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The paper studies some properties of J-symmetric representations
of x-algebras on indefinite metric spaces. Making use of this, it de-
fines the index ind(J, S) of a x-derivation & of a C*-algebra &/
relative to a symmetric implementation S of J. The index consists
of six integers which characterize the J-symmetric representation ng
of the domain D(J) of J on the deficiency space N(S) of the op-
erator S'. The paper proves the stability of the index under bounded
perburbations of the derivation and that, under certain conditions on
d, ind(d, S) has the same value for all maximal symmetric imple-
mentations S of J. It applies the developed methods to the problem
of the classification of symmetric operators with deficiency indices

(1,1).

1. Introduction and preliminaries. Let & be a C*-subalgebra of
the algebra B(H) of all bounded operators on a Hilbert space H. A
closed x-derivation 0 from ./ into B(H) is a linear mapping from
a subalgebra D(J) dense in & into B(H) such that

(i) 6(AB)=6(A)B + Aé6(B),
(ii) A € D(o) implies A* € D(J) and d(A4*) =d(A4)*,
(iii) A4, € D(6), A, — A and J6(4,) — B implies 4 € D(d) and
0(A) =B.
An operator S on H implements 6 if D(S) is dense in H and
AD(S) C D(S) and 6(4)|pes) = ilS, Allps) = i(S4 — 4S)|p(s)

for all 4 € D(d). If T extends S and also implements ¢, then T
is called a d-extension of S. If S is symmetric and it does not have
symmetric d-extensions, it is called a maximal symmetric implemen-
tation of ¢ .

The case when a symmetric operator .S implements the zero deriva-
tion on &, i.e., S4|ps) = AS|ps), A € &, was extensively investi-
gated (see, for example, [6], [21], [22]). Different sufficient conditions
were obtained for S to have a selfadjoint extension 7 which com-
mutes with &7 .

The problem of J-extension of a symmetric operator S which im-
plements a derivation 6 on %/ has been addressed in a number of
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papers (see, for example, [7], [9]). In [9] it was proved that any
x-derivation J from &/ into B(H) implemented by a symmetric op-
erator has a maximal symmetric implementation S. The link between
the deficiency indices #n.(S) and n_(S) of S and finite-dimensional
irreducible representations of ./ was investigated. This led to intro-
duction in [10] of the set M (J, &) of all pairs (n..(S), n_(S)) where
S are maximal symmetric implementations of ¢ .

The investigation of symmetric implementations of derivations J is
deeply related to the investigation of J-symmetric representations of
their domains D(J) on indefinite metric spaces (see [8], [9], [10]). The
nature of this relation can be easily seen from the following remarks.

If S is a symmetric operator and S* is its adjoint, then

D(S*) = D(S) + N_(S) + N.(S),

where Ny(S) = {x € D(S*): S*x = idx}, d = +, are deficiency
spaces of S'. The numbers 74 (S) = dim N.(S) are called the de-
ficiency indices of S. We define a scalar product on D(S*) by the
formula:

{x,y}=(x,»)+(S*x, S).
Then D(S*) becomes a Hilbert space and

D(S*) = D(S) ® N_(S) ® N,.(S)

is the orthogonal sum of the subspaces D(S), N_(S) and N.(S)
with respect to { , }. Let N(S) = N_(S)® N,(S) and let Q be the
projection on N(S) and Q. be the projection on N, (S) in D(S*).
Set J = 20+ — Q. Then J is an involution on N(S) and N(S)
becomes an indefinite metric space Il (kK = min(n.(S), n_(S)) with
the indefinite scalar product

x,y5={Jx,y}, x,yeN(S).

Now if S implements a *-derivation ¢ from . into B(H) it
follows easily that D(J) acts on D(S*) as an algebra of bounded
operators. Since D(S) is invariant for D(J),

ns(d) =QA4Q,  AeD(d),

is a representation of D(d) on N(S). It was proved in [9] that ng
is a J-symmetric representation of D(J) on N(S) and that there is
a one-to-one correspondence between symmetric d-extensions of S
and null subspaces in N(S) invariant for ng. If S is a maximal
implementation of J, then ng does not have null invariant subspace
in N(S).
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Because of the close relation between derivations of C*-algebras
implemented by symmetric operators and J-symmetric representa-
tions of *-algebras on indefinite metric spaces the study of such rep-
resentations becomes very important. Section 2 is devoted to this
study. For every J-symmetric representation 7 we introduce a sex-
tuple ind(n) = (ky, k-, dy(n), d-(n), iy(7), i_(n)) which we call
the index of n.

Powers [16] considered Ej-semigroups «; of x-endomorphisms of
B(H) which have strongly continuous semigroups U(¢) of intertwin-
ing isometries (“spatial” semigroups). If d is the generator of U(t),
then § = id is an unbounded maximal symmetric operator, i.e.,
n_(S) = 0, and it is a maximal symmetric implementation of the
generator J of «;. Therefore, N(S) = N,(S) is a Hilbert space, mg
is a *-representation of D(d) on N(S) and (0, ny(S)) € M0, &)
where & is the closure of D(J). Powers [16] defined the index of a;
as the maximal number of non-zero mutually orthogonal projections
in the commutant of ng(D(d)). The examples of CAR-flows [16]
show that #n,(S) = oo for all of them and that the index has values
i=1,2,.... In[17] Powers and Robinson gave another definition
of the index which is independent of the existence of intertwining
semigroups of isometries. Arveson [2] and [3] used another approach
to this index theory for Ej-semigroups based on the notion of con-
tinuous tensor product systems. He showed that for “spatial” semi-
groups the Powers-Robinson index can be associated with an integer
i=1,2,....

Jorgensen and Price [8] studied the variety 7 of all operators
V: H— N(S) such that VA4 = ng(4)V, A € D(J), and showed
that 77 has a unique scalar form which turns Z° into an indefinite
metric space. They introduced the V-index as the Krein dimension
of 7.

In this paper we associate the index ind(d,S) with every sym-
metric implementation S of a derivation J. In order to do this we
consider the J-symmetric representation ng of D(J) and we define
ind(d, S) = ind(zg). If n_(S) =0, so that .S is a maximal symmetric
operator, then

ind(d, §) = (n+(S), 0, n(S), 0, ix(7s), 0)
where i (mg) is the Powers index and d,(mg) = n(S). If
min(n.(S), n_(S)) < o0

and if mg extends to a bounded representation of &/ (for example,
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if &/ is commutative), we show that d,(ng) = n,(S) and d_(ng) =
n_(S).
Theorem 3.6 proves that ind(d, S) is stable under perturbations of
J of the form
o(A)=06(A)+i[B, 4],
where B is a bounded selfadjoint operator, i.e.,
ind(d, S) =ind(g, S + B).

Every derivation implemented by a symmetric operator has an in-
finite number of maximal symmetric implementations. Therefore the
question arises as to whether the index ind(J, S) may be the same
for all such implementations. In [10] it was shown that if J has a
minimal symmetric implementation 7 (if &/ contains the algebra of
all compact operators, any closed derivation of ./ has such an im-
plementation [10]) and if min(n_(T), n+(T)) < oo, then all maximal
implementations of 6 have the same deficiency indices. In this pa-
per we show that in this case ind(d, S) = ind(d, S;) for all maximal
symmetric implementations S and S; of J.

Theorem 3.2 investigates the link between the deficiency indices
of maximal symmetric implementations S of 6 and dimensions of
irreducible representations of /. It improves the result of [9] and,
in particular, it shows that if 1 € & and if max(n,(S), n—-(S)) < oo,
then there are disjoint sets of irreducible representations {z;}’_, and
{pj}i_; of & such that

p q
ny(S)=)Y dimz; and n_(S)=>) dimp;.
i=1 j=1

If max(n4(S), n—(S)) = oo and k = min(n.(S), n—(S)) < oo and if
ns extends to a bounded representation of &/ (1 € &), then there are
irreducible representations {z;}{ of & such that k = }?_, dimz;.

Every densely defined symmetric operator S has a x*-algebra s
associated with it: Bs = {4 € B(H): A and A* preserve D(S) and
(S4—AS)|p(s) extends to a bounded operator}. The closure %5 of Zs
is the maximal C*-subalgebra of B(H) such that .S’ generates a closed
x-derivation ds of &/ into B(H) and that D(ds) = %s. In Section 4
we make use of the results of Section 3 and associate a number S(.S)
with every symmetric operator .S such that n.(S) = n_(S) =1 and
such that the representation ng of the algebra %5 on N(S) does not
have null invariant subspaces. We obtain that 0 < #(S) < 1 and that
B(S)= B(T) if S and T are isomorphic.
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It is well-known (see, for example, [1]) that up to isomorphism there
is only one symmetric operator with the deficiency indices (1, 0) and
only one with the deficiency indices (0, 1). The variety of symmet-
ric operators with the deficiency indices (1, 1) is much greater. All
symmetric differential operators
Sa=it. D(S)={y(x): yand V' in Ly(0, a), y(0) = y(a) = 0},
0<a<oo,have n (S;) =n_(S;) = 1. Schmudgen [19] showed that
S, and S, are not isomorphic if a #b.

Theorem 4.2 investigates the structure of the representations 7g of
the algebras %5 on N(S,) and shows that B(S,) = e~“. This pro-
vides us with another proof of Schmudgen’s result and also shows that
B(S) takes all values in the interval [0, 1). The question arises as to
whether S(S) classifies up to isomorphism all the symmetric opera-
tors .S such that n, (S) = n_(S) = 1 and such that the representations
s do not have null invariant subspaces.

2. J-symmetric representations of x-algebras. In this section we
consider J-symmetric representations of x-algebras in indefinite met-
ric spaces. For the benefit of the reader and for the sake of being
reasonably self-contained, we call attention to the references [12, 15]
and provide some amount of detail about indefinite metric spaces and
J-symmetric representations.

Let J be an involution on a Hilbert space H, i.e., J* = J and
J? = 1. With the indefinite scalar product

[x,y]I={x,y), x,yeH,

H becomes an indefinite metric space. A subspace L in H is called

(a) nonnegative if [x, x] >0 forall xe L,

(b) positive if [x, x]>0 forall xeL, x#0,

(¢) uniformly positive if there exists r > 0 such that [x, x] >
r(x,x) forall xe L,

(d) null if [x,x]=0 forall xe L.

The concepts of nonpositive, negative, uniformly negative subspaces
are introduced analogously.

Set Q = (J+1)/2. Then H = H. & H_, Q is the projection
onto H,, 1 — Q is the projection onto H_ and [x, x] = (x, X)
if x € H, and [x,x] = —(x, x) if x € H_. Therefore H; is
uniformly positive and H_ is uniformly negative. Let k; = dim H;,
d ==+ and let Kk = min(k_, k;). Then H is called a II;-space.
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Law of inertia [12]. If L is a maximal nonnegative (nonpositive)
subspace of H, then
dim L = k(k_).
A representation 7 of a x-algebra & into B(H) is called J-
symmetric if forall 4 €.« and forall x,y in H

(1) Ja(A*)=n(A)*J, sothat[n(A)x,y]=[x, n(4")yl.

If a subspace L of H is invariant for 7z, then by 7n; we denote
the restriction of 7 to L.

J-symmetric representations 7 and p of a x-algebra & on H and
K respectively are called J-equivalent if there is a bounded operator
U from H onto K such that Un = pU and such that

[Ux,Uyl=[x,y] forallx,yeH.
For every subspace L in H the subspace
LM ={yecH: [x,y]=0forall x e L}

is called J-orthogonal complement of L.
It is well-known that there always exists the decomposition

H=LoLt, L'={xecH: (y,x)=0forallyeL)}.
In an indefinite metric space the decomposition
(2) H = L[+]LM!

(the symbol [+] means that the sum is direct and the summands are
J-orthogonal) does not always exist.

THEOREM 2.1 ([12]). Let J be an involution on H. Then H =
H, ® H_ where Q = (J + 1)/2 is the projection onto H, . Let k; =
dim Hd R d=4.

(i) Let L be a nonnegative (nonpositive) subspace of H. The de-
composition (2) holds if and only if L is uniformly positive (negative).

(ii) If L is an indefinite subspace, then (2) holds if and only if L
decomposes into a direct sum of two uniformly definite subspaces.

(iii) (lohvidov and Ginzburg, see [12], page 118). Let k., = oo.
Then all the positive subspaces of H are uniformly positive if and only
if k- <oo.

For IT;-spaces (k < oo) Shulman [20] obtained the following strong
result.
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THEOREM 2.2. If n isa J-symmetric representation of a C*-algebra
& on a Ili-space H (k < o), then there are maximal negative and
maximal positive subspaces N and P respectively such that H =
N[+]P and such that N and P are invariant for n. The representa-
tion m is similar to a *-representation of < .

Let n be a J-symmetric representation of a *-algebra & on H,
let P be a positive invariant subspace of H and let N be a negative
invariant subspace of H . Define scalar products on P and N by the
formulas:

(x,y)p=[x,y], x,y€eP, and (x,y)y=-[x,y], x,y€EN.
Then P and N become pre-Hilbert spaces. Set p = np. Since

(p(A)x, y)p =[n(4)x, y] =[x, n(4%)y] = (x, p(4")y)p,
p is a x-representation of ./ on P. Similarly, n is a *-representa-
tion of &/ on N.
If P and N are uniformly positive and uniformly negative, then
they are Hilbert spaces and there are positive r and ¢ such that
3) rllx|? < flx|[p < [lx[I*,  x € P, where ||x|j3 = (x, x)p,
allx|* < lIxlif < llxlI>,  x € N, where ||x[|§ = {x, X)~-
We have that

P} = sup((p(A)x, p(A)x)p/(x, x)p)
= sup((Jz(4)x, n(4)x)/(x, x)p)
< sup(||z(4)x|/rlix|1?)
= [|n(A)|1*/r.

THEOREM 2.3. Let L and M be uniformly positive (negative) sub-
spaces of H invariant for n.

() If M LW = {0}, then there is an invariant subspace K in L
such that the representations ny; and mg are equivalent, i.e., there is
an isometry U from M onto K with respect to the norms || ||y and
|| llx such that Unyp(A) = ng(A)U for all A € & . If, in addition,
LN MW = {0}, then the representations my; and m; are equivalent.

(ii) If L and M are maximal uniformly positive (negative) invariant
subspaces, then the representations my and nx are equivalent.

Proof. Let L and M be uniformly positive. Then, by (3), for x
in L and y in M,

@ s YU =1Tx < xS el llae/ (o 2.
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Since M n LMt = {0}, for every y # 0 in M there is x in L
such that [x, y] # 0. Therefore y generates a non-zero bounded
functional f,(x) =[x, y] on L. Since L is a Hilbert space, there
exists a linear operator S from M into L such that KerS = {0}
and such that for all x in L and y in M,

[x,y]=({x, Sy)L.
Let K be the closure of the linear manifold {Sy: y € M}. Then

(x, np(A)Sy)L = (m(A")x, Sy)L = [7L(4")x, y]
=[n(4")x, y] =[x, n(d)y] =[x, np(4)y]
= (x, Snp(A)y)L,

so that 77 (A)S|y = Sma(A)|p for all 4 in o/ . Therefore K is
invariant for # and 7gS|y = S7arlnr -

Let now y, converge to 0 in M with respect to {| |[3s and let Sy,
converge to x in L with respect to || ||z . Then, by (4),

[{x, Sya)rl = 0%, yall < IXI|LlWnllar/ (rLran) /2,

so that (x, Sy,)r converge to 0. Therefore (x, x); = 0, so that
x =0. Thus S is a closed operator. Since it is defined on the whole
space M , it is bounded. From this and from Gelfand’s and Naimark’s
theorem [13, §21] it follows that there is an isometry U from M onto
K such that ngU = Umy,.

Let, in addition, L N M1} = {0}. Then, for every x # 0 in L,
there is y in M such that [x, y] # 0. Therefore Im.S is dense in
L, so that K = L. Part (i) is proved.

Let L be maximal uniformly positive. By Theorem 2.1(i), H =
L{+]LY . If R = M n LY # {0}, then R is a uniformly positive
invariant subspace in LI, Therefore L is not maximal. This contra-
diction shows that M N LI+ = {0}. If M is also maximal uniformly
positive, then, similarly, L N M = {0}. Therefore part (ii) follows
from part (i).

DEeFINITION. Let @ be a J-symmetric representation of a x-algebra
& on a Il;-space H, where k = min(k_, k). If P is a uniformly
positive subspace in H invariant for 7, then we define i, (P) as the
maximal number of non-zero mutually orthogonal projections in the
commutant of 7zp(#) in P and we set d,(P) =dimP. Set

d.(m) = Igug d,(P) and i,(n)= Is)ug i (P)
€ €
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where & is the set of all uniformly positive invariant subspaces in
H . Similarly, we define numbers d_(n) and i_(m) by considering
the set .#° of all uniformly negative invariant subspaces in H. We
shall call the sextuple

ind(n) = (k+ ’ k- ’ d+(7[) > d—(n) » i+(7t) > l_(ﬂ))

the index of =.

By law of inertia, d,(n) < k; and d_(m) < k_. It is clear that
if representations 7 and p on spaces H and K respectively are J-
equivalent, i.e., there exists a bounded operator 7" from H onto K
such that [Tx, Ty] =[x,y], x,y € H, and such that pT = Tn,
then ind(n) = ind(p).

THEOREM 2.4. (i) Let H be a separable I1;-space and let L be
a uniformly positive invariant subspace. Then there exist uniformly
positive invariant subspaces {L;} such that L C L;, that L; C Lj,,
and such that d(n) = lim;_d.(L;) and i,(n) = limj_ i+ (L;).
The same holds if L is a uniformly negative invariant subspace.

(ii) If there is a uniformly positive invariant subspace M such that
d.(M)=d.(n) and that i, (M) = i,(n), then any uniformly positive
invariant subspace L is contained in a uniformly positive invariant
subspace P such that d,(P) = d,(n) and that i.(P) = iy (n). The
same holds if M is uniformly negative.

(iii) Let H be a Ili-space such that k < co and let m not have
null invariant subspaces. Then there exist maximal uniformly positive
and maximal uniformly negative invariant subspaces P and N in
H such that d_(n) = d_(N), i_(n) = i-(N), di(n) = d.(P) and
ir(m) =i (P).

Proof. Let L be uniformly positive. If i, (L) < iy(n), then there
exists a uniformly positive invariant subspace M in H such that
iv(L)<iy(M). Set R=MnLWY. If R={0}, then it follows from
Theorem 2.3(i) that 7, is equivalent to a subrepresentation of 7y .
Therefore i (M) < i, (L). This contradiction shows that R # {0}.
Set K = L[+]R. Then K is a uniformly positive invariant subspace,
L c K and M n KM = {0}. By Theorem 2.3(i), d. (M) < d.(K)
and iy (M) <iy(K).

If iy(n) = 00, then di(n) = co. Since H is separable, there are
uniformly positive invariant subspaces {M;} such that

i4(n) = lim i, ().
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Using the construction above, we obtain uniformly positive invariant
subspaces {L;} such that L; C L;;; and that i,(M;) < i (L;).
Therefore
iy(m) = lim i (Lj) = oo.
Jj—00

Then obviously
imd. (L)) =d.(n)=oo.

J

If i, (7) < oo, then, making use of the construction at the beginning
of the theorem, we obtain a uniformly positive invariant subspace P
such that L ¢ P and that i (P) = i (7). If d,(P) < d;(n), then
there is a uniformly positive invariant subspace A such that d,(P) <
d+(M). Using the construction at the beginning of the theorem, we
obtain a uniformly positive invariant subspace K such that P C K
and that d, (M) < d,(K). Repeating this process, if necessary, we
conclude the proof of part (i).

Part (ii) follows easily from the construction at the beginning of the
theorem.

Assume that k = k_. Let {L,} be the uniformly positive invariant
subspaces as in part (i). Let P be the closure of |J; L;. Then P isa
nonnegative invariant subspace. Since 7 does not have null invariant
subspaces, it follows from Lemma 2.3(iii) [11] that P is positive. By
Theorem 2.1(ii1), P is uniformly positive. Therefore

di(P)=di(n) and i (P)=iy(m).

The theorem is proved.

REMARK 2.5. Even if 0 < k = min(k_, k;) < oo, one may find
that either one or both of the numbers d_(n) and d,(n) equals 0.
If, however, &/ is a C*-algebra, then, by Theorem 2.2, H = N[+]P
where N and P are respectively maximal uniformly negative and
maximal uniformly positive invariant subspaces. Then, by Theorem
2.4(ii1) and by Law of inertia, d_(n) = dim N = k_ and d (7)) =
dimP =k, . If H = N{[+]P; is another decomposition of H , then,
by Theorem 2.3, the representations ny and =« N, are equivalent and
the representations 7p and mp are equivalent.

Let m be a J-symmetric representation of a x-algebra ./ on H and
assume that H = N[+]P where N and P are respectively uniformly
negative and uniformly positive invariant subspaces of H. Let L be
a maximal null invariant subspace in H . Then

L={x+Tx:xelL_}
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where L_ isa closed subspace of V invariant for 7, 7 isan isometry
from L_ into P ((Tx, Ty)p = (x, y)n) and
(5) n(A)T|, =Tn(A4)]L_ forall 4 in /.
Set

L.={Tx:xeL.}, N.=NnNLWH and P, =pPnLH.
From (5) it follows that the representations n; and =« L, are equiv-
alent. We also have that

N=Ni[+]L_, P=P+]Ly and LW = N;[+]L[+]P;.
The subspaces Ny and P; are invariant for x.

THEOREM 2.6. Let m be a J-symmetric representation of a x-algebra
& on H andlet H = N[+]P where N and P are respectively uni-
formly negative and positive invariant subspaces. Let L and K be
maximal null invariant subspaces, so that L = {x+ Tx: x € L_} and
K={x+Rx: xeK_}. Then

(i) The representations ny , ng , nr, and nk, are equivalent.

(ii) If mp_ is a finite orthogonal direct sum of irreducible represen-
tations of </, then the representations ny, and ny, are equivalent
and the representations Tp, and mp, are equivalent.

Proof. Set M = LNK. Then M = {x + Tx: x € M_} where

M_={xeL_nNnK_: Tx=Rx}. Set

X=L_(-)M_ and Y =K_(-)M_.
Then X and Y are closed subspaces in N. Since L and K are
invariant for 7=, M is invariant for m, so that A/_ is invariant for
7. Since L_ and K_ are invariant for 7, X and Y are invariant
for m.

The subspace K N LI is a null invariant subspace and M C
Kn LW, If KnLWM # M, then L[+](K n LMt is a null invari-
ant subspace larger than L. Since L is a maximal null invariant
subspace, K N LI = Af . Similarly, LN KM = M.

Define a form Q(x, y) on X x Y by the formula:

Qx,y)=[x+Tx,y+ Ryl
If forsome x in X, Q(x,y)=0 forall y in Y, then x+Tx e M,
so that x € M_. This contradiction shows that Q(x, y) is nonde-
generate. Since 7 and R are isometries, we have that
1Q(x, )| <lx, y1| +[Tx, Ry]|

< [lxlInlIvlly + 1Tx| el Ryl = 2]|x]|¥]|¥]]¥-
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Therefore forevery y in Y, f(x) = Q(x, y) is a bounded functional
on X . Hence there exists a bounded operator S from Y into X such
that

O(x,y)={x,Sy)n, xeX,yeY.
Since Q(x, y) is nondegenerate, Ker(S) = {0} and Im(S) is dense
in X. Since T and R commute with 7,

(x, Sn(A)y)n = Q(x, n(4)y) =[x + Tx, n(A)y + Rr(A)y]
=[x+ Tx, n(A)(y + Ry)]
=[rn(A*)(x+ Tx),y+ Ry]
= [rn(4")x + Tn(A*)x,y + Ry]
= Q(n(4")x, y) = (m(4")x, SY)n.
Hence
(m(A)x, Sy)ny = —[rn(4™)x, Sy]
= —[x, 7(4)Sy] = (x, n(A)Sy)n.

Therefore S7n(A4)|ly = n(A)S|y. From this and from Gelfand’s and
Naimark’s theorem [13, §21] it follows that there is an isometry U
from Y onto X such that Un(A4)|y = n(A)U|y. Therefore the rep-
resentations 7; and mkx are equivalent. Similarly, the representa-
tions my, and 7wy, are also equivalent. Since the representations 7y _
and my, are equivalent, part (i) is proved.

In order to prove part (ii) we shall prove the following lemma.

LEMMA 2.7. Let n and p be equivalent x-representations of a
x-algebra &/ on Hilbert spaces H and K respectively. Let H; be
an invariant subspace of H such that the representation m\ = ny is
irreducible and let K, be an invariant subspace of K such that the
representation py = pk, is irreducible. If m, and p, are equivalent,
then the representations THoH, and PKek, are equivalent.

Proof. Let U be an isometry from H onto K such that Un(A4) =
p(A)U for all 4 in &. If UH; = K, the proof is obvious. Let
UH, # K, , let H, be the closed span of H; + UK, and let K, be
the closed span of K; + UH;. Then H, is invariant for n, K, is
invariant for p, UH, = K, and Un|y, = pUIHZ. Therefore npon,
is equivalent t0 pkek, - In order to prove the lemma it is sufficient to
show that the representations 7y cp and Pk,ek, are equivalent.

Since H; and H, are invariant for n, H, © H; is invariant
for . Let L and M be subspaces invariant for z#. Set L =
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(LVM)eM and M = Lo(LNM). It follows from Proposition 2.1.5

[18] that the representations ny and =@ i are equivalent. Substituting

Q‘IKI for L and H, for M we obtain that L = H, © H; and that
M =U"1K, e (U"'K;nH;). Since n; and p; are irreducible and
since UH, # K;, U"'KinH; = {0}. Thus M = U~1K; and the
representations 7y epn and my- k, are equivalent. Similarly, we ob-
tain that the representations 7ng ok, and mypy are equivalent. Since
7, and p; are equivalent, the representations TuH, and 7, k, are
equivalent. Therefore ny op is equivalent to 7k ok, . The lemma is

proved.

We shall now continue the proof of Theorem 2.6. From Lemma
2.7 it follows that if #; and p; are finite orthogonal direct sums
of irreducible representations, then the representations 7myg g, and
Pkok, are equivalent.

Since N = Np[+]L- = Nk[+]K_, it follows from (i) that the repre-
sentations ny, and 7y are equivalent. Similarly, the representations
np, and mp are equivalent. The theorem is proved.

3. Indices of derivations of C*-algebras. In this section we apply
the results of Section 2 to bounded and unbounded *-derivations of
C*-algebras implemented by symmetric operators.

Let H be a Hilbert space, let § be a closed *-derivation of a C*-
subalgebra & of B(H) into B(H) and let a symmetric operator S
implement J, i.e.,

AD(S) € D(S) and d(A)|ps) = ilS, Allpis) for all 4 € D(9).
Recall that D(S*) becomes a Hilbert space with respect to the scalar
product

{x,y}=0x,y)+(8x,8y), x,yeD(S),
and that
D(S*) = D(S) ® N.(S)® N_(S)
is the direct orthogonal sum of the subspaces D(S), N.(S) and
N_(S) with respect to this scalar product. The subspace N(S) =
N_(S)® N, (S) becomes an indefinite metric space with the indefinite
scalar product
[x,y]‘s::{,fx,y}, X,yEN(S),

where J is the involution on N(S) defined in §1. Then dim N,(S) =
ng(S), d = *, are the deficiency indices of S, and we have that
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[x, x]¥ =2(x, x) >0 if x € N.(S), and [x, x]¥ = -2(x, x) <0 if
x € N_(S). Thus N(S) decomposes into a simultaneously orthogonal
and J-orthogonal sum N(S) = N,.(S) + N_(S), where N.(S) and
N_(S) are respectively uniformly positive and negative subspaces in
N(S).

It follows easily that for every 4 in D(J)

AD(S*) € D(S*) and 6(A4)|p(s+y = i[S™, Allps)-
Set |[|x||? = {x, x} for x € D(S*). Then
(6) ||4x||]> = (Ax, Ax) + (S*Ax, S*Ax)
= ||Ax]|)* + (4S*x, AS*x)
+(3(A)x, 8(A)x) < | XN + 116 (A)IP x>
< (A1 + 8 (AP
Therefore D(d) acts as an algebra of bounded operators on D(S*).

Let Q be the projection onto N(S) in D(S*). Since D(S) is invariant
for D(d), we have that

ns(4) = QAQ, A€ D),
is a representation of D(J) on N(S).

THEOREM 3.1 ([9]). (i) (¢f [8]) ms is a J-symmetric representation
of D(d) onto N(S).

(ii) There is a one-to-one correspondence between closed symmetric
d-extensions of S and closed null subspaces in N(S) invariant for ng.

(iii) There is a maximal symmetric implementation T of 6 which
o-extends S. The representation nr does not have null invariant sub-
spaces in N(T).

(iv) Let S be a maximal symmetric implementation of 6. If

max(n_(S), n+(S)) < 00

orif & is commutative and min(n_(S), n,(S)) < co then ng extends
to a bounded representation of &/ onto N(S).

Let P and N be respectively uniformly positive and uniformly
negative subspaces in N(S) invariant for mg. Then they become
Hilbert spaces with respect to the scalar products (x, y)p =[x, ¥]5,
x,y€P, and (x,y)y = —[x,y]°, x,y € N. Let np and my be
the restrictions of the representation mg to P and N respectively.
Then np and ny are *-representations of D(J).

From Theorems 2.2 and 3.1 we obtain the following theorem.
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THEOREM 3.2. Let S be a maximal symmetric implementation of
0 and let n = min(n_(S), n+(S)) < co.

(i) Let D(6) = (0 is a bounded derivation) or let ms extend to a
bounded J-symmetric representation of &/ . Then

(1) N(S) = N[+]P where N and P are respectively uniformly
negative and uniformly positive subspaces invariant for ns .

(2) Let Z be the maximal subspace in N(S) such that ng|z =0 (if;
for example, 1 € &/, then Z = {0}.) Then either Z C P or ZC N.

(3) Assume that n = n_(S). Then there are finite-dimensional irre-
ducible representations {n;}>_, of & such that

n'l ﬁ{ A?:l@ni’ leQP,
o X emn)enslz, fZCN.

If also n.(S) < oo, then there are finite-dimensional irreducible
representations {p;}"., of & such that

{ (Sr op)) @aslz, FZCP,
Tslp =
L19p), if Z CN.
The sets {n;} and {p;} are disjoint.
(i) Let D(6) # & and let ng be nondegenerate. If N(S) is the
closure of N[+]P where N and P are respectively negative and posi-

tive closed subspaces invariant for mg, then mg extends to a bounded
representation of &/ and N(S) = N[+]P.

Proof. Tt follows from (6) that |[||4]||> < ||4]|? + ||6(A4)||?, where
[l|4]|| is the norm of an operator 4 in D(S*) with respect to the
scalar product { , }. If D(d) = &/, then, since J is closed, J is
bounded. Therefore

141117 < AP +[1811%).

Since |[zs(4)l| < [[|QIII2[I14]]] = [[|4]||, 75 is a bounded representa-
tion of &7 . Since min(n_(S), n.(S)) < oo, it follows from Theorems
2.1 and 2.2 that N(S) = N[+]P, where N and P are respectively
uniformly negative and uniformly positive invariant subspaces. Part
(1)(1) is proved.

If x+yeZ,xeN, yeP,then ng(4d)x =0 and ng(4)y =0.
Since Z is maximal, x and y belongto Z . Therefore Z = Zy[+]Zp
where Zy = ZNN and Zp = ZNP. Since S is a maximal symmetric
implementation of J, by Theorem 3.1(iii), ng does not have null
invariant subspaces. Therefore either Z C N or Z C P. Part (1)(2)
is proved.



140 EDWARD KISSIN

Let n = n_(S) and let Z C N. Then the representation ng is
nondegenerate on N © Z and *-symmetric with respect to the def-
inite scalar product (x,y)y = —[x,y]5. Since N © Z is finite-
dimensional, there are finite-dimensional representations {7;}*_, of
& such that ns|lyez = Y0 @n;. If ni(S) < oo, then similarly
there are finite-dimensional representations {p;}7, of & such that
nslp = 3L ©p; -

Let n; = mg|, be equivalent to p; = ﬂleJ where L; C N and
K;j C P. Let U be the isometry from L; onto K; such that Uzn; =
p;jU. Then the subspace M = {x + Ux: x € L;} is a null subspace
in N(S) invariant for mg, since

[x+Ux, x+Ux])® =[x, x]°+[Ux, Ux]’
=—(x,x)y+(Ux, Ux)p=0

and since

ns(A)(x +Ux) =m;(A)x + p;(A)Ux
=ni(A)x+Uni(Ad)xe M

for all x € L; and all 4 € D(d). Since S is a maximal symmetric
implementation of J, by Theorem 3.1(iii), mg does not have null
invariant subspaces. Therefore the sets {n;} and {p;} are disjoint.
Part (i) is proved.

Let now D(d) # & . Since P is positive, by Theorem 2.1, P is uni-
formly positive and N(S) = P[+]P*]. By Law of inertia, dim(N) <
n_(S) < oco. Therefore, since N C Pl either N = P! or there
is x in PM! which is J-orthogonal to N. If such an x exists, it is
J-orthogonal to N[+]P and therefore it is J-orthogonal to H . This
contradiction shows that N = PI4] | so that H = N[+]P.

From Lemma 4 [20] it follows that mg is similar to a *-representa-
tion of D(d). Therefore ng extends to a bounded representation of
& which completes the proof of the theorem.

If N(S) = N[+]P, then, by Law of inertia, dim N = n_(S) and
dimP = n.(S). From this and from Theorem 3.2 we obtain the
following corollary.

COROLLARY 3.3. Let the conditions of Theorem 3.2(i) hold and let
q=dimZ . Then

n_(S)={ b dimm;, ifZCP,

P dimm;+q, ifZCN.
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If, in addition, n,(S) < oo, then

m . dimp;+q, ifZCP,
ni(s)={ TG Ve
j=p dimpj, ifZ CN.

DEFINITION. Let now S be a symmetric implementation of a
x-derivation 0 of a C*-algebra & into B(H). Then 7mg is a
J-symmetric representation of D(J) on N(S). We shall call the sex-
tuple

ind(d, S) = ind(mg)
= (n4(S), n-(S), di(ns), d—(ms), ir(7s) , i-(7s))

the index of 6 relative to S.
From Remark 2.5 and from Theorem 3.2(i) we obtain the following
lemma.

LEMMA 3.4. (i) If max(n,(S), n—(S)) < oo, then d,(ng) = ni(S)
and d_(ng) = n_(S).

(ii) If min(ny(S), n_(S)) < oo and if either D(6) = & or the
representation Ts extends to a bounded representation of &/, then
di(ns) = n4(S) and d_(ns) = n_(S).

REMARK 3.5. If n_(S) = 0, so that S is a maximal symmetric
operator, then i, (7mg) is the index introduced by Powers [16].

Let S be a symmetric implementation of a derivation J of a
C*-subalgebra .&# of B(H) into B(H) and let B be a selfadjoint
bounded operator. Then the operator 7" = S + B is a symmetric im-
plementation of the *-derivation ¢(4) = d(A) + i[B, A] of & into
B(H). Then D(o) = D(9).

THEOREM 3.6. (i) The representations ng and nr of D(8) are
J-equivalent, i.e., there exists a bounded operator U from N(S) onto
N(T) such that nyU = Ung and such that [Ux, Uy]T =[x, y}° for
all x,y € N(S).

(ii) ind(d, S) = ind(c, T).

Proof. 1t is well-known (see [1, §100]) that n.(S) = n.(T) and
that n_(S) = n_(T). We shall consider a quadratic form ({ , ))S on
D(S*), given by

((x, )5 =i((x, S*¥) = (S*x,»)),  x,yeD(S,



142 EDWARD KISSIN

(see [4], [8]). Given any x and y in D(S*) and decomposing them
X=Xp+Xy++x- and y=yo+y++y_,

where xg,y0 € D(S), X;,y+ € Ni(S) and x_,y_ € N_(S), we

obtain that

(7)) (e, )5 =200, p4) = 2(x—, ¥-) = [xs + X, p4 + -1,

We have that D(S*) = D(T*) and that 7* = S* + B. It is clear that

(e, )% = (e, 0T, if x,y € D(SY)

and that
((x,y)S=0 ifx,yeD(S).
Therefore the forms ({ , ))S and ((, ))7 generate the same indefinite
scalar product on the quotient space D(S*)/D(S) = D(T*)/D(T).
Let Qs and Qr be the projections onto N(S) and onto N(T)
respectively in D(S*). Then it follows from (7) that for all x, y €
D(S"),

(8)  [Qsx, OsyI® = ({x, )5 = {{x, y)T =[Qrx, Qry]".

For x € N(S), set Ux = Qrx. Since Q7rD(S*) = N(T) and since
QO7rD(S) = {0}, U is a bounded operator which maps N(S) onto
N(T). By (8),

[x,y)® =[Ux, Uy]".

Decomposing any x in D(S*), x = y + z, where y € D(S) and
z € N(S), we obtain that

Q710sx = Q0rQs(y + z) = Qrz = Qr(y + z) = Orx.
Therefore, for any x in N(S) and for any 4 in D(J),
Uns(A)x = QrQsAQsx = QrQsAx = QrAx.
Since D(S) is invariant for A, QrA = QrAQr . Hence
Ung(A)x = QrAx = QrAQrx = np(A)Ux.
Thus part (i) is proved. Part (ii) follows from (i).
THEOREM 3.7. Let S and T be maximal symmetric implementa-
tions of 0 and let D = D(S)ND(T) be dense in H. Set R = S|p.
Then R is a symmetric implementation of 6. Let

(1) min(n(R), n_(R)) < oo,
(2) (T —S)|p extends to a bounded operator B,
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(3) either D(0) = &/ or mg extends to a bounded representation
of & .
Then the representations ng and mrp are J-equivalent, so that
ind(é, S)=ind(5, T).

Proof. We have that AD C D for all 4 € D(J). Therefore R is a
symmetric implementation of 6 and

6(A)|lp = i[S, Allp = i[T, A]l|p.
Hence B belongs to the commutant ./’ of . and
RCS and RCT-B.

Set F =T — B. Then F is a maximal symmetric implementation of
6, D(T)=D(F) and R=F|p. If D(0) =« orif ng extendstoa
bounded representation of &7 , then, by Theorem 2.2, N(R) = P[+]N
where P and N are respectively uniformly positive and uniformly
negative subspaces invariant for mg. By Theorem 3.1(ii), there is
a maximal null invariant subspace L in N(R) which corresponds
to S. Then L = {x+ Ux: x € L_} where L_ is a subspace in
N invariant for g and U is an isometry from L_ into P, ie.,
(Ux, Ux)p = (x, x)n. Since min(ni(R), n_(R)) < oo, L is finite-
dimensional.
In the same way as in Theorem 2.6 set

N =NnLWY and P, =PnLY.
Then
N =Ni[+]L_, P=P[+]Ly and LI} = N;[+]L[+]P
where L, = {Ux: x € L_}. It is easy to see that
N(S) = Nr[+]P. and that ng = 7g|ns)

where N; and P; are respectively uniformly negative and positive
subspaces invariant for 7zg.

Similarly, there is a maximal null invariant subspace K = {x +
Vx: x € K_} in N(R) which corresponds to F, where K_ is a
finite-dimensional subspace in N invariant for gz and where V is
isometry from K_ into P. Then, as above, N(F) = Nk[+]Pk , where
Ng = NNKM and Py = PNnK! are respectively uniformly negative
and uniformly positive subspaces invariant for 7y .
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It follows from Theorem 2.6 that the representations (7s)y, =
(mr)n, and (mFp)n, = (mR)N, are equivalent and that the representa-
tions (ns)p, = (nr)p, and (nr)p = (ng)p, are equivalent. Therefore
the representations ng and myp are J-equivalent, i.e., there exists a
bounded operator U from N(S) onto N(F) such that Ung = npU
and [Ux, Uy} =[x, y1¥ for all x, y € N(S). By Theorem 3.6, the
representations n7 and np are J-equivalent, so that ng and n7 are
J-equivalent. The theorem is proved.

DEerFINITION. We say that a symmetric implementation 7 of a
x-derivation ¢ from a C*-subalgebra & of B(H) into B(H) is mini-
mal if for every symmetric implementation S of J there is a bounded
selfadjoint operator B in the commutant of &/ suchthat T+B C S.

In [10] it was proved that J has a minimal implementation if &
contains the algebra C(H) of all compact operators. From this and
from Theorem 3.7 we obtain the following theorem.

THEOREM 3.8. Let & be a *-derivation of a C*-subalgebra </ of
B(H) into B(H). If 6 has a minimal implementation T (for example
if C(H)C &), if min(ny(T), n_(T)) < oo and if either D(0) = & or
T extends to a bounded representation of &/ , then the representations
s and ms, are J-equivalent for all maximal symmetric implementa-
tions S and S, of J, so that ind(d, S) =1ind(d, S).

4. Isomorphism of symmetric operators. We shall apply the results
about x-derivations of (C*-algebras to the investigation of symmet-
ric operators. Every densely defined symmetric operator S has a
x-algebra associated with it:

FBs ={A € B(H): AD(S) C D(S), A*D(S) C D(S) and
(S4 — AS)|p(s) extends to a bounded operator}.

By &% we denote the norm closure of %s. Then % is a C*-
algebra, ds(A4)|pis) = ilS, Allps) is a closed x-derivation from ./
into B(H) and D(ds) = %s. If S implements a *-derivation J
of a C*-subalgebra &/ of B(H) into B(H), then D(d) C %s and
& C . Thus & is the largest C*-subalgebra of B(H) on which S
generates a closed *-derivation and ng is a J-symmetric representa-
tion of &5 on N(S).

Problems. (i) Is S always a maximal symmetric implementation
of d¢? In other words, does ng(Zs) have null invariant subspaces in
N(S) or not? If ng(%s) has such subspaces, there exists a maximal
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os-extension 7" of S such that %5 C &y and that ny(%s) does not
have null invariant subspaces in N(T).

(i1) Let mg(%s) have no null invariant subspaces in N(S). Assume
also that ng extends to a bounded J-symmetric representation 7g
of o4 and that N(S) = N[+]P where N and P are respectively
uniformly negative and positive invariant subspaces for 7g. Are the
restrictions of 7g to N and P always irreducible?

Symmetric operators S and 7 on H and H; respectively are
isomorphic if there exists an isometry V' from H onto H; such that

(9) VD(S) = D(T) and VS{D(S) = TVID(S)

Ginzburg [5] and Phillips [14] showed that in any II;-space H
there is a one-to-one correspondence between maximal nonpositive
subspaces N in H and operators K from H_ into H, such that
IK||]<1: N={x+Kx: x € H_}. If, in addition, N is uniformly
negative, then ||K|| < 1.

For every symmetric operator § we denote by Z(S) the set of
all operators K from the Hilbert space N_(S) into the Hilbert space
N, (S) (with respect to the scalar product { , }) such that |||K]||| < 1
(JJIK|}] is the norm of an operator K in N(S) with respect to the
scalar product { , }) and such that the subspaces {x + Kx: x €
N_(S)} are invariant for the representation mg of the algebra Zs.

The following lemma gives necessary conditions for two symmetric
operators to be isomorphic in terms of the representations ng of the
algebras %5 and in terms of the sets .Z'(S).

LEMMA 4.1. Let symmetric operators S on H and T on L be
isomorphic and let V' be the isometry from H onto L such that VS =
TV. then V&sV* = Br and there exists an isometry U from N(S)
onto N(T) (JITUx||| = llIxlll, x € N(S)) such that UN,(S) = Ny(T),
d = %, and such that

nr(VAV*)=Unrg(A)U", Ae ZBs,
and

Z(T) = UZ(S)U* = {UKU*: K € 7(S)}.

Proof. We have that V*V = 1y and VV* = 1. From this and
from (9) we obtain that
V*D(T*)=D(S*), V*D(T)=D(S), S*V*|pry =V*T"|pcr)»
VD(S*)=D(T"), SV*|pay=V"TIpr), VS*ipis)=TVIps)-
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Therefore it follows immediately that
VN, (S)=Ng(T) and V*Ny(T)= Ny(S), d=+=,

and that
Vﬁs V* = @T and VMS' V* = .

We also have that for x, y € D(S*),

{Vx, Vy}=WVx,Vy)+(T*Vx,T*Vy)
=(x, )+ (VS*x, VS'y)
= (%, y) + (8%, §%y) = {x, y}.

Therefore V' generates an isometry U = Q7V Qg from N(S) onto
N(T), where Qs is the projection onto N(S) in D(S*) and where
Qr 1s the projection onto N(7') in D(T*). Since V Qs = Q0rV,

ﬂT(VAV*) = QTVAV*QT
= QrVQsAQsV*Qr = Ung(A)U* for all 4 € Bs.

Let K € #Z(S). Then |||K]||| < 1 and the subspace N = {x +
Kx: x € N_(5)} is invariant for the representation 7ng of the algebra
Bs. Set K! = UKU*. Then |||[K!||| < 1 and the subspace M =
UN = {y+K'y: y € N_(T)} is invariant for the representation nr
of the algebra %r, since

ar(VAV*)M = Ung(A)U*UN = Ung(A)N CUN = M

for all 4 € Bg. Therefore K! € 7 (T).
If K! € %(T), similarly we obtain that U*K!U = K belongs to
Z (§) which concludes the proof of the lemma.

It follows from Lemma 4.1 that in order to prove that two symmet-
ric operators S and 7 are not isomorphic it is sufficient to show that
there does not exist an isometry U from N(S) onto N(7') such that
UN,;(S)=Ny(T), d =+, and such that Z(T) = UZ (S)U*.

We shall now consider symmetric operators .S such that n.(S) =
n_(S) = 1. We shall also assume that the representations ng of Zyg
on N(S) do not have null invariant subspaces. By Theorem 3.1(iv),
ns extend to bounded representations of C*-algebras .« . It follows
from Theorem 3.2 that N(S) = N[+]P where N and P are respec-
tively negative and positive subspaces invariant for ng and that the
representations 7mg|y and 7mg|p are not equivalent. Then N and P
are the only subspaces in N(S) invarinat for ng, dimN =dimP =1
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and N = {x+ Kx: x € N_(S)}, where K are operators from N_(S)
into N, (S) such that |||K]|| < 1. Set

B(S) = lIKl|.

Then 0 < B(S) < 1 and from Lemma 4.1 it follows that B(S) = B(T)
if S and T are isomorphic.

For every 4 € [0, 1), we shall construct a symmetric operator S
such that n_(S) = n,(S) =1 and such that S(S) = A. The question
arises as to whether S(S) classifies up to isomorphism all the sym-
metric operators S such that n.(S) = n_(S) = 1 and such that ng
do not have null invariant subspaces.

It is easy to construct a symmetric operator .S such that B(S)=0.
Let

. d
S+ = l—d—x' s
D(S;) = {y(x): y and ¥’ in Ly(~o0, 0), y(~00) = y(0) = 0},
s.=il
T dx’

D(S-) = {y(x): y and y" in L5(0, o0), (0) = y(o0) = O}.

Set S=8,®S- on H= Ly(—00, 0)® Ly(0, c0). Then n.(S) =
n_(S) =1 and it can be shown that N,.(S) and N_(S) are invariant
for ng. Therefore K =0, so that #(S)=0.

Let us consider the following symmetric differential operators

. d
Sa—lﬁ,

D(Sa) ={y(x): y and y"in L5(0, a), y(0) = y(a) = 0},

0 < a < . It is well-known that n_(S,) = n+(S;) =1 for all 0 <
a < oo. Schmudgen [19] showed that S, and S, are not isomorphic
if a #b. Using Lemma 4.1 we shall give another proof of this result
and show that 0 < (S,;) =e % < 1, so that B(S) takes all values in
[0, 1).

THEOREM 4.2. For every a # 0, the representation ms, of Bs_ does
not have null invariant subspaces and B(S;) = e~?. The symmetric
operators S, and Sy are only isomorphicif a=b.

Proof. We have that

(S =i

P and D((S2)*) = {y(x): y and y' in L,(0, a)}.
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Set h=h(x)=e* and g = g(x) = e *. Then
h(x), g(x) € D((Sa)"),
(Sa)*h(x) = ih(x) and (Sa)"g(x) = —ig(x),
so that N_(S,) = {g(x)} and N.(S,) = {h(x)}. We also have that

1A]112 = [1AGI? + [1SzAG)II

10
1o =2/h()IP = lllgll? = e** ~ 1.

Let A be the bounded operator of multiplication by x, i.e., Ay(x)
= xy(x). Then
AD(Sa) € D(Sa) and  i[Sa, Alips,) = —1lp(s,)
Therefore 4 € % . Set

y(x)=h(x)—eg(x) =€ —e™*,
z(x) = g(x) —e7%h(x) = e*F — ¥4

Then y(x) and z(x) form a basis in N(S;) and

Ay(x) =x(e* —e ™) =a(e* —e™) + f(x) = ay(x) + f(x),
Az(x) = x(e*™* —e*7%) =q(x),

X

(11)

where the functions f(x) and g(x) belong to D(S,). Therefore

ns (A)y(x) =y(x) and mg(4)z(x)=0.
Since g and A are J-orthogonal, we have that

v, y1% = [h, h% +e72[g, g15% = |||A|||> — e2%|||g]||?
=(E*-1)(1-e2%)>0

and
[z, zI% =g, g1% + e~ %[h, h]% = (e** - 1)(e729 - 1) < 0.

Therefore the subspaces P = {y(x)} and N = {z(x)} are respec-
tively positive and negative subspaces in N(S,) invariant for nsa(A) .
Moreover, they are the only subspaces in N(S,) invariant for s, (A4).

Therefore 7g (%s) does not have null invariant subspaces and it fol-
lows from Theorem 3.2 that the subspaces N and P are invariant for
the representation T, of the algebra Fs . Thus F(S,) consists of
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only one operator K and, by (11),

Kg(x)=—-e%h(x).

It follows from (10) that |||K]||| =e~?. Thus 0 < B(S,) < 1.
If a#b, B(Sa2) # B(Sp), so that S, and S, are not isomorphic.
The theorem is proved.
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