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ALBERT JEU-LIANG SHEU

In order to study how the C*-algebra C(S,U(3)) of twisted SU(3)
groups introduced by Woronowicz is related to the deformation quanti-
zation of the Lie-Poisson SU(3), we need to understand the algebraic
structure of C(S,U(3)) better. In this paper, we shall use Bragiel’s
result about the irreducible representations of C(S,U(3)) and the
theory of groupoid C*-algebras to give an explicit description of the
C*-algebra structure of C(S,U(3)), which indicates that C(S,U(3))
is some kind of foliation C*-algebra of the singular symplectic folia-
tion of the Lie-Poisson group SU(3).

In recent years, there has been a rapid growth of interest in the
theory of quantum groups [D]. In particular, S. L. Woronowicz has
developed a C*-algebraic theory of quantum groups, which has moti-
vated a lot of research [B, Po, Ro, S, Va-So, Wol, We2].

In [S], the explicit knowledge of the C*-algebra structure of
C(S,U(2)) [Wel, S] has helped us to find a deformation quantization
[BFFLS, Ril, Ri2, Ri3] of the Lie-Poisson SU(2) [D, Lu-We], which
is in a sense compatible with the quantization of the group structure
of SU(2) by the “twisted groups” S,U(2). On the other hand, al-
though both C(S,U(2)) and C(S,U(3)) [Wol, Wo2] are defined as
universal C*-algebras of certain generators and relations, the alge-
braic structure of the latter seems to be much more complicated than
that of the former. In [B], Bragiel classified the irreducible representa-
tions of the C*-algebra C(S,U(3)) of the twisted SU(3) groups (with
0 < u < 1) and showed that C(S,U(3)) is a type-I C*-algebra [Pe].
In this paper, enlightened by the ideas in [M-Re, Cu-M], we shall use
Bragiel’s result and the theory of groupoid C*-algebras [Re] to give an
explicit description of the C*-algebra structure of C(S,U(3)), which
indicates that C(S,U(3)) is some kind of foliation C*-algebra of the
singular symplectic foliation of the Lie-Poisson group SU(3) [Co, We,
Lu-We].

We shall use freely the concepts and properties of the theory of
groupoid C*-algebras throughout this paper. A good reference for
this is [Re]. First let us fix notations. Let T be the unit circle in C
and T2 be the two-torus.embedded in C%. We shall denote by ¢ and

307



308 ALBERT JEU-LIANG SHEU

w the two canonical coordinate functions of T2 with values in T.
For any groupoid &, we denote by &|P the reduction of & by the
subset P of the unit space of & [Re]. If a locally compact group G
acts on a space X by an action 7, we shall denote by X x,; G the
corresponding transformation group groupoid.

We define & := Z° x,Z|Z53 , where Z = ZU{-+oo} , the subscript >
denotes the nonnegative part, and Z° acts on z by translation deter-
mined by the first three components, i.e. a{u)(v)=v — (U1, U2, U3)
for 4 € Z° and v € Z3. Since the last two copies of Z act trivially
on Z°, we have C*(8) = C*(&;) ® C*(Z?) = C*(®¢) ® C(T?), where
B = z X; Z3|Z>3 and t is the action by translation. We assume
that under the above isomorphism, the standard basis elements e,
and es of Z> correspond to the conjugates ¢ and ¥ of the canon-
ical coordinate functions on T? (instead of ¢ and w in order to
be more compatible with the notations used in [B] for the later dis-
cussion). Recall that the regular representation p3 of C*(®p) on the
open dense invariant subset Z>?3 is faithful [M-Re], and hence C*(®)
can be faithfully represented on the Hilbert space /2(Zx3) ® L%(T?)
through p; := p3; ® m where m is the representation of C(T?) by
multiplication operators on L2(T2).

In [B], the irreducible representations of C(S,U(3)) are classi-
fied into six 2-parameter families (with parameters in T?) of irre-
ducible representations 73, 71, M2z, M1, %12 and 7y (listed here
in the same order as in [B]) on Hilbert spaces /2(Z>3), 1%(Z>?),
12(25%), 12(Z51), I?(Z>1), and [?(Z>%) = C, respectively. The 2-
parameter family of irreducible representations 7 (on a Hilbert space
#) in the above list determine a representation # of C(S,U(3)) on
#, ® L>(T?). Since m3(u;;)’s and m3(u;;*)’s are (finite) linear com-
binations of weighted (multivariable) shifts on /%(Z>3) with weight
functions extendable to Z>3 continuously, and since the weight func-
tions involved in each #3(u;;) or m3(u;;*) are products of the canoni-
cal functions ¢, ¥, ¢ and ¥ on T? and functions on Z>3 indepen-
dent of the parameters in T2, it is easy to identify the 2-parameter
family #3(u;;) or #i3(u;;*) with an element in C.(&) C C*(&) (which
is faithfully represented on /2(Z»3) ® L*(T?)) for each u;;. For ex-
ample, with C;(Z>3) and Z° canonically embedded in C,(®), we
have
s(un®) =efi, #(ur*) = e fiz,
3(u13*) = esfis, #3(uar*) = e3fa1,
3(Us1*) = e4 f31

S & &
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where, for (N, M, L) € Z53,

.fll(Na Ms L) = ( —ﬂz(N+l))l/2a
Sia(N, M, L) = uN*1(1 — y2M+1)1/2
.f13(N9 Ma L) = :u2+N+M>

fa(N, M, L) = uN(1 — g2E+D)1/2,

fE’sl(Ns M: L) = ouN+L'
Note that for 0 < 4 < 1, the above expressions have canonical mean-
ing even when N, M or L is co. Thus we can factor the homomor-
phism 73 through C*(®), i.e. there exists a homomorphism

n:C(S,U3)) — C* (&)
such that 73 = p3on. We shall see later that » is in fact injective
since all the representations # of C(S,U(3)) mentioned above can
be factored through 7.

Let us consider the following invariant subsets of the unit space of
&,

={(N,M,L)N,M,LeZs} =153,
X21 {(N,M,L)N,M¢&Zsand L = oo} =Z5?,
X2 ={(N,M,L)N,L€Z> and M = oo} = Z52,
Xyu={N,M,L)Ne€Z>sand M =L =00} =Zs,
{

Xp={(N,M,L))Me€Z>and N =L =00} =Z>

and Xy = {(o0, 00, 00)}. We define X; = X;;UX;, fori=1, 2, and
g; (resp. gi,) to be the quotient map from C*(&|X;.;) to C*(&|X;)
(resp. C*(®|X;,)) for i=0,1,2, (resp. i =1,2 and n =1, 2)
where X; is the closure of X; in the unit space of ®&. Since
7z3(u,,)7z3(u,1 ) = sz for the wu;;’s listed above and they separate
points in Zs> x Z»2?, i.e. points (N, M, L) with N < oo, it is
easy to check that C.(X3) = C.(Z>3) C Im(n) (by considering
the level sets of these f;;’s). Now since those weights f;; are non-
vanishing on Z>3 and C.(Z>3) C Im(n), the convolution algebra
Ce(Z>3 x4 Z°) and hence C*(Zx3 x,Z°) = C(T?)®.% are contained
in the C*-algebra generated by (the weighted shifts) n(u;;*) of the
u;;*’s listed above and hence in Im(n) where % is the algebra of
compact operators (on /%(Z>3) here).

Now we consider the diagonal homomorphism (a3, 02;) from
C*(®) to C*(6|X,;) ® C*(B|Xy,). It is easy to see that &|X,, =
z* Xo(2,n) Z°|Z»2 where Z3 acts on Z* through the action a(2, n)

in the way that 2 components (depending on n) of Z’ act on Z? by
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translation while the other 3 components act trivially. More precisely,
a2, )(u) v =v — (U1, #2) and (2, 2)(p) -v = v — (41, p3) for
ueZ and v € Z*. Thus

CH(B|Xan) = C*(Z* % Z}|Z>2) ® C*(23) = C*(Z* x. Z*|Z>2) ® C(T?),
where the canonical generators of Z3 are e;, e4, es when n = 1,
and e, e4, es when n = 2. It is straightforward to check that
(o210m)(u;5)’s (1 < i, j < 3) are supported in sza(z,l)zﬂzzz where
Z* is generated by e;, e,, e3 and es in Z°, while (g5301)(u;5) s are
supported in Z° Xo(2,2) Z*Z>? with Z* generated by e;, e, e3 and

es in Z°. Furthermore, from the weight functions f; ; listed above,
it is easy to check that C.(X;) C Im(o; o ) and hence

C*(Z* Xa2,1) Z*|Z52) @ C*(Z? X o(2,2) Z*|27) = 2% ® C(T?)

is contained in the C*-algebra generated by (o3;, 022)(n(u;;*)) and
hence in Im((03;, 022) o). Let p, be the faithful regular repre-
sentation of Z° x; Z*|Z»2 on 12(Z»?) and py, = p» ® m be the
corresponding faithful representation of

C* (T Xaz.n L*|Z52) = C*(T° x. Z*Z52) ® C(T?)

on [%(Z5?) ® L*(T?), where the isomorphism identifies e3, es with
¢, ¥ if n =1, and identifies e, e, with ¢, ¥ if n = 2. Then it
can be easily checked that

P2n(G2n(N(Ui5))) = Foon(uij)

(note that in the above identification, the symbols N and M used in
[B] need be interchanged when n = 2) and hence 7,, factors through
n. Let my,:=02,01.

Now we consider gj;00, and og;;00;. Since clearly 71,00, factors
through o,; and gy, o g, factors through o,; and o0,,, we may talk
about 0120071 (=012002) and gy 00z = 011002 (=011007) by
abuse of language. Note that

C*(Z? Xo(2,1) L4|Z52) © C*(Z* X (2,2 242> %) C C*(®]X;) C Ker(a1,)

because (Z? X,(2,1)Z*Z>2)U(Z2 Xo(2,2)Z*|Z>%) C X, . It is again easy
to see that &|X, = Z X,(1,n) Z°|Z> where Z° acts on Z through the
action «(1, n) in the way that one component (depending on n) of
Z3 act on Z by translation while the other 4 components act trivially.
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More precisely, a(1, 1)(u) - v =v —u; and (1, 2)(u)-v =v — uy
for €7’ and v € Z. Thus
C*(®|X,) = CHZ %, Z|Z>) ® C*(Z*) = C*(Z %, Z|Z>) ® C(T%),

where the canonical generators of Z* are e, €3, e5, es when n =1,
and e, e3, e4, es when n = 2. It is straightforward to check that
(o110020n)(u5)’s (1 < i, j < 3) are supported in Z x4, 1) Z*|Z>
where Z3 is generated by e, e; and e; in Z°, while the
(012 0 03 0 M)(u;;j)’s are supported in Z X, 2 Z*|Z» with Z* gen-
erated by e;, e;, e; and es in Z3. Let p; be the faithful regular
representation of Z x; Z|Z> on [*(Z3) and p;; = p; ® m be the
corresponding faithful representation of

C*(Z X o(1,1) Z°|Z3) = C*(Z x; Z|Z5) ® C(T?)

on [*(Z>?) ® L*(T?), where the isomorphism identifies e; and e,

with ¢ and ¥ respectively. Then it can be easily checked that

P11((011 0 a2 0 ) (u45)) = 11 (uy))
and hence 7, factors through # and #y; ;= 01,0009 =011011 =
011 © 722 . On the other hand, we have

C*(Z X (1,2 Z*|Z5) = C*(Z x; Z|Z3) ® C(T%),

where the conjugates of the three canonical coordinate functions of
T? correspond to the generators e;, e; and es in Z°. Composing
the above identification with id ®x;,, we get a homomorphism 4,
from C*(Z x,(1,2) Z*|Z3) to C*(Z x. Z|Z>) ® C(T?), where ki, is
the homomorphism from C(T3) to C(T?) induced by the map from
T2 to T3 sending z € T2 to (z;, —z1, z2). Let pj3 = p; ® m be the
faithful representation of C*(Z x. Z|Z>) ® C(T?) D Im(#,,), where
M2 = A120(a120070m) = Ajp0(ay300, 01) . (Here we use the convention
that fog is meaningful whenever Im(g) C Dom(f).) Then jj304;
defines a representation of Im(gj200;017) on [3(Z>) ® L2(T?). It is
straightforward to check that

(P12 0A12)((012 0 G2 0 ) (i) = 12 (usj)
(note that in [B], M is replaced by N) for all i, j. From the
weight functions f;; listed above, it is easy to check that C.(X;) C

Im(ag; 0o g3 07). So by the formulas for 7;,(u;;) in [B], it is not hard
to see that

C*(Z Xq(1,1) Z*|Z3) @ A12(C*(Z X401 ,2) Z*|Z3))
= 2C*(Z x; Z|Z>) ® C(T?) = 2.7 ® C(T?)
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is contained in the C*-algebra generated by (111, 712)(%;;*) and hence
in Im((ny;, n12)). Notice that

C*(Z Xo(1,1) Z°|Z5) ® C*(Z X 4(1,2) Z*|Z>) € C*(6| X))

is contained in the kernel of oy .

Now we consider gy o ) 0o g;. Since agy o g; o g, clearly factors
through o; o g, and gy, o g, we may talk about gy o g;; 00, =
0p© 01300, = dpo 0,00, by abuse of language. Note that C*(6|Xp) =
C*(Z°) = C(T%) and that (gpo gy 00 0n)(u;)’s (1 <i,j < 3) are
supported in Z3? generated by e;, e; and e; in Z°. Composing the
identification C*(Z3) = C(T3) with ko (where the generators e, e,
e3 are identified with the conjugates of the corresponding coordinate
functions of T?), we get a homomorphism A from C*(Z3) to C(T?),
where x is the homomorphism from C(T3) to C(T2) induced by the
map from T2 to T3 sending z € T2 to (z;, z2, —2z;). Let jy :=
m. Then p oy is a representation of C*(Z3) on L2(T?). It is
straightforward to check that

(Do © No)(uij) = #o(uij)
for all i, j, where 5y = 490 gp o gy 0 g3 o is a homomorphism
from C(S,U(3)) to C*(Z?*) = C(T?). Comparing the definitions of
k12 and ko and relating the generators of their domains C*(Z3) to
those of Z> as we specified above, it is easy to check that #y factors

through #y; and #;;, say no = &g o (111, N12) for some @y defined
on Im(7n;;, n12). Note that ker(é@g) contains the subalgebra

C*(Z X a(1,1) Z°|Z3) ® A12(C*(Z X401 ,2) Z¥Z5)) = 2% ® C(T?).

Now we summarize what we have so far. There are homomorphisms
=", M1, N2, M1, M2 and 7o from C(S,U(3)) to

C*(®) = C*(Z° %o 29|Z53) = C(Z° x 23|Z5%) ® C(T?),
C*(Z* x. Z2Z>%) ® C(T?), C*(Z* x. Z}Z>2) ® C(T?),
C*(Z x: Z|Zs) ® C(T?), C*Z x:Z|Z>)® C(T?) and C(T?),
respectively, such that
(1) each n; or nu;, factors through n; with j > i, where n; :=
(Mi1> miz) if i=1,2. Infact, my = wa10n, M2 = wxnon, N =

Wi1 oM, Mi = &) 0N, N2 = W20 My, Ny = Wyon and
Mo = wg o 112 for some w’s defined on the range of the correspond-

ing n’s.



TWISTED SU(3) 313

(2) Let n; = @; o ;1 for a suitable homomorphism @; defined
on Im(#;,1). Then ker(@®;) contains a copy of C(T?)®.% if i=2,
and contains two copies of C(T?)® % if i = 0 or 1. Furthermore,
Im(n) = C(T?). Note that Ker(n;) = .} (Ker(@;)) .

(3) ;= pion; (i=0,3) and &y = Ppipomy (i =1,2) for
some faithful representations p; and p;, on Im(n;) and Im(%;,)
respectively. Since the irreducible representations of C(S,U(3)) are
classified by those 2-parameter families of 7y, 7y;, 712, 21, 722,
and m3, the spectrum of C(S,U(3)) is a disjoint union of 6 copies of
T? as a set. On the other hand, by (1)-(3), all these representations
m;’s (or m;,’s) factor through n; (or 7;,) with j > i and hence
n = n3 is faithful. Thus, the type I C*-algebra C(S,U(3)) has a
composition sequence

0 C.A = Ker(ny) € A =Ker(n) €A = Ker(n) €% = C(S,U(3))

such that .54 = Ker(@,), A/ A = Ker(®,), A/ A = Ker(dy) and
/A = Im(ng) = C(T2). Note that C(Yy) ® % (#) C Ker(d@;) €
Im(n;41) € C(Yi41) ® #(#) (for some L2-space #), where Y is
homeomorphic to T? if k = 3 or 0, and to the disjoint union of 2
copies of T2 if k =2 or 1. If C(Y;,1) ® Z(#) # Ker(®;), then
we have non-trivial irreducible representations of Ker(@®;)/C(Y;41)®
Z (#) which will induce irreducible representations of C(S,U(3))
not unitarily equivalent to any of the n’s found in [B]. So we have
C(Yir1)  Z(Z) = Ker(@;) .

We summarize what we obtained about the structure of the C*-
algebra C(S,U(3)) in the following theorem.

THEOREM. The C*-algebra C(S,U(3)) of the twisted SU(3) group

has the composition sequence
A CHCACT=C(S,UB))
such that
HIAZC(TY), AlA=AIA=20(THX

and A= C(TH Q% .

We remark that the above decomposition of C(S,U(3)) is compat-
ible with the singular foliation of the Lie-Poisson SU(3) [Lu-We] by
the symplectic leaves [We]. More precisely, there are six 2-parameter

families (with parameters in T?) of symplectic leaves diffeomorphic
to C°, C!', C!, C2, C? and C3, respectively as pointed out by
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A. Weinstein in a private communication. With each leaf of positive
dimension quantized by the Weyl quantization [Ho, Vo], it is likely
that we can find a deformation quantization (in the sense of [Ril]) of
the Poisson SU(3) as we did for the case of Poisson SU(2) in [S]. In
a sense as explained in [S}], C(S,U(3)) can be regarded as a foliation
C*-algebra of the (singular) symplectic foliation on SU(3).

With some more effort to analyse the data obtained, we are able
to describe the topology of the spectrum Y of C(S,U(3)). In or-
der to do so, we shall say that a copy of T? approximates another
copy of T? in a topological space in type ... if any sequence in
the first T2 converges to any element in the second TZ, and in type
__,—, > or =, if a sequence z(n) in the first T2 converges
to w in the second T? if and only if z(n), — w;, z(n); — wy,
z(n)1z(n); — W, or z(n),z(n); — wyw, respectively. Now clearly
Y is a union of the above Y, ’s, and by a more detailed analysis of
the factorizability among #’s than the one specified in (1), we can
conclude that Y is a disjoint union of Y, Yi;, Y2, Y21, Y2y and
Y; (each homeomorphic to T?) such that (i) Y3 is open dense in
Y in the way that Y3 approximates Y>;, Y7, Y11, Yi2 and Y in
type ___, —,...,...,and ..., respectively, (ii) Y>; and Y, are
disjoint open sets with dense union Y, = Y3; UYy; in Y\Y3 such
that Y;, approximates Y;;, Y2, and Y, in type —, = and ...
respectively, and Y, approximates Yy;Yj; and Yy intype __ >
and ... respectively (Y;,NY, = @), (iii) Y;; and Y;, are disjoint
open sets with dense union Y; = Y;; U Y}, in Y\(Y3UY3) such that
Y1 and Y;; approximating Y, in type = and — respectively.
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