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Here we study extensions 0 —» S — V' — @ — 0 of vector bundles
over a projective variety X with trivial middle ' (hence V — Q
induces a map 4 from X to a Grassmannian G). For fixed X and
Q and moving V' — Q we study the induced local deformations of
S . This gives morphisms # with suitable #*(TG).

Let X be a complete variety and Q a vector bundle on X ; set
r ;= rank(Q). Assume that Q is spanned (i.e. generated by its global
sections). Hence there is a trivial vector bundle ¥ on X and a sur-
jection g: V — Q; set m :=rank(V) and S := Ker(q). Thus we have
the following exact sequence on X .

(1) 0-S—-V-0-0.

The map ¢ induces a morphism 4 from X to the Grassmannian
G := G(r, m). By the description of the tangent bundle 7G on G
we have A*(TG) = S* ® Q. Since the bundle A*(T'G) reflects very
much the geometry of 4 and X, it was an intensive object of study,
in particular in the case r = 1, i.e. G = P™~!. Several questions are
natural and their answer is known for certain X, m, r (e.g. X =P!,
r = 1, see [GIS] and [R]). Fix X, m, and r; what are the possible
h*(TG)? Fix also & and A*(TG); what is the relation between the
deformations of 4*(T'G) as abstract bundle on X and its deforma-
tions coming from deformations of #? For instance, if X is a curve,
the set of nearby bundles can be stratified according to the numerical
invariants of an Harder-Narasimhan filtration of the bundles (“Shatz
stratification” in the sense of [B2]; see also [He]) (if X = P! this is
exactly the stratification according to isomorphism classes). Here we
study a refined problem: fix X, m, r, and Q, and study the possible
S obtained from different surjections ¢: ¥V — Q. The method is very
simple: study the differential of the corresponding map of functors;
under very strong cohomological conditions we will get a surjectivity

201



202 EDOARDO BALLICO

of the differential map. To state our result we need to introduce a few
notations.

Let K be an algebraically closed field; everything will be defined
over K. Fix the complete variety X, integers m, r, as above; when
we will speak about Q and S we will assume that they are related by
(1) (for some surjection g: V' — Q). Set O := Ox . Let V(S) be a for-
mal miniversal deformation space for S; if K is the complex number
field C, V(S) will often mean a small representative of the germ at
[S] of V(S) as complex space; we will work very often in cases (e.g.
X a curve) in which V'(S) is smooth. We will consider only cases in
which V' (S) is algebraizable (and consider a fixed representative of a
germ of an algebraic scheme) or we will work over the complex num-
ber field with a representative of a germ of complex analytic space. As
in the following, we will be rather vague about the general abstract set-
up, just to allow as much flexibility as possible for the future; indeed
we stress that the main reason of this note is the hope that somebody
else will push much further the material considered here. We will use
double quotation marks to denote some of these vague places. Let
HO(V*® Q) be the open subset of HO(Hom(V , Q)) formed by the
surjections. On HO(V* ® Q) there is a universal family: its total
space is {(x, q) € V x HO(V* ® Q):q(x) = 0}; we will often call
A(*, Q) this universal family (the integer m being fixed); of course,
as schemes A(*, Q) := HO(V*®Q)'. Hence each time we have a prop-
erty P which may hold for a rank-(m — r) vector bundle on X we
have a subset of H°(V*®Q)’ formed by the bundles with property P.
Dually one can fix S and V' and consider the rank-r quotient bundles
of inclusions of constant rank S — V' (i.e. consider the same concept
for the dual of (1)); one have the right universal family A(S, %), and
so on (and call A(*, Q) left universal family). Fix (S, i) € A(x, Q)
(where i in the induced inclusion S — V'; in the following pages we
will say only: fix S € A(x, Q) or fix [S] € A(x, Q)). “There is a
morphism pg ; from the germ (or completion) of A(x, Q) at (S, i)
to V(S)”; we will often write ps instead of ps ;. A property P
for rank-(m —r) bundles means essentially to have a natural partition
(i.e. stable for pull-backs) on every family of rank-(m —r) bundles on
X . Fix a bundle S and a family of bundles on X parametrized by
a scheme T with o0 € T corresponding to S; we will say that 7 is
good with respect to a natural partition if the differential at o of “a
induced map T — V' (S)” is surjective. These concepts are essentially
contained in [BH1], [H1] and [H2] (which of course were (and are!)
a source of inspiration).
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THEOREM 0.1. Assume H'(0) = h?(Q* ® S) = 0. Then the mor-
phism pg: A(x, Q) — V(S) is smooth at [S]; hence A(x, Q) is good
at [S] with respect to every natural partition.

In the applications V' (S) will be (formally) smooth; hence 0.1
means exactly that for every property P the stratification of A(x, Q)
near S and of V' (S) will be “the same” up to a product with a com-
pletion at a point of a smooth variety with the expected dimension (or
if you prefer an analytic disk of the expected dimension); in particu-
lar all the small deformations of [S] as abstract vector bundle appear
in A(*, Q) with the right codimension, right incidence of closures of
(families of) strata. We stress that 0.1 (in the case X = P!) will be a
very good tool to obtain the existence. It seems to be powerful to ob-
tain connectedness or irreducibility theorems for the strata of natural
stratifications on A(*, Q); for a very interesting case (without fixing
0, of course), see [He).

The first section is devoted to the (very easy) proof of 0.1. Then
in §2 we consider the case X = P! (existence part (see 2.2), smooth-
ness of the strata of the stratification of A(x, @) under isomorphism
classes, closure of such strata,...).

In §3 we consider several cases in which it seems possible to relate
the geometry of the morphism X — G(r, n) to the choice of the
surjection ¢:V — Q.

In the last very short section we discuss an example for higher di-
mensional X . This example raises an interesting question (see the
last two lines of §4).

1. This section is devoted to the proof of 0.1.

The following notations will be used in all the sections. Set n :=
dim(X). Fix a surjection g: V' — (; hence g gives an exact sequence
like (1). We will denote by 4, or hyp (if there is no danger of misun-
derstanding) the map X — G(r, m) induced by ¢;if V = 09 H*(Q)
and ¢ is the natural map, set hg = h,.

We need the following lemma whose cohomological proof is con-
tained in its statement.

LEMMA 1.1. (a) Assume h'(0) = 0. Then we have the surjectivity of
the coboundary map 6: HY(V*®Q) — H(S®V™*) of the exact sequence
obtained tensoring (1) by V* (in general dim(Coker(d)) < m2h!(0)).

(b) Assume h*(Q* ® S*) = 0. Then we have the surjectivity of the
map H (S®V*) — H(S®S*) induced by the exact sequence obtained
tensoring with S the dual of (1).
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Proofof 0.1. We need to interpret them y: HO(V*®@Q) — H!(S®S*)
obtained composing the maps appearing in parts (a) and (b) of 1.1.
The domain of y is the tangent space to H°(V*® Q) at the point gq.
The target of y is the tangent space to the formal deformation space
of S. Note that any family of deformations of ¢ in HO(V* ® Q)
gives (as kernel) a family of deformations of S'; this correspondence
is functorial; furthermore, it exists also for formal deformations. This
gives a natural transformation 7 of the corresponding functors. Eval-
uating 7 on Spec(K[e]) we get its differential d7. We see (perhaps
up to sign) that d7 at the point corresponding to g is y (after an
identification of H!(S ® $*) and Ext!(S, S)). Thus we get 0.1. O

2. In this section we assume X = P!. For simplicity we work over
the complex number field. Let E be a vector bundle on X with
rank(E) = m — r, with E* spanned. FE is the direct sum of line
bundles of degree a;, 1 < j < m—r, with a; > g, if i > k and
a; < 0. We fix the degree x of the bundles considered. The diagram
A associated to E is the ordered (m —r)-ple (ay, ..., am—,) of these
m~—r integers. On the finite set of diagrams (with respect to m—r and
x) we consider the following partial order: if A’ is associated to the
bundle E’ and A to E, set A’ <A if and only if A0(E'(¢)) > h%(E(t))
for every integer ¢. By 0.1 we obtain that for every spanned Q the
stratification of A(x, Q) into isomorphism classes (i.e. diagrams) has,
near any of its points [S], all the good “natural” properties we can
imagine; in particular it looks like a miniversal one. Let B(A) be the
subset of A(x, Q) parametrizing bundles with diagram A. By 0.1 and
the description of a miniversal family due to Brieskorn ([B1]) we get
that every B(A) is smooth and pure dimensional (if A corresponds
to a bundle S, its codimension is 4!(S ® S*)). For the same reasons
for every A the closure B’(A) of the stratum B(A) is the union of all
B(A') with A’ < A. Fix A and S € B'(A); let A(A, S) be the closure
in V(S) of the points corresponding to bundles with diagram A; we
stress that the homological properties (dimension minus depth, ...) of
Op'(a),1s) and Oya,s), (57 (saY for the reduced structure) are the same,
i.e. the ones of Op (4 () are “universal” and “as good as possible”
(compare with the proofs in [GIS]).

For the existence part given in 2.2 we need the following well-known
lemma.

LEMMA 2.1. Assume X = P'. Fix integers s > r > 0, a;, 1 <
i<s, bj, 1<j<r, witha >-2a, b 2---2>0b, and
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let E:=0(a)®---®0(a;), F:=0b)®---®0(b,). Thereis a
surjection from E onto F if a; < b; forall j with 1 < j<r. If
ay = as, this condition is necessary, too.

Proof. The last assertion is obvious by a lemma of Serre (see [At],
Th. 2). For the first assertion we may assume s = r + 1. Fix points
{P;} on X. Foreveryinteger 1 <t<r,set E;:=0(a,)®---®0(a;),
F, .= 0(b)) ® --- ® O(b;). Start with a section of O(b; — a;) with
(by — a;) Py as divisor of poles and fix ¢ < r; assume constructed an
inclusion j (of sheaves) of E; into F; with generic rank ¢, rank
at least ¢t — 1 at each point of X, and with rank ¢ — 1 at most at
Py, ..., P. fixasection f of O(b;y; —as ) with (b — are1) Pyt
as divisor of poles; take a morphism u: O(b;, 1) — F; whose image at
each point P; on which j drops rank has image not contained in the
image of j. The map FE,,; — F;,; constructed with j, f, and u,
has the same properties (for the integer 7+ 1) as . Call i the map
E, — F obtained. We conclude taking a map O(a,,;) — F with the
same property as the map u above. O

PROPOSITION 2.2. Fix X = Pl m,r, and Q. A rank-(m — r)
bundle S on X fits in (1) if and only if deg(det(S)) = — deg(det(Q))
and every direct summand of S has degree at most 0.

Proof. Fix a trivial vector bundle W with rank(W)=r+1 and a
surjection w: W — Q; set L := Ker(w). Hence L = O(—deg(Q)).
Set V := Wo W’ with W’ trivial and let w’: ¥ — Q be the surjection
which agrees with w on the first factor and vanishes on the second
factor. Thus w’ induces (1) with S = LW’ . By 0.1 it is sufficient to
check that L ® W’ deform as abstract bundle to any other subbundle
S’ of a trivial bundle with ¢;(S") = ¢;(S) and rank(S’) = m—r. This
is well-known (hint: use a sequence of “elementary moves” in which
O(a)® O(b) with a > b+ 2 deformsto Ola— 1) 0(b+1)). ]

3. As in the classical case (r = 1), one can introduce the follow-
ing notions about the extension (1) (or equivalently about the mor-
phisms Ay and Ay~ induced by (1) and by its dual). The extension
(1) is called right linearly normal (resp. right non-degenerate) if the
induced map ¥V — HO9(Q) is an isomorphism (resp. is injective); the
right non-degeneracy means that H%(S) = 0, i.e. that S has no triv-
ial factor. The extension (1) is called left linearly normal (resp. left
non-degenerate) if the dual of (1) is right linearly normal (resp. non-
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degenerate); thus left non-degeneracy is equivalent to the fact that Q
has no trivial factor.

(3.1) Fix a spanned vector bundle £ on a complete variety X ; set
n := dim(X) and r := rank(E). We assume that H°(E) gives an
embedding of X ; we want to find W C HO(E) with dim(W) as low
as possible, W spanning E (this is again [At], Th. 2) and such that
the induced morphism /Ay is an embedding. As in the classical case
(r = 1) in general one cannot do better than a dimensional count.
First we will consider the injectivity part of Ay and then (assuming
for simplicity X smooth) the differential of Ay . We need to define
several invariants of (X, E) (with E spanned);set V := HO(E). For
every P € X, by assumption the Kernel V' (P) of the map V' — E|(p,
has codimension r in V;if {x,y} C X, with x #y,set V(x,y):=
Ker(V — E|(x ) and d(x, y) :=dim(V(x, y)); if ve T X (Zariski
tangent space), set V' (v) := Ker(V — E|y) and d(v) := dim(V(v)); for
0 <i<2n,set r;:= min{t: there is an i-dimensional family of pairs
(x,y) € X x X\A with d(x,y)=r;}; set k; = min{z: there is an i-
dimensional family of pairs (x, v) with x€ X, ve Ty X and d(v) =
ri}; ki = min{¢: there is an i-dimensional family of pairs (x, v) with
X € Xreg, VE TxX and d(v) = r;}; set k(E) := max{i + k;} and
K'(E):=max{i+k;, 1 <i < 2n}. By semicontinuity we have r; > r;
if i < j; the assumption “ 4z an embedding” is equivalent to ry > 0
(by the definition of hg).

PROPOSITION 3.2. (a) (injectivity part) Fix a general W C HOY(E)
with dim(W) > max(i +r;, 0 <i<2n}. Then hy is injective.

(b) Fix a general W C HY(E) with dim(W) > k(E) (resp. k'(E)).
Then hy is an embedding (resp. hy embeds Xieg) .

Proof. (a) counts the set of triples (W, x,y) for which
dim(WnV(x,y)) <r. For part (b) the proof is again a dimensional
count; we stress that one needs all v in the Zariski tangent space, not
only in the tangent cone of X at x.

(3.3) Of course, Lemma 2.1 gives a sufficient condition for the exis-
tence of morphisms from P! into a partial flag variety with given quo-
tient bundles; but it is an easy exercise to do better. Proposition 3.2
gives a way to pass from “morphisms” to “embeddings” or “injective
morphisms”. A similar dimensional count (easier since now n = 1)
allows one to pass from “morphisms” to “birational morphisms with
image with given (very small) number of nodes and cusps”.
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(3.4) Fix a singular curve C andlet f:D — C be its normalization.
Fix a vector bundle E on C;set r :=rank(E), N := h%(E). Suppose
you know f*(E); what other data are necessary to reconstruct E ?
This is classical for line bundles and certain well-known in general.
This problem is easier in the case of singularities with a modulo in
the sense of Rosenlicht (see [Se]), i.e. singularities obtained from a
smooth curve glueing a positive divisor; we will consider as examples
only the case of ordinary nodes and ordinary cusps.

Assume P is an ordinary node of C and let {P’', P"} := f~1(P);
let M’ and M” be the fibers of f*(E) over P’ and P”. The existence
of E induces an identification of M’ with M” ; vice versa, if you have
an isomorphism of M’ and M” you can descend f*(E) to a bundle
on C; hence, given f*(E), all possible bundles E ’s are parameterized
by GL(r, K) (of course if Sing(C) = {P}, but since Sing(C) is finite
and the descent problem local, it is sufficient to consider one singular
point at each step).

Now assume that P is an ordinary cusp of C; let 4 € D with
f(4) = P. Let M (resp. M’) be the fiber of f*(E) over A (resp.
over the length two scheme corresponding to the positive divisor 24).
By restriction of M’ to A, we have a surjection s:M’' — M ; the
existence of E is equivalent to a choice of a splitting of s; thus,
after a choice of bases, the possible bundles E ’s are parameterized by
M(r x r; K), the matrix B corresponding to a surjection with matrix
(Id,, B)'.

Of course, we are interested in the case E spanned, hence giving a
morphism to an appropriate Grassmannian. We are even more inter-
ested in the opposite problem: given C and, perhaps, f*(FE), find the
possible spanned E and the corresponding restricted tangent bundles
(restricted to C, not only their pull-backs to D).

(3.5) As in the classical case there are the standard enumerative for-
mulas (genus formula, double point formula ([Fu], 9.3 and 9.3.1),...)
when the conditions of 2.2 are not satisfied. For instanceif n=r =2,
m =4 and X is smooth one can get the double point formula; just to
obtain the same formula up to a non-zero constant (i.e. just to get the
numerical obstruction to the fact that 4, is an embedding) one can
simply use exactly the calculations in [Ha], p. 434, (which is the case
of smooth surfaces in P* instead of the case of smooth surfaces in
the smooth quadric G(2, 4) C P°). Furthermore, as in 3.2, one can
find (just counting dimensions) sufficient condition for the absence,
for general W, of higher order degeneracy loci (e.g. triple points).
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4. If dim(X) = 2 the hypotheses of 0.1 are almost never satisfied.
If dim(X) > 2 the hypotheses of 0.1 are satisfied (for sufficiently
positive Q) essentially only if S is infinitesimally rigid, i.e. H!(S*®
S) = 0. However in this case (as we will see in an example) the
elementary approach of this paper is very useful to construct examples
of maps to Grassmannians with certain restricted tangent bundle; for
instance in the example 4.1 with X = P3, S will be stable and S*®Q
will be a direct sum of two copies of a stable vector bundle.

EXAMPLE 4.1. Set X =P3, m =5, r =2; fix an integer ¢ > 0 and
take Q = 0(61)®2. Fix any surjection j: ¥ — Q, and set S := Ker(j)
We want to check when S is stable. Since rank(S) = 3 (this is
important!) S is stable if and only if A°(S(4t)) = h°(S*(—4¢)) = 0.
By the dual of (1) we see that A%(S*(—1)) = 0 (so from this side S
has a high order of stability for every surjection j). The vanishing of
HO(5(4t)) is not true for every j. We will check that it is true for
general j, i.e. that for general j the induced map j,: H%(0(41))®° —
H(0(10¢)) is injective. By semicontinuity it is sufficient to check this
for just one map j (even not surjective). Fix f; € HO(0(61)), 1<i <
5,with dim({fi = ,=f3=0}) =0 and dim({f4 = f5=0}) = 1.
Map V into the first factor of Q using (fi, f2, f3, 0, 0) and on the

second factor using (0,0, 0, f3, f5). Fix (g1,..., &) € Ker(ji).
The regularity of the sequence {f,, f>, f3} gives g1 =g =g3=0.
Similarly we get g4 =g5=0. O

There are obvious variations of 4.1 (m =6, r=3, or X a com-
plete intersection, or...). We want to stress only that the vanishing
of HO(S(4t)) was equivalent to a very weak form of a maximal rank
problem which seems to be interesting.
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