
properties.)

Finally, we consider the case where A is the field Q or Qp . In this
case Lé‘i(A(C3)7z) is the (Hermitian) Witt ring of the centers of the
irreducible representations of 7 while Lgi +1(A4(G3)7m) = 0, (see e.g.
[C-M] for details), and the map

1k 0 LA(A(G)m)—LE, (An)

is given by first making the calculation in L% (A4({3)n) and then using
the embedding of Lgi(A(C3)7z) in L%.(A({3)m) to give the explicit final
result. To do this recall that

(b)) (%)

Then a form which diagonalizes to something of the type L;(a;{3+b;)
with the q;, b; in the fixed field under the Galois automorphism

{3 < (£3)71} will go to

L(a(Q D) e (5 o))

Of course, things are somewhat more complex in case the summand
of L£.(A({3)m) in question is for example a matrix algebra over a
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non-trivial division algebra, but this is only because the g; and b; in
the formula above will be elements in the division algebra in general,
rather than in its center.

REMARK 2.5. Consider the class w = ({3 — (¢3)7 1) in Ly(Q(&3)m).
We have

ww = (3 2+ 4) - (3 )3 5
0 -1 -1 -1 -1 =2 0 -3/2
and this class has index —2, hence infinite order in Ly(Q). In partic-
ular this shows that the Clauwens factorization mentioned in 1.10 can-
not be independent of the representative of the Kervaire form for the
extension to L.(Q({3)m). Moreover, since rationally L.(Z({3)n) C
L.(Q(¢3)m), the map tx depends on the representative chosen for K

in L.(Z({3)m) as well!

3. Explicit calculations for 7 a finite 2-group. We need some nota-
tion. Let {, denote a primitive 2'th root of unity, and set

(3.1) Ai = 52'+C;1: Hi = cz"‘ 21 5
then we have

PROPOSITION 3.2. Let 7 be a finite 2-group, then
QL) = Y M, (F,)
where F; is one of the three fields
Q(&s, 4i), Q(&, wi), Q4. &)
Proof. From [F] or [M1] we have that
= Y M, (L)e Y M, (D))

where L; is one of the three fields Q(4;), Q(u;), or Q({,), and D;
is the Quaternion algebra

QU)(i, N/(* = j*=-1, ij =—ji) = Q(4;)®D.
Hence, after tensoring with Q(Cg,)
Q(&3)m = ZMn,( GBZM ($3) ® D).
We have
LEMMA 3.3. Q({3) ®qDi = My(Q(¢3, 4))).-

Proof. The Brauer invariants of D; are 1/2 at all the infinite places
(and 1/2 at 2 if there is only one infinite place). But at each infinite
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place tensoring with Q({3) give a copy of C, so the Brauer invariants
there become zero. Likewise, (A)z(/li)®Q(C3) =Q, (i, €3) is the degree
2 unramified extension of Q(4;), so at 2 as well the Brauer invariant
becomes zero. Since all the Brauer invariants are now zero the result
is a matrix algebra over its center, and 3.3 follows.

3.3 implies 3.2 directly.

We must be careful about the involution when we use the decom-
position of 3.2. Every involution 7 on M, (F;) which agrees with
complex conjugation on the center F; is equivalent to the usual involu-
tion (~) conjugate transpose, M —M , m;;—7i ;. Precisely, there is
a matrix S so that

SMS~' = «(M).

Moreover, t(S) = +S, and we say that t has type lla if S can be
chosen so that ©(S) = S. Otherwise, 7 has type IIb.

LEMMA 3.4, L;(M, (F;), t) = Ly 2(My (F;),”) if © has type Ilb.
Otherwise

LMy (F;), 1) = Li(M,(F:),”).

(See eg. [C-M] for a discussion.)

In the current case each simple summand of Qz is invariant under
the involution so the same is true for each summand of Q({3)x . More-
over, each summand of Qz of the form M, (Q(4:)), My (Q(u:)), or
My (Q(Cy)), on tensoring with Q({3) gives rise to a Ila summand in
Q(¢3)m while each of the summands of type M, (D;) gives rise to
a type IIb summand in Q({3)n. Thus, the distinction between the
quaternion and matrix representations in Q({3)7 appears only in the
shifting of their contributions to L.(Q({3)n) according to 3.4.

It should also be noted that 3.4 holds at all the completions of F;,
and that S above will be integral over Z(1/6, {3)n. Consequently,
we can use the Mayer-Vietoris sequence

(3.5) - —=LE (Qul)m) @ LY, (Qs(L3)m)—LE(Z(L3)7)
—LN(Zy(C3)m) ® LE(Zs(43)m) @ LE(Z(1/6, (3)7)
—LIQa(L3)m) @ LE(Q3(L3)m)— -+

to calculate the groups L?(Z({3)n).



SURGERY WITH FINITE FUNDAMENTAL GROUP I: THE OBSTRUCTIONS 83

We introduce the notation

(3.6) A(m) = number of M, (Q(4;)) summands of Q,
d(m) = number of M, (D;) summands of Qn,
¢(m) = number of conjugacy classes in 7,

and taking account of 3.2, 3.4 we obtain

THEOREM 3.7. The groups LZ(Z(C3)7r) are given as follows,
LY(Z(g3)m) = (Z/2)!
LY(Z(¢3)m) = (Z/2)7™
LE(Z(L3)m) = LE(Z(L3)(m)) = Z°™),

Proof. Let A({3)n be a direct sum [] M, (&;({3)) with the involu-
tion either fixing each summand or interchanging them in pairs. (Here,
as usual, &;({3) represents the ring of algebraic integers in the center
of the ith summand of B({3)n where B is the quotient field of 4.)
Then Morita equivalence gives an isomorphism

(3.8) BAGm = [ Ly, @@

fixed
summands

where d; = 0 or 1 as discussed above.
Moreover, whenever 1/3 € 4, then multiplication by ({3 — (&3)7!)
induces isomorphisms

L (A(C3)m) « Ly 5 (A(L3)m)

and L’Z’kH(A(Cg)n) = 0 whenever each #;({3) summand in (3.8) is a
field K; [R1]. In this case note that the involution on K; is a Galois
automorphism and F; — K; is the fixed field.

We now use the prime decomposition of the fields Q({,:) to get the
fields in the cases needed to apply (3.5).

For i = 2 there is one prime over 3, but for ;/ > 2 there
are two primes interchanged by the involution. Hence
there are also 2 primes over 3 in Q(u;) interchanged
by the involution, and there is only one prime over 3
in Q(4;). Finally, there is exactly one (totally ramified)
prime over 2 for each of these fields.
When we adjoin {3 to any of these fields what happens at 3 is that

the prime or primes there ramify with degree 2, while at 2 we get the
(unique) degree 2 non-ramified extension.
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SiAnce there is only one prime over 2 in each of these fields,
Lo(Q2 ®g Q2({3, v;)) is identified with the Witt ring of Hermitian
forms over 62(53, v;), so from [M-H] (Appendix 2) we have

~

Lo(Q(&3, vy) = Z/20Z)2 (i 2>2)

with generators (1) and (m;) where 7; is either the uniformizing
parameter for Q,({3, {5)

(3.9) to= (G + (G -1

or an appropriate norm of (3.9) if v; is 4; or u;. Note for later refer-
ence that {3{, +({3)~! is a global unit so the uniformizing parameter
actually generates the prime ideal over 2 in Z({3, ().

Since 63(4'3) is a ramified extension of Qj, it follows that (-1)
represents the non-norms so

LO(Q3(C3)) = Z/4 with generator (—1)
and, for i > 2,
LO(Q3({3, Ai)) = Z/2®Z/2, generators (1), (m;)

where m; represents a non-square in Fy (/(i) = 2i=2) . Since these
are fields we have that the odd L-groups are identically zero [R1].

For the discrete valuation rings similar arguments (see e.g. [C-M])
give the table

L-group Value Generator
Ly, (Zy (&) 0
L2k+1(23(C3 > V) 0
(3.10) Ly (Zy(L3)m) Z/2 (1)
Ly(Zy(L5, 1) 0
Lo(Z4(L3)) Z/4 (-1)
Ly(Z4(85,4,) (i 2 3) Z202/2 | (1), (m)

Moreover, the last two cases in (3.10) map isomorphically to the
corresponding groups for the quotient fields, while in the second case
the Z/2 injects.

This reduces the effective use of (3.5) to the analysis of
L (Z(1/6, {3)n) which we discuss now. To begin we need two re-
sults on the arithmetic of these rings.

LEmMA 3.11. The 2-primary part of I?O(Z(Q, v;)) is zero for v; =
Ai, Wi, or &y (notation from (3.1)).
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Proof. It is well known that Z({3;) is a principal ideal domain, so
its projective class group is trivial. But now, the extension

(3.12) Z({3, vi) <« Z({3)

is unramified at infinity and at the finite primes ramifies only at 2
which is totally ramified. Hence (3.12) satisfies the conditions of The-
orem 10.4(a) of [WA], and as a result |CL(Z({3, v;)| is prime to 2 as
desired.

Also, recall that n; is the uniformizing parameter in the maximal
real subfield of Q((3, {,) given in (3.9). We have

LeEMMA 3.13. (a) The units in the real subfield of Q({3, A;) mod
squares have independent signs at the various real places.

(b) The Galois submodule of Q({3, v;)*(mod squares) generated by
the uniformizing parameter 7; or its norm (if v; = u;) consists of itself
and all the units of the real subfield of Q({5, v;),

(c) The generators mod squares have independent signs at the vari-
ous real places.

Proof. The first statement is clear since the real subfield is just Q(4;)
and the assertion is well known (see e.g. [M3]). For the other cases
consider the unit w; = C3C2.—(C3)‘1 . Let h € Gal(Q({5,,,)/Q) bethe
Galois automorphism defined by #({,) = {,, h({3) = ({3)*. Then
wih(w;) = {,(1 + 4;). But this unit generates all the units of Q({,)
mod squares under the action of the Galois group, and it is also known
that the real units in this set have independent signs at infinity. Thus,
the map u—uh(u) takes the units mod squares in Q({;,,:) onto the
units mod squares in Q({,:) . On the other hand

nh(n) = @)y + 17 = () (@)l + DG + D),

and since the last two terms contribute something totally positive the
rest of the lemma follows.

These results together with the explicit calulations in [M-H] for Her-
mitian forms, and the localization sequence with S = {all primes},
gives

LOdd(Z(l/6, C3 ) Ui)) = 05
Lev(Z(1/6, {3, v;)) C Lev(Q(L3, v;)).

Thus
Lo(Z(1/6, 83, 4)) = Z/28Z°
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where d is the dimension of the fixed field F;. Generators are given
by (n;) — (1), and (v;), where the v; run over the units of F; mod
squares. On the other hand when v; = 4; or {, we have

Lo(Z(1/6, (3, v;) = Z¢
with generators given in 3.13. Using these results, 3.7 is a direct ap-
plication of (3.5).

REMARK 3.14. The classes in the groups L? dd( ($3)m) come from

the images of the classes ({3 — 53 ) in Lé’v(Q3(C3)n) at the appro-
priate representations in the exact sequence (3.5), and the Z’s in
LZ,(Z({3)n) are detected by the usual Hermitian multi-signatures on
tensoring over Q(¢3) with C.

COROLLARY 3.15. The groups L}Z((3)) are
, generator 1

0

1
=2, generator m
=3

(This is direct from the proof of 3.7. The key calculation occurs at
x = 2, where

Ly(Z(1/6, {3)) @ La(Z2(83)) @ La(Z3(83)) = (Z® Z/2) @ (Z/2) & (0)

while
Ly(Qa(83) @ La(Qs(83)) = (Z/2 0 Z/2) & (Z/4).
Just note that the image of (v/=3) in L,(Z(1/6, {3)) is {(vV/=3)2 +
(V=3)3, and also, since CL(Z(1/6, {3)) =0, it follows that L"( ) =
Lr().)
REMARK 3.16. We show in [M-QO] that the groups

Z =0 generator (1)
Z/2 =1 generator 7y

0 i=2

0 i=3
and the reduction map gives an isomorphism in L.

4. The map tg : LY(Z({3)n)—L} ,(Zr). A basic discovery, ob-
tained more or less simultaneously by Carlsson-Milgram [C-M], Par-
don [P], and (possibly) Kolster [K], was that when n is a finite 2-
group, the groups Lz(Zn) depend only on the structure of the irre-
ducible rational representations of m. A detailed summary of this

Li(ZIs], -) =
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dependence was given in [H-M] as

THEOREM 4.1. Let n be a finite 2-group and Qn = ), D, where
the D, are simple involuted algebras.

(1) There are groups A;(D,) depending only on the type of D, , the
center of D, , and i such that

L?(Znm) ZA fori=0,1,2, or3.

(2) Let l(a) be the number of simple summands in D, ®q R. The
non-zero groups A.(D,) are:

(a) Ag(Dy) = (Z)/® for each D, .

(b) A(Da) = (Z/2)% "+ if D, has type SP and center Q(iy) for
k>1.

() Ax(Da) = (2)'®) if Dy has type Us Ay(Da) =Z/2 if Da=Q
with trivial G-action; Ay(Do) = (Z/2)* ~' if D, has type SP
and center Q(A;) for k> 2.

(d) A3(Dy) = Z/2 if D, has type O and D, # Q with trivial
G-action.

REMARK 4.2. The Z’s in 4.1 are detected by signatures at the vari-
ous real embeddings of the centers of the D, . The Z/2’s in Lj(Zn)
are represented in the Mayer-Vietoris sequence analogous to (3.5) by
(3)’s at the relevant representations, and the elements in L{(Zn) are
detected entirely by discriminants.

Using 4.1, 4.2 we now determine the map

(4.3) tx: LY(Z(G)m)— L, ,(Zn)
The result is

THEOREM 4.4. (a) The Z’s in LY(Z({3)n) map to Z’s in L5(Zn)
except for the ZI’s at the type 1la representations with center
Q(¢3, 4;). The Z corresponding to the trivial representation maps onto
the Kervaire-Arf class.

(b) The Z’s in L5(Z({3)n) map into LE(Zn) but none of them can
be present in the image of bordism.

(c) The Z/2’s in LY(Z({3)m) map to the non-trivial classes for the
corresponding representations in L% (Zm).

(d) The Z/2’s in L5(Z({3)m) map to the classes with discriminant
(3) at the corresponding representations in L¥(Zm).

Proof. Note first that the maps
L (Z(L3)m)— L5, (Q({3)m) LY(Zn)—L3(Qn)
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are injective, but

Z/2—I15(Zrn)— L% (Qn)
is an exact sequence where the Z/2 kernel is represented by the simply
connected Kervaire form (see e.g. [H-M] for details). Thus, except for
the inverse image of the Kervaire form, the map (4.3) is completely
determined by the rational map

(4.5) L5, (Q(¢3)m)—L5, ,(Qn)

but (4.5) is completely determined using formula (2.4). In particular
for the type ITa summands of Q({3)7 the map is given on L5(Q({3)7)
by the correspondence

(4.6) (u(cs—(63)“1)+v>—*<—“<j :;)“’(—01 (l)>>

(4.6) stmplifies markedly when made explicit at the various field sum-
mands of the center in Q({3)7. In particular note that the symmetry
condition implies ¥ = 0 in Ly(Q({3)m) while v = 0 in L,(Q(¢3)n)
whenever we are in a M, (Q({3, 4;)) summand of type Ila. Thus we
have

LEmMA 4.7. The map tx: L5, (Q({3, 4))—L5, ,(Q(4))) is deter-
mined as follows:

(a) tx is O for k even,

(b) tx({a(l3 = (83)71) = (=2a) +(~3a/2) for k odd

When we are in an M, (Q({3, u;)) or M, (Q(L3, {,)) summand
there exist elements such as u; which are themselves skew sym-
metric so that both u#, v can be non-zero in Ly(Q({3)n) and
L,(Q({3)m). For these cases we have

LEmMMA 4.8. The map tx : L5 (F({3, vi))—L5, ,(F(v;)) is given
by the formula

(U(C3 — (83)71) + v)—(=2u) + {(1/ — 2u)(3u> + v?))

if u is non-zero where v; is any one of 4;, u; or {, and F is any
field containing Q but not containing (3. If u = 0 then its image
is 0.

Proof. (u({3—(&3)~H+w)—( 32, “3%) . But this has determinant
3u? +w? and hence diagonalizes to the form asserted in the statement
of 4.7 if u is non-zero. It is evidently hyperbolic when u = 0.
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It remains to understand the case

M2, (Q(83, 41)) = Q({3) ® My (D).
Using the Mayer-Vietoris sequence (3.5) and naturality which gives an
evident set of commutmg diagrams, this is a purely local problem for
the fields Q2 and Q3 But unless we are at 2 and D; is the ordinary
quaternion algebra D; where
D, = Q(i, )/(i®=j*=~1,ij =—ji)

the D; are just matrix algebras at these places, so the same formula
as in 4.8 holds, though dimensions are reversed as was pointed out in
3.4.

In the case of D; the Z/2 in L£(Z({3)n) can be assumed to occur
at the prime 3, where D; is a matrix algebra. Hence, here too, 4.8
suffices to make the calculation.

To analyze the inverse image of the Arf invariant class in Lz(Zn)
note that the composite

A—A(n) — A
is the identity, and this splits a natural direct summand L{(A) in
L2(Ar). Of course, when A = Z, this splits off the Arf invariant
class, and so it suffices to check things when n = 1. But from the
definitions in 1.6, 1.7, and (1.11) of 7x, we have that 7x(1) is the
Kervaire class.

This completes the calculations for k£ even.

In order to explain the calculations for k£ odd we again use the
Mayer-Vietoris sequence (3.5). It follows from 2.3 that the diagram

Li(Q2(E3)m) @ LY(Os(C3)m) — LY (Z(L3)n)

(4.9) JTKGBTK IEK

k_,_z(QZ”) o LY, +2(Q37l') - Lk+1 (Z7)
commutes. Moreover, in case k is even (so k—1 is odd), the horizon-
tal maps above are surjective. Thus, the odd case follows immediately
from the even calculation. In particular, applying 4.8 completes the
proof.

5. The structure of I?O(Z(C 3)m). The K-theorylocalization sequence
for Ko(Z({3)m) takes the form

(5.1) =K {(Z({3)m)—K(Z(1/2, {3)7) © Ki(Z,(¢3)71)— K1 (Qa(L3)7)
2, Ko(Z(3)m)—Ko(Za({3)T) ® Ko(Z(1/2, L3)m)
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and in the sequences (2.1) what is required is ﬁ*(Z/2; Ko(Z(L3)7)).
Hence only the 2-torsion in Ky(Z({3)n) is significant. It follows from

3.11 that the map K;(Q.(¢3)7) — Ko(Z({3)n) in (5.1) is onto. This
reduces us to a basically local calculation, and we have

Ki(Qx(L3)m) = K, (H M, (02(Ls, Uz‘)))
= [1&:(Q2(G, v)) =[] Qa(&5, vi)°

from 3.2 and the fact that there is only one prime over 2 in each of the
fields Q({3, v;). For complete local fields the multiplicative structure
of the non-zero elements is determined using the log and exponential
map, and the following table results

Field Units
0a(Cs, ) Z/6xZx25"
023, 1) Z/6xZxZ3"
026, 8) | 2/3-2)xZx 23"

In each case the Z is generated by the uniformizing parameter =;
given in (3.9), or its norm to the appropriate subfield. The subgroup

of 0,(¢3, v;)* of the form Z/(3 - 2/) x ng is called the group of units
UQs(C3, vi).

DEFINITION 5.2. The image of K,(Zz(c3)7z) in Kl(Qz(C3)n) is de-
noted Kj(Z»({3)m). The quotient UK;(Q:({3)7m)/K{(Zy({3)m) is
written Ky(Z({3)7).

We also need to keep track of the involution. The following result
is well known.

LEMMA 5.3. The involution on Ko(Z({3)), [P] < [P*], is the im-
age of the involution on K,(Qy({3)n) given by
{M; ;} = {(M] )"},
where M, ; is a non-singular matrix with coefficients in 62(C3)7t.
The next result is our main technical tool, and is ultimately the
reason we can understand the groups L’(Z({3)n, —) for n a finite
2-group.
THEOREM 5.4. Let m be a finite 2-group, then
H.(Z/2; Ky (Z($3)m) = 0.
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Proof. The proof is in several steps. We first require

LEMMA 5.5. Let n be a finite 2-group, then
H.(Z/2; UK,(Qa({3)m) =0
Proof (of 5.5). As was observed in 5.2
Ki1(Qa(f3)m) =Y _(Qa(¢3, v1)*,

but this is even true with respect to the involution. Indeed, in each
summand the involution acts as the usual Galois automorphism corre-
sponding to complex conjugation () followed by inversion (7(a) =
a~!). We denote the fixed field of () by F; and note that the exten-
sion 62(53, v;)/F; is unramified. Hence, by Hilbert’s theorem 90 it
follows that Hey(Z/2; Kl(Qz(Q)n)) = 0 where the action is now just
conjugation. On the other hand, from local class-field theory,

F!/N(Qa(l3, v)*) = Z/2

again where the action is only conjugation and, since the extension is
unramified, the generator is the uniformizing parameter. Now since
inversion only has the effect of shifting homology dimensions by 1,
and since, as we have seen

Qx(83, v)* = UQy(ls, v;) X Z

where the generator of the Z is the uniformizing parameter z; which
is fixed under conjugation from (3.9), the lemma follows.

Next we need to verify the result in the special case that n is abelian.
To do this we first require

LEMMA 5.6. Let n be a finite abelian 2-group, then K (22(63)70 =
Ki(Zy(C3)n), and H(Z/2; K (Zy((3)n)) = O forall k.

Proof. Since 7 is abelian the characterization of units ¢ in (32((3)75
is that e;e # 0 for each central idempotent e;. In particular, it
follows that the units of Z,(¢3)7 inject into the units of 62(53)7: ,
and, since these are both local rings and the units generate K;( ), it
follows that K;() = Kj(). To prove the remainder of the lemma,
note that U(Z,({3)7) = Zs(1+1 ) where I is the augmentation ideal
and the Z; represents the units in the coefficient ring which are not
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of the form 1+ 6, with 6 in the maximal ideal (2). In particular,
the exponentiation operator

exp: 4Z,((3)n—U(Zy(L3)m)

defined in the usual way by

exp(40) = Z

converges together with its reciprocal, the log operator, to provide
an identification of 1+ 4Z,({3)n C Ky(Z2(¢3)m) with 4Zy(L3)n as
abelian groups with involution. Moreover, since the involution on
4Z,(¢ 3)7 is evidently free because it is already free on the coefficents
ZZ(C 3), we have reduced the lemma to showing that

Jo = (1+1)/(1+4Zy({3)m)

(46)
n!

has trivial homology under the involution.

There is an exact sequence
0—(2Z({3)m/4Z({3)m) " —Z/3 x J4— K (F2({3)m)—0

and since (2Z({3)n/4Z({3)n)* = F»({3)n which has trivial Tate ho-
mology groups, it suffices to check that

H.(Z/2; K\ (Fy(¢3)m)) = 0.

Let I, C Fy({3)n be the augmentation ideal. Then I, is nilpotent
and there is a natural filtration F'(K,(F,({3)n)) defined by setting
F' = image(l + Ii). Then F!/F™*! = [/I}*! But Ii/I}*! is an
F,({3) vector space. Indeed, °

L/IH = (I(Fyn) [(IFym) 1) @ Fa(L3),

and from this the fact that I{/I}*! has trivial homology is direct.
Thus,

H.(Z/2; K (Fy({3)m)) = H*(Z/2; K (F2((3))) = 0
and 5.6 follows.

COROLLARY 5.7. Let m be a finite 2 group, then

H.(Z/2; K{(Zy(¢3)m)) =0,
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Proof. In [O] Oliver calculated the reduced Whitehead group of =
with coefficents in Z,({3)n and the result was described via a natural
exact sequence

~ r =——
0— Wh'(Z5({3)1) — Zy({3)n—n**—0
where the middle term has trivial homology. If we consider the com-

mutative diagram
Z/6en® —  Z/6@n%®

0 — K — K/(@Z()m) — K(Zy)n®) — 0

|

0 — K — WH(Zy(G)n) — WH(Zy(53)a®) — 0
we see that K and K’ are isomorphic, where, of course, K, K’ are
the respective kernels. The naturality of Oliver’s sequence implies that
the homology of K’ is trivial, hence the same is true of the homology
of K, and using 5.6 the corollary follows.

But 5.7 and 5.5 immediately imply 5.4 and the proof is complete.

REMARK 5.8. There is an exact sequence
UK{(Z(1/2, {3)1)—KH(Z(L3)m)— Ko(Z({3) ) (2)—0

which forms the heart of our analysis of the Tate homology groups
ﬁ*(Z/Z; Ko(Z({3)7)), and 5.4 implies that these groups can be iden-
tified with the homology of the image of UK/(Z(1/6, {3)x). Specifi-
cally we have

COROLLARY 5.9.
H.(Z/2; Ko(Z({3)m)) = Hooy (2/2; U'K(Z(1/2, 3)m))

where U'K!(Z(1/2, {3)m) is the image in K)Z({3)n) of
UK{(Z(1/2, {3)m).

We now study UK{(Z(1/2, {3)n). In Theorem 3.7 and its proof
the units in Z({3, v;) mod squares were analyzed, but not as a module
over conjugation. To understand this conjugation structure, note that
the special unit ¢; = Cng“,l +{;! satisfies €= {,e. Also, if g({,) =
—(&,)7! 50 Q(£y)€ = Q(uy), then (¢ x g(e))* = —& x g(g). As an
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easy corollary we have

Lemma 5.10. UK{(Z(1/2, {3)n) is a direct sum of units at each
irreducible Q({3) representation of n. These units (as a module over
conjugation followed by inversion) are given as follows:

(a) If the center is Q({3, () then the module is (Z2 -~ o
(Z/2'®Z) where the last summand has generators A, B with 214 =0
and 1(A)=A, 1(B)=A—-B.

(b) If the center is Q((3, ;) then the module is (Z*~ =2)~ &(Z/2&
Z) where the last summand is as in 5.10(a).

(c) If the center is Q((3, A;) then the module is (Z*~ ~\)~ & Z)2.

Proof. For cases (a) and (b) see Theorem 4.12 of [WA]. To see that
case (c) is correct note that the only possiblity of an extra unit is some
unit ¥ so that # = —u. But then u({3 — ({3)~!) would be contained
in Q(4;) and three would ramify there which is impossible. Hence
the result follows.

ReEMARK 5.11. Note that in UK](Z(1/2, {3)n) odd index sub-
groups of the units suffice, and 3.7 shows that the cyclotomic units
are such a subgroup, so we can assume the generators in 5.10 are just
cyclotomic units.

Section 6 will show that we are able to ignore the effects of the sub-
modules (Z")~ in 5.10. Hence our interest is focused on the modules

W,=(Z/2'eZ), 1(4)=A, 1(B)=A-B.
LEMMA 5.12. Hy(Z/2; W;) = Z/2 with generator 2:~'4, while
H\(Z/2; W;)=0.

Proof. A resolution of Z over Z(Z/2) is given by the long exact
sequence

T-1 T+1 T-1
s Z(Z)2) —— LZ)2) —— Z(Z)2) —— Z(Z)2)—> -

Now tensor the resolution above with W;. When we calculate the
induced boundary map 0 in the resulting chain complex we have

(T+1)A=24, (T+1)B=4,
(T-1)4=0, (T-1)B=A4-2B.

From this 5.12 is a direct calculation.
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Next, let K = Z/6 x n? be the torsion in K/{(Z({3)n). Then we
have the diagram

K — K&l & — (") — 0

T

(5.13) K —— UK@12.{m) — UK@Z1/2. 0K — 0

U'K{(Z(1)2, L)) ——  U'K[(Z(1/2, §3)m)
with the two middle columns exact. We are particularly interested in
the 3rd column and its homology groups. We have that the groups
~ B (Z/2)¥ x=0mod?2,
H.(Z/2; (ZY =
(/25 (Z%)7) {O *=1mod?2.
Hence, R
Hy(Z/2; UK{(Z(1/2, {3)m)/K)
surjects to R
Hy(Z/2; UK{(Z(1/2, {3)m)),

while the group H; (Z/2; UK{(Z(1/2, {3)n)/K) injects. Thus, we will
use the middle horizontal sequence in (5.13) to study the
image of H.(Z/2;K) in H.(Z/2; UK|(Z(1/2, {3)n)). Indeed,
we will obtain what we require about the structure of the groups
fI*(Z/ 2; Ko(Z({3)m)) directly once we have proved

LEMMA 5.14. The inclusion K—UK{(Z(1/2, {3)r) induces an in-
jection in homology.

Proof. Let Z/2) be a direct summand of 72°. Then there is a
splitting homomorphism

o nab—->Z/ 2/
and a corresponding sequence of representations
¢i = 0:p: 1 —Z/2 —Q(Ly),
{0:(T) =0, €Q((y)}, 0<i<y.
In particular note the two extreme representations
6;: 22 —Z(¢y), 0,: Z/2) —{£1}.
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Looking in homology, Z((,,) carries the class corresponding to the
element (2/-1g) in H,(Z/2; (Z/2/)*) while the Z/2-representation
(among others) carries the image of the class (g) in Hy(Z/2; (Z/27)*),
and the result follows.

As indicated in the discussion preceding 5.14, we are now able to
present the information we need about the groups

H.(2/2; UK{(Z(1/6, {3)m)).

DEFINITION 5.15. Let g(m) be the number of irreducible Q repre-
sentations of 7, then n(n) = c(n) — 2q(n) + A(n) +d(n) where c¢(xn),
A(m), and d(n) are defined in (3.6).

Using g(n) and n(n) we have

LEMMA 5.16. Let UTn = UK'(Z(1/2, {3)n)/K, then
Hy(Z/2; UTnm) = 2/2"™+@-rk@®)=1
H,(2/2; UT7) = 2220+ d@-rkG)-1,
In Hy the generators are the (v;, j) and (—1) at each maximal subfield
in the center of Q({3)n where the v; ;j run over a basis for units mod

squares, while the generators for H, are the (—1)’s as we run over all
maximal subfields of the center having the form Q({3, 4;).

Proof. Note that c¢(n) is just the dimension (over Q) of the center
of Q(n). Consequently, c(n) — g(xn) is the dimension of the lattice
of units (mod torsion) in these centers. In looking at the module
W (rm) we see that the (Z)~ summands have dimension exactly »n(n).
Likewise, there are exactly g(n) —A(n) summands W;, and the result
follows from the previous two lemmas.

As a consequence we have

COROLLARY 5.17.
Hy(Z/2; UK|(Z(1/2, {3)m)) = Z/2Mm-emra@=rk@)-1

ﬁl (Z/z’ U’ i(Z(l/Z , C3)ﬂ)) — Z/zi(n')+d(7t)—rk(7zab)—1+(C(n)—q(n)—a(n))

where o(m) is the dimension of the kernel of the map on units mod
squares induced from the map

UKy (Z(1/2, {5)n)—U'K{(Z(1/2, {3)).
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COROLLARY 5.18. The map
A(Z/2; UK{(Z(1/2, {3)m)) == B (Z/2; UKY(Z(1/2, {3)n)

is surjective for k = 0 (with kernel Z/ZQ(")), and injective for k = 1.

The groups H, (Z/2; Ko(Z(¢3)7)) are isomorphic to the groups
H1(Z/2; UKY(Z(1/2, G)m)),

and using this isomorphism we identify these groups in subsequent
discussions.

We call the cokernel of i; in 5.18 the unit Bochstein group, and
the major object of the next section will be to show that this unit
Bochstein group, while injecting into Lé’k(Z(C3)7z) , 1s not in the im-
age of L, (Z({3)n) and hence cannot represent non-trivial surgery
problems on the image of Q(B,).

Likewise, we will show the unit group

i0((Z/2)"®) = (Z/2)Hm=a®

is in the image of the boundary map from L%, (Z({3)7). Hence the
only things which will finally matter are the contributions from the
W;’s.

However, before we can complete the analysis of L?(Z({3)n) we
must look a little more closely at the groups U(Q»({3, v;)). The
result is

LEMMA 5.19. (a) As a module over the involution t, UQ,({3) =
(Z,)? x Z/2, with generators A, B, (=1) and 1A= A+ (-1), 1B =
-24- B, 1{(-1) ={(-1).

(b) As a module over T, UQy(l3, Ai) = Z2(Z/2)? -2 x UQ,(&3),
where the skew elements in the free summands are 2-adically generated
by the cyclotomic units of Z({3, ;).

(c) As a module over T, UQ,(3, y) = Zo[Z/21 2e(Zy)*x2)2¢,
where the generators for the non-free summand V; are A, B, C, D,
and ({,) = e, and the involution is given by

te=e, 1A=2"le—A4, 1B=e¢-B,
1C=-24+C, 1D=2"2e—B+D.

(d) As a module over T, UQy(Cs, i) = Zo[Z/2 —2@(Z,)4xZ/2,
where the generators for the non-free summand S; are A, B, C', D'
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and (—1) = e. The involution is given as in (c) for A, B, e, but
C'=e—-C', tD'=D'—-(C'"+ 4).

REMARK 5.20. Before outlining the proof of 5.19 we describe some
of the generators of the non-free modules. In (a) 4 can be taken to
be {3 —({3)"!, while B must exist to make the homology come out
correct. In (b) the generator A is as before, while we can choose B as
the unit {3({,)~'+({3)”! and C isthe same as B in 5.19(a). Again,
D is just there to make the homology come out correctly. Finally,
in (d) 4 and B are as in 5.19(a), while C can be taken as the unit
1 — (&3)%u;, and D is again just there for the homology.

The key to the proof of 5.19 is the norm theorem for non-ramiﬁed
finite extensions L of K where K is itself a finite extension of Q.
This states that every unit in K is a norm from L if the extension
is Galois with cyclic Galois group. Since the involution in each case
in 5.19 is a Galois automorphism we can apply the norm theorem.
It remains to check that the modules are as stated. This is done by
reducing mod 2. This gets the free parts. The specific elements above
are then analyzed mod 2 to show they are not squares, and application
of Hilbert’s Theorem 90 completes the verification of 5.19.

6. The analysis of L"(Z({;)n). Recall (from (3.6)) that d(n) is
the number of representations having the form M, (D;) where D; is
a quaternion algebra, then we have

THEOREM 6.1. The groups L"(Z({3)m) are given as follows for m #
1, a finite 2-group:

LE(Z(3)m)

L}(Z(¢3)m)

)7)

)

i

Zcl Z/2 " @ 1.
(Z/2) Yo 1.
(Z/z)l(n) rk(n® Y —d(m)— GB V2

R

IR

LZ(Z(C3 n) = Z"
LA(Z(¢3)m) = (Z/2)*
Here, the groups Vy = V5 = (Z/2)"®=2®) come from the unit Bock-

stein part of 5.18, and are not in the image of Q.(B;). Also, the
subgroup

IIZ

(Z/2)K@) in L()
injects to corresponding elements in L?(Zn®). The elements in Lé’( )
)

come from the Z/2’s in H, (Z2/2; Ko(Z(L3)m)) associated to the mod-
ules W; at the quaternion representations in Q({3)n. Finally, the
elements in V| goto 0 under g .
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Proof. We have an effective calculation of H,(Z/2; Ko(Z({3)n)) in
§5, and in §2 and §3 we calculated L2(Z({3)n). So we can use the
exact sequence in (2.1) to study L*(Z({3)x).

Note that the map

LE(Z(L3)m)— Hi(Z/2; Ko(Z(L3)m))

is given on generators as follows: if y represents the discriminant of
the form
(i) L)L L(vn)s

then y is a unit in K, (62(C3)n) fixed under the involution (a «
a~*). Moreover y is the image of a class f € K;(Z({3)n). Conse-
quently there is an element dy € K (Qz(C3)n) so that (0y)(dy) *=7y.
Then {6y} € Ko(Z({3)m) represents a well defined class u(y) in
H,(Z)2; Ko(Z(¢3)7)) and we have

(6.2) O((ri)L{r2)L - L(yn)) = u(»)

(See e.g. the discussion in [H-M], in particular Lemma 5.4 there and
its proof.) This shows that every class in ﬁl(Z/ 2; Ko(Z(¢{3)m)) is in
the image of 0 except the classes corresponding to (—1) at type IIb
representations in the map

81 LA(Z((3)m)—Hi(Z/2; Ko(Z(Ly)m)).

(The classes in K| (62(4’3)7[) corresponding to —1 at the relevant rep-
resentations are represented by ({3—(¢3)"!) at those same representa-
tions. For more details see the discussion from 5.18 to 5.20.) Likewise
the situation reverses in the map

01 LY(Z(&3)m)—H\(Z/2; Ko(Z(S3)m)).

and we obtain that the (—1)’s at the A(m) representations which are
not quaternion give rise to the cokernel of 8. The situation is not
much different for

Opkr1 + Loy, (Z(L3)m)—Ho(Z/2; Ko(Z({3)T)).

Here it is easily seen that the Z/2°s in L%, +1(Z(&3)m)) have image
the class {{3 — ({3)~!} at the appropriate representation. Hence, 03
is injective, while d; surjects onto the

Z/zi(n)—-rk(n"’b)—l part of Z/zl(n)—l-d(n)—rk(n"")-l

in Hy with kernel Z/Z’k("m) and cokernel Z/29™ _ In both cases the
unit Bockstein part is not in the image of J,;,; and hence maps into
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Lé’k(Z(C3)ﬂ). This completes the first step in the proof of 6.1, the
explicit determination of L,’;(Z(Q)n) .

We now have to make two further calculations. First we must show
that the elements in V; map trivially under tx . But since V] isin the
image of fAIO(Z/Z ; I?O(Z(Cg,)n)) we can use the results of §4. In partic-
ular, note that the elements in V; come from the Qz(C3 , A;) parts of
K I(Qz(é 3)7), and so the Norm map under the Galois automorphism
(3= (5 ! is identified with the Norm map under the involution. But
the representatives for V; all have norm —1 under the involution,
and so the (—1) at the corresponding representations give the image
of V7. The elements surviving to V7 all come from representations

Q:(L3) ® My (Q(44)),

and (—1) for the corresponding representation M, (Q(4;)) is the im-
age of a global unit, hence represents 0 in Ky(Zz). On the other
hand the generators for the (Z/2)4™ in L4(Z({3)x) all come from
(—1)’s at the representations 62(53) ® M, (D;) with D; a non-trivial
quaternion algebra. These elements are not a priori 0 in Ky(Zx).

The final step in the proof is to handle the unit Bochstein classes.
For this we find it convenient to use Wall’s intermediate L-groups
[W3] which he denotes L; (Z({3)n). Recall (5.3) that K{(Z({3)7) is
the image of K{(Z({3)n) in K, (62(C3)7t) under the usual inclusion.
Also,

WH(Z({3)n) = K{(Z({3)m)/(torsion) = (Z*)~

is the group at the top of the third column in (5.13). There is an exact
sequence

(63) - —H(Z/2; WH(Z(L)m) = Ly (Z(s)m)— LA (Z(L) )
L B (Z)2; WH (G)m) S -

and the map Lf{(Z(C3)n)—>L,’Z(Z(C3)n) factors through L) (Z({3)7).
(In (6.3), to be more consistent with the K involution we choose the
involution « « (a~!) on K], rather than the more usual o « &,
which explains the dimensions of the homology groups.)
The proof of 6.1 will be complete when we have shown that the
map
b: LUZ(C3)m)—Hi(Z/2; WH'(Z({3)m))

in (6.3) is injective on V) for k even.
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To begin note the projection
p : K{(Z(83)m)— Wh'(Z({3))
inducing the map
pe: HA(Z/2; K(Z((3)n)—H.(Z/2; WH' (Z({3)m)).

From (5.13), 5.14 we see that H.(Z/2; K|(Z({3)n)) = H.(Z/2; K) @
B, and p, identifies B with H.(Z/2; Wh'(Z({3)n)). We also have
the short exact sequence

(6.4)  0—K|(Z({3)m)—UK(Z(1/2, {3)m)—U'K{(Z({3)m)—0
which gives rise to the long exact sequence
(6.5) - ——H(Z/2; K{(Z(L)n)— B (Z/2; UK(Z(1/2, {3))

B (Z)2; UK @()m) —— By, 22 KL )m)— - .

Finally, recall the isomorphism (5.10)

(6.6) AZ/2; Ro(@(o)m) 2 Ay (22 UK} (Z({3)m))
induced from the exact sequence
0—U'K}(Z(¢3)m)—UK1(Qa($3)m) /K (Za(¢3)m) —Ko(Z(3)m) —0.

LEMMA 6.7. There is a commutative diagram

Hent(Z)2; Ro@(l)m)) ——  F(Z/2; U'KY(Z(L3)n))

! ]
b A
LI(Z({3)7) —  Hp_(Z/2; Wh'(Z({3)7))
where b = p.b" is the map in the sequence (6.3), b’ is the associated

map for the sequence
~ b
D IPH S LhLp ... ,
0 is the map in (6.5), and &' is the map in (6.6).
REMARK 6.8. 6.7 is (probably) folklore, but, as far as I know, there
is no proof in the literature, so we now indicate how the proof pro-
ceeds. The first step is to note that in our case only k even matters as

9’ is 0 when k is odd. But here b'({P}) is represented by the obvious
plus or minus symmetric pairing « on P @ P*, and P @ P* is free.



102 R. JAMES MILGRAM

Now, a becomes a non-trivial matrix when we choose a free basis for
P @ P*, and we need to calculate its discriminant. The module P 1is
given as a pull back as follows

p Z(1/2, {3)m!

|

Ln — Q(l)nt — Oy
where y is an appropriate isomorphism, and the other arrows are the
usual inclusions.

The conditions imply that {y} represents the class of P in
KI(QZ(Q)::) , {y}? is the image of some class from K;(Z({3)n), and
{yy~*} is in the image from Ki(Z(1/2, {3)n). Thus the same is true
at least up to commutators for the matrices

(é p)= and <c1> o) = B

Now consider the diagram

N . . , () - .
[Zy(C)nl —  [0,(C)n) —2 s [0 —  [2(1/2, L)

(69 [ J : j

Zy(G)n) —  [0,()m 0,(L)n) —  [Z(1/2, {7l

2!

(7 %)

The top row defines the free module Z({3)n?' since the matrix

((y) yg‘)

is a commutator, and by the remarks £ and F above exist, and the
diagram commutes up to some commutators. But the bottom row
defines the module P & P*, and we have the diagram

(2 %)

Z,(e)n)* —  [0,()n) 0,(L)nl —  [Z(1/2, {)al*

(6.10) [G lo G G

Z,)a” — [0, W 10,(L)n)” —  [Z(1/2, {y)a®
0y
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01
(2 o)
and ¢ is 1. This induces the evident dual pairing on P & P*, and
when followed by the dual of (6.9) gives the associated map

a: Z(G)rHE—(Z(L)n?)* .

But in view of this, {a} in K{(Z(1/2, {3)n) is {BB*} = {4?%}, and
this implies Lemma 6.7.

where G is the matrix

REMARK 6.11. 6.7 takes care of the differentials for all elements in
L% (Z({3)m) which are associated to non-trivially truncated elements
in U'K{(Z({3)n). The remaining elements (associated to the a(x) in
5.17, 6.1) are in the image of torsion free classes mapping to generators
in L%, (Z({3)m) . This follows from a straightforward modification of
the proof of 6.7. (See also §2 in [M4].) In particular b in (6.3) is
surjective. However only the torsion classes of Lé’k(Z(C 3)7) matter in
studying 7g.

6.1 i1s now a direct consequence.

This completes the L-group calculations.

REMARK 6.12. 6.1 is already enough to establish our main results
in odd dimensions, since the classes in L%(Z({3)n) are evidently as-
sociated to induced images from quaternion subquotients of 7z of
the classes in L3(Zn) associated to the spheres S3+3 with the usual
quaternion actions. Of course, we should emphasize that not all of
these classes can actually occur as surgery obstructions. The discus-
sion in §7 will clarify this.

The generators in L’l’(Z(C3)n) are associated to the images of cer-
tain lens spaces obtained from mapping Z/2/ into n to account for
each Z/2% in 7. Explicitly, choose a generator y for 72, Then
there is a B in 7 with image v, and % =1 for some sufficiently
large d . Thus, we have the diagram

2/2°—n—1Z/2

and the composite is surjective. The map of classifying spaces is the
one referred to above.
This case differs from the situation for the quaternion groups since

H\(n; Z)—H,(n®; Z)

is an isomorphism for a finite 2-group 7. Because each generator « €
Hy(m; Z/2) can be represented by a map A, : S'— B, , we see that the



104 R. JAMES MILGRAM

map is also an isomorphism in oriented bordism Q;(Bz)—Q (B ).
But for an abelian 2 group it follows from Wall’s original result, [W1],
that the surgery obstruction map {(M, f) € Q(Bz)} — os(id x0o)
gives at least an injection Q,(B;)®Z/2—L4(Zn). On the other hand,
6.1 shows that the image can be no bigger than this. We have thus
proved

COROLLARY 6.13. The image of the surgery obstructions oy(id xa)
in Lé’(Zn) is isomorphic to Hy\(n; Z) ® Z/2 for any finite group w.

REMARK 6.14. In Lgk(Z(C3)7r) the torsion free elements must be
in the image of the torsion free part of Q,;(B;), and since 7 is fi-
nite we have that Qu;(B;) = ZY @ {torsion} with the Z¥ coming
from Qg;(pt) while Q44;,,(B;) = {torsion}. But things coming from
Q4i(pt) factor through the usual simply connected product formula
for which only the index matters. Thus, the only torsion free class
which can be in the image of bordism is the class (1). This is rep-
resented by the complex projective space CP?', and by the simply
connected product formula, ([W1] Lemma 13B.4, p.177), the product
of CP?" with the Kervaire problem is non-trivial, so 7x({1)) = usual
Kervaire class is the only geometrically non-trivial class in dimensions
congruent to 2 mod 4 coming from torsion free elements.

Similarly, the torsion free part of Lé’(Z(Cg,)n) cannot be geometri-
cally interesting.

7. Explicit calculations for dihedral groups when k& = 2. At the end
of §6 we finished the discussion of the possible surgery obstructions for
odd dimensional products with the Kervaire problem. Additionally,
for the even groups Lé‘k(Z(C3)n), 6.1 shows that the elements in V;,
V,, cannot be in the image from Q.(B;). But more is true. Since
Q4 12(By) 1is torsion, and Q4 (Br) = Q4 (pt) @ torsion, we see that

(7.1) im(Qqy (Br)) C Lak(Z(L3), ~) & torsion
=Z®(Z/2)"™ c Lt (Z()r, ),

while

(7.2) im(Qupsa(Br)) C (Z/2yHmrkE)=dm=1,

In this section we calculate on model groups to determine the image
in (7.2), and in §8 we will determine the image for (7.1). In fact, in
view of the history of the elements in (7.2), (the fact that they project
non-trivially to 72 or are induced up from dihedral subquotients),
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we need only study (7.2) for the groups Z/2 @ Z/2, and the dihedral
groups
Dy = {x,y|x* =y>=(xy)* = 1}.

This reduction is formalized and discussed at length in §2 of [M4],
but it just amounts to realizing that restriction to subgroups and then
projection to quotients will detect all the elements in the subgroups de-
scribed in (7.1), (7.2). Consequently, these elements are in the image
of Q,.(By) only if the corresponding elements for the subquotients
are in the image.

. e . ¢ .
Of course, this condition is not sufficient. If N — H — & gives a
key representation by inducing up from the model representation on
N, then the map

LA(Z(Gs)7) — LA (Z(L3)m)—LA(Z(Ls)m)

is non-trivial on the associated class in Lé’i(Z(C 3)m) . Moreover, as we
run over all these maps for the various representations of the given
type, the maps are independent, hence, taken together, they detect all
the classes of this type in L% (Z({3)7).

Let tr: 2B, —X0By be the stable transfer map. Then the following
diagram commutes:

tr, b,
Qu.(B:) —> Q.Byg) —  Q.(Bw)

(7.3) l,‘e@ lﬂ% l%

LNZ()m) = LNZ(G)H) — LNZ(G)N).

(Recall the discussion of e; in the introduction, §1, and of ux in
1.12.) Consequently, if (uegj) is known on the model groups then it
is determined on Q,.(B;) from 7.3.

These questions will be considered in more detail in Part II. Now
we begin the explicit calculations by considering the group Z/2xZ/2.

LEMMA 7.4. Ko(Z($3)Z/2 x Z/2) = Z,)2 with generator given as the
image of the class

{1,1,1, 14203} € Ki(02(83)Z/2 x Z/2)

under the map 0 in the Mayer-Vietoris sequence of (5.1) where the
coefficients are the corresponding units at the four representations ++,
+—, —+, and —.
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Proof. Set m = Z/2xZ/2 = {x,y | x* = y? = (xy)? = 1}. We
know [W4] that
Ki(Zy(83)m) = Z/6 x 7 x Wh(Z,((3)m)
=Z/6 x (Z/2 x Z/2) x (Z3)3,
and the elements —{;, x, y generate the torsion part. To make the
calculation required for 7.4 we need explicit generatorsAfor the torsion
free part as well. To this end we consider W = K;(Z,({3)/(8)(n)),

and the filtration
UcUcW

where
U; = Ker{W—K(Z,({3)/(2")(n))}.
It is direct that
Uy = Fy(Z]2 x Z]2)*
with generators 5, 1+4(3, 1+4(x—-1), 1+4{3(x-1), 1+4(y—-1),
1+4L3(y—1), 1+4(x—1)(y—1),and 1+4{3(x—1)(y—1). Similarly,
Uy/Uy = Fy(Z/2 x Z/2)*

with generators —1, 1+2{3, 1+2(x—1), 1+2{3(x—1), etc.. When
we square these generators in W we see that all the generators for U,
above are accounted for except 1+ 4{3. Finally,

W/U = K\(Fy(Z/2 X L[2)),

and has generators {3, x, ¥, 1 +{3(x—-1), 1+4(y—-1), 1+
(x -1)(y = 1), and 1+ {3(x — 1)(y — 1). Squaring the non-torsion
generators we see that 4 of the generators for U, are redundant, and
a set of torsion free generators in K, (22(4’3)Z/2 x Z/2) are given as
the elements 1+ {3(x — 1), 1+ &Gy -1), 1+4Gx -1y -1),
l+(x-D(y-1), 1428, 1+2{3(x—1), 1+2{3(y—1) and 1+4{5.
Next note that

UK, (Qa(83)Z/2 x Z/2) = {UQy(L3)}* = {Z/6 x ZT x Z3}*.

The generators above for K; (Zz(C3)Z/ 2 x Z/2) map into these units
via the correspondence

x—(1,-1,1,-1), y—(1,1, -1, -1), xy—(1, -1, -1, 1).
Hence a direct calculation shows

UK (Qa(&3)m) /K1 (Zo(83)m) ) = Z/2 X Z)2
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with generators {1, 1,1, —1} and {1, 1, 1, 1+2{3}. But the image
of the global units

UKI(Z(1/2, 3)m) = (Z/6)°

is evidently the equivalence class of the element {1, 1,1, —1} and
7.4 follows.

It should be noted at this point that I?O(Z(Z/Z x Z/2)) = 0. This
has the effect in L% (Z(Z/2xZ/2)), of making certain elements which
should have been present actually equal to 0, and was the core of the
problem with previous attempts to understand the possible surgery
obstructions for closed manifolds. It is precisely because Ko(Z((3)7)
contains elements such as the Z/2 in 7.4, that the current approach
works.

COROLLARY 7.5. (a) L{‘(Z(§3)Z/2 x Z/2) = (Z/2)3, with image in
L2(Z({3)Z/2 x Z)2) a copy of (Z/2)?.

(b) L{)‘(Z(Q)Z/Z x Z/2) = Z* injects into LE(Z(L3)Z/2 x Z)2) =
Z* with Z)2 cokernel. An explicit basis for this latter group is

(1,1,1,1),(1,-1,1,1),(1,1,-1,1), and (1,1, 1, =1).

Each of these last three elements maps onto the Z/2 cokernel.

(¢) LAZ({)Z/2x Z/2) = O.

(d) Lg(Z(C3)Z/2 x Z/2) surjects onto L5(Z({3)Z/2 xZ/[2) with
kernel Z./2 .

Proof. To begin note that

VA k=0
(Z/2) k=1
LUZ(G)Z/2 x 2/2) = 74 k=2
0 k=3

—

Specifically, the generators for L (Z({3)Z/2 x Z/2) are (1), and three
forms given by specifying indexes at the four irreducible representa-
tions as

{0,2,0,0}, {0,0,2,0}, and {0, 0,0, 2}

respectively. Thus, since (1 +2¢3)/(1 + 2{3) = —1 we see from (6.2)
that each of the three classes above maps to the non-zero element
in Hy(Z/2; Ko(Z({3)Z/2 x Z/2)) in the first Ranicki-Rothenberg se-
quence in (2.1).
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Similarly, the generators for LY(Z({3)Z/2 x Z/2) are obtained us-
ing formations (H®H*, K) which satisfy the property that projecting
the second kernel K to H* by factoring out H, gives a quotient of
the form H*/(py(K)) = Z/3*". Here ¢,t are each +1 and repre-
sent the action of Z(Z/2 x Z/2) on Z/3 via one of the 3 non-trivial
irreducible representations. (7.2) follows.

We now calculate I?O(Z(Q)Dz,, 7).

LEMMA 7.6. Ko(Z({3)Dg) = (Z/2)? with generators
{1,1,1,1+2L,1}, {1,1,1,1,1+4+2},

where the first four places are the corresponding representations for the
quotient group n?® =Z/2 x Z/2 and the last place corresponds to the
representation

_ 0 1 1 0
M.x—><_1 O)’ y—-><0 _1>.
(The proof is not much different from the proof of 7.4. Again from

[W4] A
Ki(Zo(L3)Ds) = Z/6 % (Z/2 x 2/2) x (Z3)"°.

Hence, besides the generators listed for K, (22(C3)Z/2 x Z/2) we re-
quire 2 more to give K{(Z,({3)Ds), and these are

L+ Gox+ D% = 1), T+ G - 1),

The first of these has image {1, 1,1, 1, 1+ 4{3} while the second
has image {1, 1,1, 1, (1 +2{3)?}. {Note that the square appears in
the last term because the reduced norm here is really just the ordinary
determinant}.)

COROLLARY 7.7. LA(Z((3)Ds) = (Z/2)? @ Z°, with one of the
Z/2’s surjecting onto the Z/2 in L}(Z({3)Z/2x Z/2).
There are two non-conjugate embeddings
it Z)2xZ/2—Dg,  e=1,2,

where ij(a) = x%, ij(b) =y, and iy(a) = x?, i(b) = xy. They give
induction maps

(7.8) iy 1 L(Z(83)Z/2 x Z/2)—L(Z({3) Dg)
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and we have

LEMMA 7.9. When k = 2 the induction maps i, are both non-
trivial on the torsion class, mapping it onto the kernel of projection to
D =Z/2x2/2.

Proof. 1t is direct to see that the two maps i; and i, are conjugate
via an outer automorphism of Dg. Thus it suffices to verify the result
for i;. For this inclusion we have

ii((==)) = M (as described in 7.6).

Thus, the unit {1, 1, 1, 1 +2{3} hasimage {1,1,1, 1, v} where v
is the determinant of the matrix N = (1 — ({3/2)(1 —a — b + ab)),
but calculating explicitly

10
N=<o 1+2c3>’

and from this the result follows.

More generally, for the dihedral group D,.: the two inclusions

=1

ig: Z/2XZ[2—Dyi, ig(a) = x* , ij(b) = y, ir(b) = xy
satisfy

ii((——)) = M;  where M;(x) = (? 11.1>, My(y) = <(1) (1))

and M; is the unique irreducible faithful representation of D,... In
particular we have
THEOREM 7.10. L4(Z({3)Dyn) = Z'*3 @ (Z/2), and the map

pi: Dyu—Dy  (pi(x)=x, pi(y) =)

induces a surjection

i LA(Z({3)Dyer)—LE(Z({3)Dy).

Moreover the torsion kernel of p; is in the image of the induction maps

i1 LA(Z($3)Z/2 x Z)2)—LA(Z({3)Dyo).

(The proof is direct and modeled on the proof of 7.9.)
Finally we consider the map

Qui+2(Bzy2xz)2)—LA(Z((3)Z/2 x Z)2).

We do not attempt to calculate the entire map, but just enough for
our purposes. Indeed the following result is sufficient.
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THEOREM 7.11. Let f: S!' x 81— Bz 5.7/, send e®e to e; ® e,
where e, is the non-zero element in Hy(Bz;,; Z) = Z/2, then

{S' x S, f} € Qao(Bz2xz/2)

maps onto the non-trivial torsion class in L3(Z({3)Z/2 x Z/2).

Proof. In [M-R] it is shown that the surgery problem

id x id xo

Sl X Sl % K4i+2 Sl % Sl x S4i+2

is non-trivial when S! x S! is regarded as having fundamental group
surjecting onto Z/4 x Z/2. But f factors as the composite

g h
St x S — Byaxz2 — Bzj2xz)2

where g is induced from the surjection of fundamental groups, as
is h.

LYZ(L3)Z/4xZ/2) =28 0 Z)2,
and by default, the class of {S! x S', g} in LA(Z({3)Z/4x Z/2) is
the non-trivial torsion element. But the map

LEZG)Z/4 X 2)2) = LAZ()Z/2 x 2/2)

is clearly surjective as well as injective on torsion. 7.11 follows.

8. The map Qg (Br)—LA(Z({3)x). In this section, when discussing
bordism and homology we ignore odd torsion.

The classes in the torsion subgroup of Lg(Z(Cg)n) are all induced
from quaternion

@ = {x,y|x¥ =yP= ()}

subquotients as we have seen in §6 (see also §2 of Part II, [M4]). Con-
sequently, in order to show that the image of Q.(B;) in Lg(Z(C3)7t)
is just the Z generated by (1) it suffices to show that the same is true
for the quaternion groups &,.. That is, we must show that

im(Qui(Be,) — LAZ(3)@,, ) = 27 P 02)2)

is just the single copy of Z coming from the simply connected case.
As in §7, we do this by an explicit analysis of individual elements
in 94*(B@>2,). However, here there is an important difference from
the situation in §7: we want a negative result, so, rather than look
at a single element, we must check all elements. But generators for
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94*(B¢21) =11, s=ax H,(Bgzl ; Qs(pt)) are very hard to describe. Con-
sequently, we use a technique which has been very helpful before,
[M2], manifolds with Z/2-coefficients, and corresponding to them,
L-groups with Z/2-coefficients.

The groups L.(A4; Z/2) are defined in terms of quadratic complexes
% of dimension n with boundary §% together with an equivalence
0% = 0% ®O% , where 6% isan n—1 dimensional Poincaré duality
complex. These groups are easily calculated since there is an exact
sequence

X2 7] X2
(8.1) -+ —LMA4) — LI(A)—LNA4;Z/2) — L!_(4) — -

From (8.1) we have immediately

LeMMA 8.2.
2/2 k=0
0 k=1
LAZW)3Z/D = 4 70 ks
0 k=23.

There is an analogous definition for Q,(X ; Z/2) in terms of Z/2-
manifolds (manifolds M" with boundary OM =M UJSM two iso-
morphic disjoint copies of a closed manifold dM called the (geo-
metric) Bochstein of M, and maps f : M—X which agree when
restricted to the two pieces of M ). An equivalent way of think-
ing about Z/2-manifolds, is as possibly non-oriented manifolds with
a chosen integral lifting of the first Stiefel-Whitney class, w;(M).
The product of two Z/2-manifolds is again a Z/2-manifold, since
wi (M xN)is wi(M)®1+1®w;(N), and this has an obvious inte-
gral lifting.

LEMMA 8.3. Let M, N be Z/2-manifolds, then in the relevant Z/2-
bordism group we have that
O(MxN) = (6M)x N+ M xJN.

Proof. 6(M x N) =M x N Ugprxsn (6M) x N, [M2]. But
OM XN =0M xINUSM xION.

In 6(M x N) each copy of M x N has a trivial normal bundle, so
a neighborhood looks like 7 x dM x 6 N. We can construct a Z/2-
bordism of (M x N) by simply attaching 72 x M x N via the top
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and bottom copies of I x M x d N, and the result of the bordism is
the Z/2-manifold of 8.3.

It is easy to compute Z/2-bordism since we have an exact sequence

(84) - Qu(X) 22 Qu(X)—Qu(X: 2/2) 5 Qua(X) 2 -

In particular
(8.5) Q.(X;2/2) = [[H(X; Q(pt; 2/2))
=[[H(X;Z/2)® Q(pt, Z/2),

and, using the product structure, generators are much easier to handle.
When 4 =Z({3)n and X = B, the composite maps

Qu(Br; Z/2)~—Ly(Z({3)m; Z/2)
fit together with the composite maps
Q,(Bz)—LH(Z({3)7)
to give a map of exact sequences. Moreover, the pairings
Qu(pt; Z/2) @ Qu(X ; Z/2)—Qyim(X ; Z/2)
and
LNZ;2/2) ® Ly (Z(53)m; Z/2)— Ly (Z(83)7 5 Z/2)

also fit together in the obvious way to give commutative diagrams.
Of course, our main interest here is in what happens with the quater-
nion groups under the map

e, Qui(Bg,)—L{(Z(L3)@y).

Recall the well known result [Mu]

LeMMA 8.6.
(Z/2)* j=1
(Z/2)? j=2
Hy . i(Bs ;Z/2) =
R IR
Z/2 j=0

moreover Sq' : HY*'—H**2 is an isomorphism, while H3(Bg, ; Z)
= Z/2i, and H4(B@’21 ) Z) =0.
From (8.5), 8.6 we have
Qu(Bg,; Z/2) = Y Q(pt;Z/2)® Hy(Be, ; Z/2)

rEs=%
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and we can choose representatives V., representing the elements in
27 Vi

COROLLARY 8.7. e, restricted to the torsion part of 94,-(3%) is
zero.

Proof. Consider an element of the form W7” x V;. If we factor
through the composite

Qu(pt: Z/2) x Qu(Be, : 2/2)
— Ln(Z(83): 2/2) ® L2y : 2/2)— L i(Z(3)8y s Z)2)

we see from 8.2 that » must be even. Hence, since we are only
interested in dimensions of the form 4;, i must also be even. Since
the generator in dimension O is in the image of L;(Z({3)) where it is
detected by the index, we can choose a basis for Qg;(pt) so that CP?
is one of the generators and the others go to zero in L4;(Z({3), 7).
But M4 x V4 has Bochstein 27~ M4 x V4i-1 if M is oriented, and
if M has infinite order in Q4,(pf) the Bochstein is non-zero, which
implies there is no class in Q4,~(B@>2, ; Z/2) which is in the image of
Q4,~(B@2,.) and goes non-trivially into Lg(Z(C3)@“2, ; Z/2). A similar
argument works for M x Vy;.0, M x Vj,_,, but it is even easier,
since, by 8.3, the Bochstein is already detected and non-trivial in Z/2-
bordism. 8.7 follows.

Of course, 8.7 is the final step in the discussion of the map 7x, and
the proofs of our main results are complete.
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