Pacific Journal of

Mathematics

HECKE EIGENFORMS AND REPRESENTATION NUMBERS OF
QUADRATIC FORMS

NNNNN WALLING




PACIFIC JOURNAL OF MATHEMATICS
Vol. 151, No. 1, 1991

HECKE EIGENFORMS AND REPRESENTATION
NUMBERS OF QUADRATIC FORMS

Ly~NNE H. WALLING

Using the theory of modular forms and Hecke operators, we ob-
tain arithmetic relations on average representation numbers of positive
definite quadratic forms in an even number of variables.

1. Introduction. When looking for multiplicative relations satisfied
by representation numbers of quadratic forms, it is natural to study
the effect of the Hecke operators on theta series attached to quadratic
forms; in this paper we use such theta series to construct Hecke eigen-
forms and thereby obtain relations on weighted averages of represen-
tation numbers of quadratic forms.

When working over the rationals we obtain the relations

r(gen L, mm') = A'(m)r(gen L', m')

!
- > xL(a)a"“r<genL,'—"EZi>
(')

a
a>1

where L is an even rank lattice equipped with a positive definite
quadratic form, r(gen L, n) is the average number of times the lattices
in the genus of L represent n, A'(m) is an easily computed constant,
xr 1s a quadratic character associated to L, and L' is a particular
sublattice of L scaled by 1/m (see Theorem 3.9).

We assume herein that we are working with a totally positive quadra-
tic form Q on vector space V of even dimension 2k over a totally
real number field K; for a lattice L on V we define the theta series
attached to L to be the Hilbert modular form

Q(L, T) — Z em’Tr(Q(x)r).

XEL

We observe that there is a family of lattices related to L which is
partitioned into “nuclear families” such that the Hecke operators es-
sentially permute the weighted averages of theta series attached to
lattices within a nuclear family. Analyzing these permutations allows
us to construct Hecke eigenforms, and analyzing the behavior of these
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180 LYNNE H. WALLING

eigenforms allows us to infer relations on the weighted averages of rep-
resentation numbers of lattices within a nuclear family (as described
above for K=Q).

Note that when the character associated to the lattice L is nontriv-
ial, the eigenforms we construct are only eigenforms for the subalgebra
of the Hecke algebra which is known to map theta series to linear com-
binations of theta series with the same weight, level, and character.

2. Definitions. Let K be a totally real number field of degree n
over Q; let @ denotes its ring of integers and 9 its different. Let
/" be an integral ideal, .# a fractional ideal, Kk € Z,, and x, a
numerical character modulo .7 ; we let

a b) (@’ F-lg-1

Fo(/l/,f)={(c d 5 pa ):ad—bceé’x,

ad—bc>>0}

and we let .2 (I'o(7", #), x»r) denote the space of Hilbert modu-
lar forms of (uniform) weight k& and character y, for the group
Io(r, 7).

As defined in [8] (see also (2.21) of [4]), we have Hecke operators

I(2): 4 To(W, F), X)) = M(Lo(A s IP), Xr)
where % is a prime not dividing 2.#"; we also have operators
S@): TN, F), xnw) = MTo(N , HE?), Xr)

where & is any fractional ideal relatively prime to 2/ (i.e. ord» @ -
orde 2.7 = 0 for all finite primes ). The collection of these oper-
ators 7T(£) and S(€) generate a commutative algebra .7~ which we
call the Hecke algebra. Since the mapping from ., (I'o(.*", #), xr)
onto 4, (To(/, o), xr) defined by f— f|(0t(;l 0) (where a > 0)
is an isomorphism which commutes with the operators of .7, we set

MY, xw) =@ MTo(, F), 2r)
7

where the sum runs over a complete set of strict ideal class repre-
sentatives ., and we consider 7 as an algebra of operators on
M (N, xv). (Notice that f|(g9) = f|(%’?) whenever o > 0,
o' >0 and af = d/.7.) We let F be the subalgebra of .9~ which
acts on each component space .#. (", x); thus F is generated
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as a vector space by all operators of the form 7(#))---T(#)S( %)
where _# is a fractional ideal relatively prime to 2#°, the .#; are
integral ideals (not necessarily distinct) and a# -- 4 #2 = & for
some « > 0. As shown in Theorem 3.1 of [8], a Fp-eigenform
fes LoV, F), xr) can be lifted to several linearly independent
T -eigenforms F € 4 (NV, yr).

REMARK. The Hecke operators 7T(£#) defined here differ slightly
from those defined in [2] and in [7]; letting 77(%) denote the latter
operator, we have (up to identification of isomorphic spaces via the

map [~ f](§9))
Nk o(P)PT(2)S(#7 ) = T'().

We also have S(#~1) = V(&%) where V(%) is the operator defined
in [2] and [7].

Let V be a quadratic space of dimension 2k over K with Q a
totally positive quadratic form and associated bilinear form B such
that B(x, x) = Q(x). For L alattice on V we define the theta series

attached to L by
O(L, 1.') — Z em’Tr(Q(x)r)

xX€L
where 7 € #" (and # denotes the complex upper half-plane). As
shown in [7] (see also [2]), (L, 1) is a modular form of (uniform)
weight k with quadratic character y; for the group

T{(#(L),nL) = {4 €To(#(L),nL):detA = 1}

where nL, the norm of L, is the fractional ideal of @ generated
by %Q(L), and (L), the level or stufe of L, is the product of
(nL)~!(nL*)~! and perhaps some dyadic primes (see [7]). Here L*
denotes the dual of L; note that (L) is an integral ideal and y
is a quadratic character modulo .#(L). Also note that a nondyadic
prime & divides (L) if and only if L is not modular (as defined
in [3]). (N.B.: the norm nL defined here is not the same as the norm
defined in [3].)

Let & be a prime not dividing 2%°(L); as shown in [7], when
L/ZL is hyperbolic we can realize 6(L, 7)|T(%) as a linear combi-
nation of theta series attached to Z-sublattices of L, when L/#L
is not hyperbolic we can realize 6(L, t)|T(%)? as a linear combina-
tion of #(LL, 1) and theta series attached to #2-sublattices of L,
and 6(L, 17)|S(#) is a constant multiple of 6(#L,1). (A sub-
lattice L' of L is a Z-sublattice of L if #L c L' ¢ L and
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L'/?L is a maximal totally isotropic subspace of L/#L; a
P-sublattice L” of a P-sublattice L' of L is a Z2-sublattice of
L if dimL"/(L" " PL) = dimL'/®L.) Thus the subspace of
M (F (L), xr) generated by forms whose components are theta series
is invariant under the action of the subalgebra L of 7 where
L is generated as an algebra by all operators S(.#), T(%#?),
and by T(£) when L/%L is hyperbolic. Thus the subspace of
M (To(F (L), n(L), xr) S #4(TH(# (L), n(L)), xr) spanned by
theta series is invariant under the subalgebra J;L = 9L n%.

3. Constructing the eigenforms. From now on we set /" = (L)
and we require that for all dyadic primes %, the localization L is
an even unimodular lattice. As remarked in [8], x; = 1 if and only
if L/ZL is hyperbolic for all primes & + 2#°. The space L/#L
is hyperbolic if and only if (—1)*discLy = n2e where n is some
nonzero element of K» and & € 4 such that ¢ is a square modulo
& (and disc Ly denotes the discriminant of L), since discLyp =
discV (in &%) for all primes & and by 65:19 of [3] disc V is a
square at an infinite number of primes, L/ZL is hyperbolic for an
infinite number of primes & .

DEFINITION. A lattice K is in the family of L, denoted fam L, if
K is a lattice on V2 for some a > 0, a relatively prime to 2/, and
for every prime & there exist some uz € 4 such that K;v”" ~ Lo
(where ~ denotes isometry; here V* denotes the quadratic space V
scaled by o and K%+ denotes the lattice K» scaled by ug). We say
K € fam L is in the nuclear family of L, denoted fam™ L, if there
exists some u € #* such that K* is in the genus of L.

REMARK. In the case that y; = 1, the requirement that a be rela-
tively prime to 2.# is superfluous: For any £ > 0, we can find some
a > 0 such that « is relatively prime to 2.#" and the Hilbert symbols
(o, (=D)kdisc V)% and (B, (~1)kdiscV)» are equal at all primes
Z dividing 27 (see §63B of [3]). (Note that if & is nondyadic
then specifying the square class of f in @z allows us to control
(B, (=DkdiscV)p; if & is dyadic then, by the Local Square The-
orem, taking f# = a (mod4%) we get f = aw? for some w &
1422 and hence (B, (=1)*disc V)% = (a, (—1)kdisc V)4 .) For &
a prime not dividing 2.#°, disc V% = disc L&, and since y; =1, §3
of [7] shows that (—1)k disc L& is a square. Thus for every prime &
we have (a, (=1)kdiscV)p = (B, (=1)kdiscV)z, so by 66:5 of [3]
we have Ve~ VE,
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It was remarked in [8] that the number of isometry classes in fam L
is finite when y; = 1; we now prove

LEMMA 3.1. The number of nuclear families in fam L is 2" where
re’l.

Proof. As shown in [7], L is modular at all primes & + 2./, so it
follows from 92:1a of [3] that L;,? >~ Ly forall up € & . In fact, for
#+2 and up €0, wemusthave LS ~ Ly unless Ly has an odd
rank Jordan component and (ux»|#) = —1 (see 92:2 of [3]). For £|2
and ugp € @, the norm group of L is equal to the norm group of
L;f (since Lg is even unimodular), so by 93:16 of [3], L;g’ ~ Lo if
and only if V¢ ~ V&, and by §63 of [3], V.7 ~ V5 if and only if the
Hilbert symbol (4z, (—1)kdiscLp)p = (up, (-1)fdiscVp)m = 1.

Consider & to be a “bad” prime for L if & 2 and Ly has an
odd rank Jordan component, or if 2|2 and there exists some Uy €
&% such that (um, (~1)FdiscLge)e = ~1. Let &, ..., &, denote
the “bad” primes for L. Thus there are at most 2! genera in fam L.
We associate to K € fam L the vector ((u; : €y), ..., (4; : &@;)) where
Kgf ~ Lg and (x:@) is the Legendre symbol if £ 1 2, and (x: &) is
the Hilbert symbol (x, (—1)k disc Lg)e if €|2; thus each genus within
fam L is associated to one such vector. We claim that these vectors
associated to the genera in fam L form a multiplicative subgroup of
{£1}. Since gen L is associated to (1, ..., 1) and each vector has
order 1 or 2, we only need to verify that the set is closed. Take
J, KefamL. Thus K ison V* where a > 0, « is relatively prime
to 277, and gen K is associated to the vector ((a: 4y), ..., (a:&)).
For any prime £ t 2/, we have Ky ~ Kf‘; ~ L, SO V;if” ~Vp.
From §63 of [3], we see this means

1=(a, (-)*discV)g = (a, (1)  disc L) .

Since Ly is modular and of even rank, discLy» = f2%¢ for some
B €Ky and ¢ € @5. If ordpa is odd, then (—1)*¢ must be a
square, which implies that L/ L is hyperbolic (see §3 of [7]). Thus
we have a%, - - F.72 = @ where the & are primes not dividing
2#" such that L/#L (and hence J/%J) is hyperbolic, and .7 is
some fractional ideal. Let Jy = J, and let J; be a Z-sublattice
of Ji_y. Then .#J2 must be in fam L, and for any “bad” prime &,
(FI)e = Jg . Thusif genJ is associated to the vector (uy, ..., ),
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the genus gen(#J) is associated to the vector (u(a : &), ...,
u(a : &;)). Thus the set of vectors associated to the genera within
fam L forms a subgroup of the group {+1}*.

A genus gen K lies within fam™ L if and only if there is some
totally positive unit # such that gen K% = gen L ; thus each nuclear
family within fam L contains the same number of genera, which is
the number of distinct vectors in the set

U={(...,u:@)...):uec*, u>0}.

So each nuclear family is associated to a unique coset of {+1}//U;,
and thus there are 2" nuclear families within fam L where r is some
nonnegative integer. O

REMARK. If K is a Z%-sublattice of L then &~ 'K € genL C
fam™ L since at all primes & # & we have Ky = Ly = #Lg, and
Ko ~ PLg by construction. (For a more detailed discussion of -
and Z2-sublattices, see §6 of [7].)

Let L;,..., Ly represent the distinct nuclear families within

fam L, and define
1

O(fam™L;, 1) =Y ——0(K, 1)
2 5

where the sum is taken over a complete set of isometry class represen-
tations K € fam* L; and o(K) denotes the order of the orthogonal
group O(K) of K. Notice that

0(fam® L;, 1) € #4(To(/", N(L)), x1)-
To help describe the action of F,L on 6(fam™ L;, 1), we first prove
LEMMA 3.2. Let & be a prime ideal such that & + 20,

and consider T(#) as a map from M (To(¥,nl), xr) into
My (Lo, PnL), xr).

(1) If L/L is hyperbolic then
0(fam™ L, 7)|T(P) = Ng;o(P)*/*(Ng/o(#)F ! + 1)0(fam* K , 1)

where K is any P-sublattice of L.
(2) If L/2L is not hyperbolic then

6(fam* L, 1)|T(%?)
= Ng,o(P)*(Ng,o(P)* =% = Ngjo(#)F~! + 1)6(fam™ 2L, 7).
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Proof. The first assertion follows from Lemma 5.2 of [8] and the
observation that §(fam™* L, t) = Y, 6(gen L*, t) where the sum runs
over a finite set of totally positive units # (which represent the distinct
vectors in the set Uy defined in the proof of the preceding lemma).

To prove the second assertion, we let L/, ..., L), represent the
distinct isometry classes in fam™® L; as remarked above, any 2-
sublattice L' of L lies in fam™ %#L. We set g;; =the number
of isometries g of ¥ which map L) to a &*-sublattice of L;.
Then we have that (1/0(L}))gi;is the number of P2-sublattices of
L; which are isometric to #L’;, (1/0(L;))gi; is the number of P2
sublattices of L} which are isometric to %L}, and by Proposition 7.3
of [7],

1 1
Z mg ij = Z '0‘(—L'5gz j
= N(P)FN(P)k2... N(@)O(N(P)* + 1) (N(P)? + 1).
Now Proposition 6.1 and Theorem 7.4 of [7] yield the desired re-
sult. o

Let gens. 7L be the commutative monoid consisting of all (finite)
products of the operators

{T(£): L/2L is hyperbolic}

U{T(£?) : L/2L is not hyperbolic} U {S(.#)}
where it is understood that Zis a prime ideal, # t 2/, and .~
is a fractional ideal relatively prime to 2#°. Then as vector spaces,
JL is generated by gensg L and F; is generated by gensF;l =
FpNgens. I L. Now we prove

LEMMA 3.3. Let T € gensF;F. Then
0(fam™ L;, 1)|T = Ar6(fam™ L, (;), 1)

where At is nonzero and dependent only on T, and or is a permuta-

tion of {1, ..., 2"}. Furthermore, a% =1 and or has a fixed point
only if or = 1, the set {or : T € gensZ)L} forms a commutative
group of order 2" which acts transitively on {1, ...,2"}.

Proof. Let @, ..., &; be the “bad” primes for L as in the proof
of Lemma 3.1, and associate as before each genus within fam L with
a unique element of {£1}’, and each nuclear family within fam L
with a unique element of the quotient group {x1}/U; .
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Take T € gensJ;E. Thus
T=T(R)  T(P)T(PL) - T(Ph)S(F)

where the & are primes (not necessarily distinct) such that L/%L
is hyperbolic for 1 < i < [/ and not hyperbolic for i > /, and
aP - PPL, - PL.F? =@ forsome a > 0. Let K = Kj;5 C
- C Ky € Ky = L be lattices such that K; is a Z-sublattice of
K;y for 1 <i<1,and K; is a P?-sublattice of K;_; for i > /.
Then repeated use of the preceding lemma and Proposition 6.1 of
[7] shows that §(fam* L, 7)|T = Arf(fam™ 7K, 1) (where A # 0
depends only on T); the techniques used in Lemma 3.1 show that
fam™ 7K is associated to the coset (... , (a|@;), ...)Ur . Similarly,
if fam™ L; is associated to (... , &, ...)Ur then @(fam™ L;, 7)|T =
Ar0(fam*L;, t) where fam*L; is associated to (...,e;(a|@),...)UL.
Hence we may associate to 7" a permutation g7 of {1,...,2"}
where a% =1 and o7 has a fixed point only when o7y = 1. Clearly
{or:Te€ gens.7OL} is an abelian group of order 2"; that this group
is transitive follows from Lemma 3.2 and the proof of Lemma 3.1. O
This shows us that for T € gens ;> we have

> ai6(fam* L;, 1)|T = A7 »_ a;6(fam™ L, (), 1)
= Z ag (10 (fam™ L;, 1)
(since o2 = 1) so to find the eigenspaces of J; on
@D (6(fam* L, 7))
i
we merely need to find the eigenspaces of {or:.7 € gens Z)L} acting
on C¥ by (a1, a,...) — (@s,(1)> 4,(2)» ---) - Since 62 =1 and
{o7 : T € gens%L} is transitive, a vector (a;, 4y, ...) is an eigen-
vector for {or : 7 € gens.F;L} only if there is some a € C such that
a; = a for each i. Clearly (1, 1,...,1) is an eigenvector; this
corresponds to 6(fam L, 7) =Y ; 0(fam™ L;, t), which was shown to
be a J,L-eigenform in [8] in the case that y, = 1.
LeEMMA 3.4. For 1 <i<vr, let p;y be the permutation
pin=(12H22"-1)(32-2)..- (271 271 4 1)
and for 1 < j <2, define p;; inductively by
pij = (2i+a1 2i+(lz)-~'(2i +a;, 2! +a1)



HECKE EIGENFORMS 187

where p;;_1 = (a) az)---(aj-, a;). Set

2r-i

O; = Hpij-
Jj=1

Then up to a reordering of fam™ L, ..., fam™ Ly, the permutations
o1, ..., 0, generate {or:J € gensJ,L}.

Proof. Clearly the o; commute, 6? =1, and for i} <ip <--- <,
we have

i1+ 04,0; (1) # 1.

Hence if we demonstrate that gy, ...,0, € {o7: T € gens%L} then
it must be the case that these g; generate {or: T € gens 7"} .

We begin by choosing g7 # 1 and then ordering the nuclear fami-
lies within fam L such that a7 = (12)(34)---(2"—12") = g. Next,
using the transitivity of the group {o7: T € gens %L} , we choose o,
such that or,(1) = 4. Now, o707, = or,0r, 50 or,(2) = 3. Thus
or, = (1 4)(2 3)x. Next we observe that o7,(5) # 6 else or o7, is
a nontrivial permutation with a fixed point; thus we can reorder the
nuclear families such that o7, (5) = 8. Notice that we can choose
this reordering to preserve the equality or, = 01. Since we have
071,01, = 07,07, , W€ get

o7, = (1 4)(2 3)(5 8)(6 7) *.

Reasoning as above, or,(9) # 10, thus a reordering of {fam™ L;}
gives us

or, = (1 4)(2 3)(5 8)(6 7)(9 12)(10 11)#

and we still have oy = g;. Continuing this process of reordering
{fam™* L;} gives us o7, = 0, and o1 =a.

Now we choose or, such that or, (1) = 8; the subgroup (aTl s OT, s
GT3> is commutative and has no nontrivial elements with fixed points,
so arguing as before we can reorder the nuclear families {fam™* L;}
so that o7, = g3, o, = 02, and or = 0;. Continuing this process,
we find or,,...,0r € {or: T € gens.7;L} and a reordering of the
nuclear families {fam™ L;} such that 07 =0y, ... , OT =0]. O

This shows that the J,L-eigenforms of the form ¥, a,6(fam™ L;, 1)
correspond to the vectors (..., a;,...) which are eigenforms for
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{g1, ..., 0,}. Now we show
LEMMA 3.5. Let 0y, ..., 0, beasinLemma 3.4. For i=1,...,r,
let vi = (vj1,...,Vyy) Where v;;j = (—1)% with a € Z such that

a-2i-'<j<(a+1)-2"1. Thenv,, ..., v, generate an abelian group
of order 2" under componentwise multiplication, and every element in
this group is an eigenvector for {or: T € gens%l‘} (where the permu-
tation ¢ maps the vector (a; , az, ...) € (CX)? to (@g(1)> Ag(2)s +++))-
Furthermore, if v and V' are distinct elements of this group, then v and
v have distinct eigenvalues for some or .

Proof. Notice that the entries of the vector v; occur in blocks of
2i-1 5o
V; if j<i,
%3vi) = { v i >
For 1<j<rand v=yv, v, with ij <. <, take [ <s such
that j >, and j < i, if /+1<s;then
v if [ iseven,
7i(v) = { —v if ] is odd.
Since a(w') = g(v)a(v'), two vectors v and v’ have the same eigen-
values for all the ¢; if and only if v=v'. 0

REMARK. For any vectors v = (aj, a;, ...) in this group (v{, ...,
v;) we have ) ;a; =0 unless v=(1,1,...,1). To see this, write
V=V Vg where i; < --- < I, and observe that for i < i; and
j=1 (mod2i~1), we have

{ vy ifi<igorj=I[(mod29),
Vi = .
Y —v;; if i =i5and j #[ (mod2%).
Thus aj =q; if j=1[ (mod2%),and a; = —~a; if j=[ (mod2:7})
but j #/ (mod?2%).

Let v,.1, ..., vy denote the other vectors in the group generated
by vy, ...v,, and write v; = (v;1, ..., ¥;-) . With the nuclear families
of fam L ordered as in Lemma 3.4, set

Ei(1) =) v;;0(fam* L;, 1),
J
Then we have

THEOREM 3.6. Those E;(t) which are nonzero are linearly indepen-
dent T{-eigenforms. We also have

P (6(fam* L;, 7)) = P (Ei(7)),

i I
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so the number of forms 6(fam* L, , 1), ..., 8(fam™ L,-, t) which are
linearly independent is equal to the number of E;(t) which are nonzero;,
here 2" is the number of nuclear families within fam L.

Proof. Lemmas 3.3 and 3.5 show that for T € gens 7%,
irE; if a7 (v;) = vi,
Ei(7)|T = { T7Ei(1) 1 or(vi) =V, .
—ArEi(t) if or(vi) = —v;;

since v; and v; have the same eigenvalues for oy, ..., o, only when
[ = j, the nonzero E;(7) must be linearly independent.

To finish proving the theorem, it suffices to show that the matrix
A = (v;;) is nonsingular. Now, the i, j-entry of 44’ is the dot
product of v; with v;, but this is just the sum of the entries of the
vector v;v;. As remarked above, the sum of the entries of any vector
v in the group generated by vy, ..., v, isOif v# (1, 1,..., 1); thus
AA! =27 . I where I denotes the 2" x 2’ identity matrix. O

Next we use Theorem 3.1 of [8] to lift the J,l-eigenforms E;(7)
to 7 L-cigenforms E;(1) € 4. (#, x) where x is a Hecke character
“extending x7Xeo ” With )oo(@) = sgn(ds)F for an adele a € Ky .
(Thus y is a Hecke character such that the finite part of its conductor
divides the conductor of x;, x(é,) = xr(a) when &, , the ./ "-part
of the adele &, is a unit at all primes dividing .#* and a € K* such
that 4 =a (mod./"); cf. [8] or [4]. Note that for u € &>,

2.(w)0(fam* L, 1)

= f6(fam™ L, 1) 0
so yr(u) = sgn(u)k as required in [8].) The lift of E;(r) involves
theta series attached to lattices in the “extended family” of L, which
is defined as follows.

<u'1 2) = sgn(u)*0(fam™* L, 1)

DEeFINITION. A lattice K is connected to L by a prime-sublattice
chain if there exist lattices Ky = L, K;, ..., K; such that K; is
a #- or a P?-sublattice of K;_; (depending on whether L/ L is
hyperbolic) and K = #K¢ for some fractional ideal . and some
a > 0. Here it is understood that &, ..., % are prime ideals (not
necessarily distinct) which do not divide 2#°, and .¥ and a@ are
relatively prime to 2./7; also, we take K; to be a Z-sublattice of
K;_y if L/%L is hyperbolic, and we take K; to be a Z2*-sublattice
of K;_; otherwise. If K is connected by a prime-sublattice chain to
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a lattice in fam L then we say K 1is in the extended family of L,
denoted xfam L.

We can lift any E;(7) regardless of whether E;(7) is nonzero (al-
though if E;(7) =0 then the lift of E;(7) is also zero). Theorem 3.1
of [8] shows us that each nonzero J;F-eigenform E;(t) can be lifted
to ¢;#' linearly independent .7 L-eigenforms Ei(r) where A’ is the
class number of K/Q and c¢; is the cardinality of

{l€]: €@ = aP, ---#F? with a > 0 and L)%, L hyperbolic} ;

here [€] denotes the complex of the strict ideal class of &, and it
is understood that _# is a fractional ideal relatively prime to 2.7".
Thus if y; =1, each nonzero E;(7) can be lifted to # linearly 7 -
eigenforms where /4 is the strict class number of K/Q. Furthermore,
an examination of this lift gives us

COROLLARY 3.7. Foreach i =1, ..., 2", each component of E‘,-(r)
is a linear combination of theta series attached to lattices in xfam L,
and

Ei(0)|T(P) = 6,(F)(Ngjo(P) ™! + DE(7)

where 6;(#) = %1 so that ar(v;) = 6;(P)v;.

_To obtain nice relations on the “Fourier coefficients”of the lifts
E;(7), we follow [4] and define the “Fourier coefficients” associated to
an integral ideal .# by

a;(@) = ay(&) Ny p(S) 7/

where ¢ > 0, &7 = ., and the form Y, a,({)e*™ T ¢
My (To(A, A), x1) is a component of Ei(t). Thus for & € /L,
¢>0,and # =¢&(nL)~! we have

a;(#) = Ngjo(nL)™ 2> "y x(fam™ L;, &)
J
where r(fam* L, &) = 3, (1/o(L'))r(L', &) with the sum running
over isometry class representatives L' € fam™* L, and where we take
nL to be one of the strict ideal class representatives used to define
M(N, xL) = B A To(, I), xr). Since E;(t) is an eigenform
we have

K(l)al')= Y 1) Ngpo(t ) a2
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where T(#) € 7L and k() is some constant such that E,—(‘c)lT(/Z )
= x(#)E;(1) (see (2.23) of [4]). These relations and a scrutiny of the
lift will yield relations on the numbers r(fam™ L, £); as a step toward
that goal we prove

LeEMMA 3.8. For a prime % + 2.4, define
1 if L/ L is hyperbolic,
—1 otherwise;

— H SL(.@)Ordﬁ"%.

Pt

eL(P) = {
and define

Then for any a € @ such that a is relatively prime to /', yp(a) =
sgn(a)<er(a@). Moreover, if we let A, ...,.% be strict ideal class
representatives such that

Ei(t) e (W, x) S @ #4To(#, AnL), 11)
n

(where x is a Hecke character “extending xix, —see the discussion
Jollowing Lemma 3.6), then for # = &mL)™', with ¢ enL, ¢ >0,
A relatively prime to 2.0 and /3|4 ,

a;(/ 2l ) = 7" (/)L (4 ) Ngjo(nL) /2.y "y r(fam* & L;, 2¢)
J

where x*(&/) = y(a) for an adele & such that d»d = 1 for all primes
P with ordeg & =0 and ad = &7 .

Proof. Letting (%%) € Io(#", nL) such that ad — bc = 1, we see
that the restrictions on d in the transformation formula (2) of [7]
are unnecessary, but one needs to replace N(d)~"/? by d=™/2, Then
the arguments used to prove Theorem 3.7 of [7] show that y;(a) =
sgn(a)ker(a) for any a € @ with (a@, /) =1.

Now, take u and a € K* such that & =a.%, and a > 0. Then
from the construction of E;(t) we find that

a;(/ ) = 7" (S) Ny jo(F)*
> vyr(fam® £ L;, 2a7%) - Ngjp(n(F,L)) /2
J
= 7 (A)eL(Fu) Nijo(mL) ™ 2y " r(fam* a7, L, 28).
J
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Since x; is quadratic, we have
(e (&) =7 (Fu)er(A)x(a)eL(a®) = 1™ (S)er(A)

and so the lemma follows. O

For a prime ideal & 1 2. we now define
MP) = Ng;o(P)*(Ngjo(#)1 + 1) when er(#) =1,
and
MP?) = Ngjo(P)* (Ngjo(P) 2
— Ng/o(@)*~1 +1) when e (#) = -1.
We inductively define A(#) where T(#) € L by defining

min{a, b}

(ga A(‘gzb Z NK/Q c(2k~—l)/1(gga+b—2c‘)

and A(A)A(A'") = A(AH'") whenever # and #' are relatively prime.

THEOREM 3.9. Take ¢ enL, &> 0. Write E(nL)™! = 4#' where
M and &' are integral ideals and T(#) € TE. Then

r(fam* L, 2¢) = A(# )N o(#)~*/*r(fam* L', 2¢)

- Y eL(#)Nyjp( ) r(fam* & L, 2¢)

MM CA
& £O

where nL' = #nL and L' is connected to L by a prime-sublattice
chain. In the case that K = Q, we can scale L to assume nL = Z;
then for m, m' € Z such that T(m) € 7L we have

r(gent L, 2mm') = A(m)m~*/%r(gen L', 2m’)
- > xla)a*! (genL 2er)

al(m,m")
a>1

where L' € gen L with gen L' determined by m.

Proof. Take & € nL, ¢ > 0, and write ¢(nL)~! = .4#' with
T(#)eTL (ie. A isrelatively prime to 2 and ords.# is even
whenever ¢;(#) = -1 for £ {1 2#7). To lift E;(1), we may as well
assume that .ZnL is one of the strict ideal class representatives used
to define .. (/" , x); then we observe that

Ei(1)|T(#)*S(#~") = Ngjo(A) ™ A M) Ei(7)
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so we can fix a square root of 7*(#) and define the .#nL-component
of E;(1) to be

ST AVN k/2

\/ NK/q(./f Z’UU

where nL} =.#-nL and L} is connected to L; by a prime-sublattice
chain. (Notice that if .# = .72 then we can interpret

\/ X (M )Nijo(#)? Y v;6(L;, 1)
J

as &1 (F)F (S )Nk o(F)* > vijf(FL;, 1) since FL; € fam™ L in
this case.) Then

T (A) =

M)

VX' (M )Ngo(A)</2

Since #' = é///‘l(nL)‘1 we have
=\/X"(# )Nk o(# Zv,]r fam® L', 2¢)

“Nkjo(A)~ /NK/Q(nL)k/Z

Ei(7).

SO
ici( A )a; (A"
= MM )Ni)o(# ) *2Ng;o(nL) ™12y " v;jr(fam™ L}, 2¢)
(where E;(7)|T(#) = k;(#)E;(1)). Thereforcji we have
a( M) =K (M)a(A")
- D X)Ngo)aa"s?)

MM CH
A #G

which, together with Corollary 3.7 and Lemma 3.8, give us
Y v;r(fam* Lj, 2¢)
J
= A(#)Ngjo(#) K12 " vx(fam™ L), 2¢)
J

— Y en()Ngjolet Zv,]rfam S Lj, 2§).

MM A
A #G

Summing on i and normalizing yields the desired result. o
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4. Linear independence of theta series when K = Q, y; = 1, and
rank L > 2. Suppose now that K = Q, x; = 1, and rank L = 2k
with k£ > 1. Since the object of this section is to show that the E;(7)
constructed in §3 are nonzero (and thus by Theorem 3.6 the forms
{6(fam™ L;, 7)} are linearly independent), we may assume that the
lattice L has been scaled so that nL =Z. Let ¢q,, ..., q; denote the
“bad” primes for L (as defined in the proof of Lemma 3.1). Since L
is even unimodular when localized at 2, an analysis of the Hilbert sym-
bol (x, (—1)kdisc L), shows that 2 is not a “bad” prime for L. Fur-
thermore, since y; = 1, there are 2’ nuclear families within fam L.
(Using the Chinese Remainder Theorem we can realize each vector
in {£1}} as ((a : q1),...,(a : q;)) where a = p,---p; with the
p; primes (not necessarily distinct) and p; ¥ 2#°. Since L/p;L is
hyperbolic, K'/¢ € fam L where K = K;, Ko = L, and K; is a p;-
sublattice of K;_;. Then fam* K!/2 = gen K1/4 is associated to the
vector ((a:qy),...,(a:q:)).) Forany prime p the localized lattice
L, has the Jordan decomposition

Ly~JyL---1LJp;
letting e; = ord, nJ; and m; =rank J; =dim J; ® Q, for b > 0 with
ord, b = e we define
rank,(b, L) = H(e — es)ms.
e3<e
Notice that rank,(b, L) depends on famL, p and b; since fam L
is fixed, we simply write rank,(b) for rank,(b, L).

LeEMMA 4.1. Fix a prime q and suppose L' € fam L such that for
all primes p we have L) ~ L, except when p =q. (Thus q must be
a “bad” prime for L.) Then

O(fam* L, 7) — 6(fam* L', 1)
- . a —a)k
=2massL- Y H(b : L) (bt — a)

b>0,(a,b)=1
rankq b odd

and
6(fam* L, 7) + O(fam* L', 1)

=2massL- |1+ Z H(%,L) (bt —a)™*

b>0,(a, b)=1
rankq b even
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where
a _ kg —1/2p—k ni(a/b)Q(x)
H(b’L) i*(disc L)™"/“b Z e
xeL/bL

- 1 . . .
and massL =3 crym: 1 5oy 1S an invariant for fam L.

Proof. First we verify that massL is an invariant of fam L.
From our construction we know that the zero-Fourier coeflicient of
f(fam™* L, 1) is mass L; from the definition of Hecke operators we
know that the zero-Fourier coefficient of 6(fam™ L, 7)|7T(p) must be
(p*=1 + 1) times the zero-Fourier coefficient of §(fam* L, 7). Using
Lemma 3.2 and identifying isomorphic spaces of modular forms via

the map
1 0
fo’(o ))

we see that for p a prime such that y;(p) =1 we have
6(fam™ L, 7)|T(p) = (p*¥~' + 1)8(fam* K7, 1)

where K is a p-sublattice of L and hence K!/? € fam L. Since the
zero-Fourier coefficient of §(fam'™ K!'/7 | 1) is massK!/7 | we have
that mass L = mass K!/? . Now, as discussed at the beginning of this
section, any nuclear family fam™ L' C fam L has a representative of
the form (K;)!/¢ where a = p;---ps with p;, ..., ps primes (not
necessarily distinct) such that y;(p;) =1 and Ky =L, Ky, ..., K;
are lattices with K; a p;-sublattice of K;_;; thus it follows that
mass L' = mass L for any L' € fam L.
From equation (82) of [5] we have

+ _ a ok
§(fam* L, 1) = mass L {1+§H(b,L)(br a) }

where the sum is over all integers @ and b with » > 0 and (a, b) =1,

and
a

H <5’ L) = iK(discL)™'2b7F D" e (%Q(x))
xeL/bL

(here we write e(a) for e™®). Using the results of §3 of [7] we have

= c(fow)-wrne I [ E cffow))

xeL/bL pprime \ xep~*bL/bL
p|e’

where b = b'b" with (b’, b")=1=(b", N). Fix aprime p|b’ and let
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e = ord, b; by assumption p # 2 (since L is even and unimodular
when localized at 2 and so 2 + N; see §3 of [7]) and hence we can

write
Ly~JyL---1J

where rank J; = m; and J; ~ p%(l, ..., 1, &) with & € Z; and

es; < e5.1. Since we are assuming Z = nL we have e; = 0. We know

L/p°L ~ L,/p°L, (where the isomorphism is as Z/pZ-modules),

and if x € L and x’' € L, such that x — x’ € p°L, then
Q(x) = Q(x") (modp°Z).

Thus, choosing u € 2Z such that 4 = p¢/b (modp?), the techniques
of §3 of [7] give us

> e(tow)

xep ¢ bL/bL

/
=11 Y. e(uaptT(di + -+ dy  +esdy)

s=11d,,...d, €L/p°L
_ 2k (e,-e)/2
p*e [ ™ "/cs(b, . p)
€j<€
where
a
Cs (—5, L,p)
1 if2)(e—e),
={ ((=1)"=s/2|p) if 2 1 (e — e;) but 2|m;,
(=12 Yags|p)p~ 12 3 yez pz e(ud?) if 2 1 (e —e5)ms.

(Recall that e; =0 since nL =Z,so ¢ > e;.) For L' € fam L such
that L), ~ L% with u € Z;, we see that ¢(%,L',p) = (u|p)cs($, L, p)
if e; <e and 2 ¢t (e)m;s, and c(§, L', p) = ¢5(§, L, p) otherwise.
Since (u|p) = —1 only when p = ¢, the lemma now follows. O

Now we can prove

LEMMA 4.2, Foreach i=1,...,2" we have
t

E (1) = mass L - H ~1)‘5u)+2’ZH<%,L)(br—a)‘k
j=1 a,b

where the sum runs over all integers a, b with b > 0, (a,b) =1



HECKE EIGENFORMS 197

and for each j, 6;; is chosen to be 0 or 1 such that rank, b =4y
(mod 2). Also, H§-=1(1 +(=1)%) = 0 unless Ei(t) = 6(famL, 7).

Proof. Choose Ty, ..., T; € gens.7 L such that §(fam™ L, 7)|T; =
/1T f(fam* L', 7) for some L' € fam L with L, ~ Lj except when
s = j. Then we can arrange the nuclear families w1th1n fam L such
that g; =07, 1 <j<t, where g; is as defined in Lemma 3.4. Let

_ { 0 iij(Vl') =V;,
YT oj(vi) = —v;
(where v; is defined in Lemma 3.5 and E;(7 Z’ ] v,J 6(fam*L;, 1)).
Then the argument used to prove Lemma 4 1 now gives us

1
massLEi(T)

211

=(1+(=1%)+2) 3 H(Z, )(bt— a)~*

j=1 rankql b=é, (2)
= (14 (=12 (1 + (=1)%-)

21—2

sy | X H(G.L)Cr-aF
Jj=1 rankql b=s, (2)
rankq2 b=é, (2)

t
_ —1\%, t a -k
=TIa+ 12 +2 3 H(b, )(br a7k, o
j=1 rankqj b=, (2)
(1<j<y

Finally we have

THEOREM 4.3. Foreach i =1, ..., 2!, the form E;(t) is nonzero,
and hence the set {0(fam™ L, 1), ..., O(fam* Ly, 1)} is linearly in-
dependent.

Proof. If E;(t) = 6(fam L, 7) then the zero-Fourier coefficient of
E;(t) is nonzero. So suppose E;(7) # 6(fam L, 7); we will show that
the first Fourier coefficient of E;(7), a;(1), is nonzero. As before, let
41, ..., q; denote the “bad” primes for L and set Q = qf” ---qf i
where the J;; are as defined in the preceding proof. From the
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preceding lemma we have
(2'mass L)~ E;(1)

Il
—~
S
~

=

ﬂ

I
x-

=ZH(%,L> Yo (alQ) > (br—a+bm)*
2 ]

ac(Z/bZ)” meZ
1 —DE 12k (k
-TH(50) T (e EE
k
b ac(Z/bZ)*

oo
x Z mk—ICZnim(t—a/b)

m=1
D12k (k
S )Zb kH< )
x Z (Z —a|Q)m k-1 27zima/bezm'mr) )
ac(Z/bZ)* \m=1
(Here { denotes the Riemar}vn-zeta function, and By is the kth Ber-
noulli number.) Now, take Q € Z such that
0 ifp+tb,
ord,0={ 1 if ord,Q=1,
2 otherwise;
then for b > 1 with rank; b =4;; (mod2), we have

Z (_alQ)eizmma/b

ae(Z/bZ)*

— Z (_alé)eZnima/b

B~I

a€Z/bZ
-b ordqa ~ ) .
=11 (:,? q) Y. (alg) Cenimals
q°lib acZ/q‘Z

ordq a
)

x ( Z (Clq)ordqaehtimc/zf Z eZm‘md/q"‘)

cEZ/qZ deZ/q"'Z
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where it is understood that in the above product ¢ is a prime dividing
b. Unless g¢~!|m, the above sum over d is zero; also, the sum over
cis =1 if g° + m and ord, Q is even. Thus in the Fourier expansion
of E;(1), the coefficient for e27* is

(=D*-12kL (k)
By

> @t (g 1) (~alQ)e?iar

neZ, ,(n,Q)=1 a€(Z/nZ)*

n square-free
_ (—l)k—IZkC(k)H<l’ L) q> ( Z (C|q)e2nic/q)
ceZ/qZ

QkBk Q q1Q

Yo nFu(n)(n|Q)
neZ, , (n,Q)=1
n square-free

Note that ((—l)k—lzki(k)/QkBk)H(é, L) # 0. We know that

> (ela)e™l = vg;

cEZ/qZ

thus to show that the coefficient of e€2"i* is nonzero, we only need to
show that the last sum in the above expression is nonzero. We have

> nFumm@ =1+ > nFx(n)(nQ)
neZ ,(n,Q)=1 n>1
n square-free n square-free

and

Sk (m(nlQ)
n>1

5. Concluding remarks. Since the techniques used in this paper are
in some ways rather general, one can imagine there are many exten-
sions of the results presented here. First let us note that equation (82)
of [S] (which we used in §4 to show E;(7) # 0 in the case that K= Q,
xr =1 and k > 1) is extended in [6] to allow K # Q; however, in [6]
Siegel only concerns himself with free lattices. Thus the techniques of
§4 can be used to show that the E;(t) are all nonzero in the case that

<y n?<l O

n>1
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the strict class number of K is I; this author suspects that Siegel’s
results hold regardless of the strict class number of K, and thus in
general all the E;(t) are nonzero. Next, let us observe that Theorem
5.2.5 of [1] implies that the results of §3 can be extended to Siegel
modular forms when K =Q and x; = 1. In view of the techniques
used to prove Theorem 7.4 of [7], this author suspects that Theorem
5.2.5 of [1] can be extended to allow K # Q and y; # 1. If this is in-
deed the case, then the results of §3 herein may be extended to general
Siegel modular forms. Furthermore, Siegel’s papers [5] and [6] extend
equation (82) of [5] to include Siegel modular forms attached to free
lattices; thus the results of §4 could probably be extended to Siegel
modular forms. Finally, we mention that these results should extend
to include lattices of odd rank; this, in fact is the author’s current
concern.
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