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MULTIPLE HARMONIC SERIES

MicHAEL E. HOFFMAN

We consider several identities involving the multiple harmonic se-

ries
1
n>ny>>m 1 n;ln? e nllck

which converge when the exponents i; are at least 1 and i; > 1.
There is a simple relation of these series with products of Riemann
zeta functions (the case k = 1) when all the /; exceed 1. There are
also two plausible identities concerning these series for integer expo-
nents, which we call the sum and duality conjectures. Both generalize
identities first proved by Euler. We give a partial proof of the duality
conjecture, which coincides with the sum conjecture in one family of
cases. We also prove all cases of the sum and duality conjectures
when the sum of the exponents is at most 6.

1. Introduction. The problem of computing the doubly infinite se-
ries

1) Y .

which converges when a > 1 and b > 1, was discussed by Euler
and Goldbach in their correspondence of 1742-3 [3]. Euler evaluated
several special cases of (1) in terms of the Riemann zeta function

|
{OEDY ek
n>1
Later, in a paper of 1775 [2], Euler found a general formula for (1) in

terms of the zeta function when a and b are positive integers whose
sum is odd. The simplest such result is

1
2 — = 2{(3),
2) Zl = %O

which has been rediscovered many times since (see [1, p. 252] and the
references cited there).
We shall consider multiple series of the form

. . 1
S, 0, ..., 0) = E A

i2 ik
n2n>e2n,>1 By fy oo Ay

275
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and

o . 1
Al iy eees i)=Y

n>n,>->n>1 n;l néz e n;{k
(so (1) is S(a, b)). With this notation, S(i) = A(i) = {(i). The
relation between the S’s and A4’s should be clear: for example,
S(iy, ia) = A(iy, ) + A(iy + i2)
and
S(iy, iy, i3) = A(iy, i, 13) + A(iy + iz, i3)
+ A(il , Iy + i3) + A(il +i+ i3).
Note that (2) implies 4(2, 1) = {(3).
It is immediate from the definitions that

S(iy, i) +S(iz, i1) = {(i1)E(iz) + {(iy + i)
and

A(iy, i) + A(iz, 1) = {(i1)¢(i2) — iy + i2)
whenever i;, i > 1. More generally, if i;, iy, ..., iy > 1 the sums

> Slisqtys --- » igky) and " Aigys - s igw)

€L, €L,

(Zr is the symmetric group of degree k) can be expressed in terms
of the zeta function. We state and prove such formulas in §2.

There are also two interesting general conjectures about the quan-
tities A(i;, ..., i;) for positive integer exponents iy, ..., iy, which
we call the sum and duality conjectures. Both generalize the identity
A(2, 1) = A(3). We state them in §3, and give a partial proof of the
duality conjecture in §4. Further evidence for the two conjectures is
discussed in §5.

2. Symmetric sums in terms of the zeta function. To state our results
we shall require some notation. For a partition I1={P,, P,, ..., P}
of the set {1, 2,...,k}, let

c(IT) = (card P, — 1)!(card P, — 1)!-- - (card P, — 1)!.
Also, given such a IT and a k-tuple i = {i;, ..., iy} of exponents,

define
{
(i, m=JJ¢ (Z i,-) .

=1 \jeP,
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THEOREM 2.1. For any real iy, ..., 0 > 1,
(D) Y SUays -5 loy) = > c(IM (i, 0.
g€L, partitions IT of {1,...,k}

Proof. Assume that the i; are all distinct. (There is no loss of
generality, since we can take limits.) The left-hand side of (1) can be

written
> Y
o n>->n>1"N (”n a2 Mok
Now think of the symmetric group X, as acting on k-tuples (ny, ...,

ny) of positive integers. A given k-tuple n = (n, ..., ng) has an
isotropy group X;(n) and an associated partition Aof {1,2, ..., k}:
A is the set of equivalence classes of the relation given by i ~ j iff

n;=n;,and X;(n) = {od € X; | 6(i) ~ i Vi}. Now the term
1
il iZ ik
nl n2 . nk

(2)

occurs on the left-hand side of (1) exactly card X, (m) times. It occurs
on the right-hand side in those terms corresponding to partitions II
that are refinements of A: letting > denote refinement, (2) occurs

> (M)
>=A
times. Thus, the conclusion will follow if
card X, (n) = Z c(IT)
=A

for any k-tuple n and associated partition A. To see this, note that
¢(IT) counts the permutations having cycle-type specified by I1: since
any element of X;(n) has a unique cycle-type specified by a partition
that refines A, the result follows.

For k = 3, the theorem says

ZS(ZU s La(2) 5 La(3))

0€X,
= {(11)C(i2)C(13) + iy + i2)C(E3) + C(i1)E(ia + i3)
+ C(iy + i3)C(iz) + 20(iy + i + i3)

for iy, i, i3 > 1. This is the main result of [7].
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To state the analog of 2.1 for the A°’s, we require one more bit of
notation. For a partition Il = {P;, ..., P} of {1,2,..., Kk}, let
¢(IT) = (=1)*e(Im).

THEOREM 2.2. For any real iy, ..., i > 1,
Y Alio(t)s - s loh) = > &Ime(, Im).
€L, partitions IT of {1, ..., k}

Proof. We follow the same line of argument as in the preceding
proof. The left-hand side is now

SRS e

2 ok
g n>n>->n .1 na(l)n a(2) na(k)

and a term (2) occurs on the left-hand side once if all the n; are
distinct, and not at all otherwise. Thus, it suffices to show

1, if cardA=k,

(3) ¢(II) = .
1%\ { 0, otherwise.

To prove this, note first that the sign of ¢(Il) is positive if the permu-
tations of cycle-type Il are even, and negative if they are odd: thus,
the left-hand side of (3) is the signed sum of the number of even and
odd permutations in the isotropy group X;(n). But such an isotropy
group has equal numbers of even and odd permutations unless it is
trivial, i.e. unless the associated partition A is {{1}, {2}, ..., {k}}.

When all the exponents are 2 we have the following result, which
proves a conjecture of C. Moen.

COROLLARY 2.3. For k>1,

n2k
4Q2.2, ) =
k

Proof. Applying Theorem 2.2, we obtain
k

1 _
4Q,.. ) =5 3 (-Dk!
k I=1 partitions {P,,..., P} of {1,...,k}
/
x [](card Ps — 1)!{(2 card Py).

s=1
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Using the well-known formula for values of the zeta function at even
integers in terms of Bernoulli numbers (see, e.g., [4]), and writing p;
for card P;, we can express the right-hand side as

k
aY ) (-1

1 partitions {P,....,P}of {1,.. .k}
(ps — 1)12%77 1 (~ 1)”“32 P

% H (2ps)!

s=1

!sz

1 k
_ '_"'Z Z 22k -1 ZkH (zps ,

" I=1 partitions {P,....,R}of {1,..,k}

since the sum of the p; is k. Now for a given (unordered) sequence
Di, ..., D, the number of partitions {P,..., P} of {1,...,k}
with card P, =p, for 1 <s</ is
1 k!
mylmy! - -my ! pylpa! - ppt’
where m; = card{s | p; = i}. Thus, we can rewrite the sum as

k
(2m)2k 1 !By,
] Z_l Z vH
k! P 2 p1+---+p[:k i Ds!(2ps)!
k
1 2p
27Z 2k s
SCUPIEDY mk!EZps(szM

iy __1___<_B_2)m‘ By )mk
= (2n) 2 mrma\aa) o \mrE)

m+2m,+-+km, =k

It is then enough to prove the following proposition.

ProprosITION 2.4. If B, denotes the nth Bernoulli number, then for
k>1
> ~1—(£2_)m‘( Bk )mk
m +2m,+-+km, =k myl-myt \22 2k(2k)!
1

T 22k + )
Proof . Define

= 22k (2k)!
k=1
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If we also let

f(X)=log(M) =1og(exx‘1)—§,

x/2
then B(x) = f(x) since f(0)= f(0)=0 and
/ _ooBkXZk—l_loanx”_l X X
/*(x)—,;%z‘zaz——;’;T—;(ex_r”i)
1 1 1 e* 1 1

- Sy __ct L _L_p
Cex—1 x+2 ex—1 x 2 S'(x).

(Here we have used the generating function for the Bernoulli num-
bers.) Thus

x2k _ sinhx/2
B(x)
) Z Kk + 1) x2 ¢

_Z B2x2 B4x4+ !
n\722r " aar T )

Using the multinomial theorem, expand out the right-hand side to
obtain

Sh T () () ()
=0 I m, - mymy---my 22! 2k(2k)'
= 1
— 2k
_gx Z mylm,! - my!

m +2m+--+km, =k

“ _1?_2_)'"‘ (_sz_)'"
22! 2k(2k))

and the conclusion follows by equating coefficients of x2% in (4).

3. The sum and duality conjectures. We first state the sum conjec-
ture, which is due to C. Moen [5].

Sum conjecture. For positive integers k < n,

S Ay, ..., i) =n),

I+t =n
i>1

where the sum is extended over k-tuples i, ..., iy of positive inte-
gers with i; > 1.
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Three remarks concerning this conjecture are in order. First, it
implies

M) > St = (21 ) o,

i,+-:~+ik=n
i>1

as we prove below. Second, in the case k = 2 it says that
An-1,1)+An-2,2)+---+A(2,n-2)={(n),

or, using the relation between the 4°’s and S’s and Theorem 2.1,

n—2
28(n—1,1) = (n+ 1)¢(n) = ¥ (k)L (n — k).

k=2
This was proved in Euler’s paper [2] and has been rediscovered several
times, in particular by Williams [8]. Finally, C. Moen [5] has proved
the sum conjecture for k = 3 by lengthy but elementary arguments.

For the duality conjecture, we first define an involution 7 on the

set & of finite sequences of positive integers whose first element is
greater than 1. Let J be the set of strictly increasing finite sequences
of positive integers, and let £: & — J be the function that sends
a sequence in & to its sequence of partial sums. If J, is the set
of sequences in J whose last element is at most »n, we have two
commuting involutions R, and C, on J, defined by

Ry(ay,a,....q)=n+1—-ag,n+1-a_(,...,n+1—-ay)
and
Cnlay, ..., a;) = complement of {a;, ..., a;}
in {1, 2, ..., n} arranged in increasing order.

Then our definition of 7 is
(1) = 27 'R, C,2(I) = 27 Cu R, Z(])

for I = (i1, i,...,0x) €6 with i +---+ i = n. (The reader may
verify that 7(I) is actually in &, has length n — k, and its elements
have sum n.) For example,
7(3,4,1)=X"1CsRs(3, 7, 8)
=x13,4,5,7,8=(3,1,1,2,1).
We shall say the sequences (i;, ..., i) and 7(i;, ..., I;) are dual to
each other, and refer to a sequence fixed by 7 as self-dual.
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Now we can state our second conjecture.

Duality conjecture. If (hy, ..., h,_;) is dualto (iy, ..., iy), then
A(hl, cees hn—k) =A(i1, cees ik).

We include some remarks on how 7 may be more easily computed.
The set & is a semigroup under the operation given by concatena-
tion, and the indecomposables are evidently sequences of the form

(h+1,1,...,1) with 2> 1. It is easily computed that
2) th+1,1,...,)=(+1,1,...,1).
k-1 h—1

(In particular, the duality conjecture implies
A2, 1,...,1)Y=An)={(n
( 2 ) = A(n) = {(n)
n—

for integer n > 2. Note that this is also the sum conjecture for the case
k = n—1. This case follows from Theorem 4.4 below.) Together with
the following proposition, (2) gives an effective method for computing
t(I) forany I € 6.

ProPoOsSITION 3.1. For I,,1, € &, t(I1 1) = t(Ix)t(ly).
Proof. By induction on the number of indecomposables in I, we

can reduce to the case where I, is indecomposable. So let

L=(y,...,0), L=MG+1,1,...,1),
1= (i1 k), = : )
-1
n=i+---+i, m=n+h+1

Then
1) =X 'CpRnZ(iy, .., i, h+1,1,...,1)
-1
=X 'CuRm(iy, iy +iz, e, it +-+ig, n+h+1,
n+h+2,...,n+h+10)

=X1Cn(1,2, ..., L, I+h+1,1+h+i+1,...,
l+h+ir+---+ipg+1)

=X YI+1, ..., 0+h, l+h+cy,..., 1 +h+c,g)

=(+1,1,...,1,¢1,2—=C1y e Cnk = Cn—i—1) »
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where C,R,%(I;) = (¢;,¢C2, ..., Cu_i), from which the conclusion
follows.

We close this section by proving that the sum conjecture implies
(1). We first note that & has a partial order given by refinement, e.g.
(2,1,2) and (3,1, 1) both refine (3, 2). Further, S(iy, ..., ix) is
the sum of those A(j;, ..., j;) for which (i;, ..., i;) is a refinement
of (ji, ..., j;). Thus the sum

> S, .., i)

il+-:-+ik=n
i>1

can be written as a sum of terms A(j;, ..., j;), each of which appears
with multiplicity

card{(iy, ..., ix)|iy > 1 and (iy, ..., i) refines (j;, ..., j;)}

-(":5Y):

The equality can be seen combinatorially: think of an ordered sum
i1+ -+ i = n that refines j; +---+ j; = n as defined by choosing
k — | division points (in addition to those defining the first sum) out
of n—1[—1 possibilities. Thus

k

. . n—1[-1 . .
> S(l1,.--,tk)=2( | ) . (0 PR /)
i++i=n I=1 Jiteti=n
i>1 J>1

Assuming the sum conjecture, the latter sum is

zkj(”,;’_‘,l)c(n>= (521)co.

I=1

4. Partial proof of the duality conjecture. We shall prove the duality
conjecture for sequences (i;,1,..., 1) with i; > 1. We use the
following theorem of L. J. Mordell [6].

THEOREM 4.1 (Mordell). For positive integer k and any a > —k,

Z 1 'Z l)l (a—l)
niny - -m(nyg+ -+ ng+a) z‘z+1)k+1 i '

nye,n 21

From this we deduce the following result.
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COROLLARY 4.2. For integer h > 1,

> 1 C kA1, 1, L),
nl""’nkzl nan"'nk(nl +"'+nk) \-—}T-’l—-/

Proof. Differentiate Mordell’s formula p times with respect to a
to get

1
> o
n i 21 niny nk(nl + + ny +a)

(o ¢] 1) _p

1 a—1
'Zl'l+1)k+1 > (a_ll)"'(a—lp)< i )

1<) <<h <

Now set a = 0 to obtain

1
Z nny ... (g + -+ ng)ptl

Ry, 21
(=1 (=1)P+ia

'Zl'l+1)k+l Z lll
l<1l<---<lp5i P
1

=k Y
o] jk+1?
1<l <<l <j h lp]

from which the conclusion follows by setting h=p + 1.

On the other hand, we can use the following rearrangement lemma
for multiple series to rewrite the left-hand side of 4.2 another way.

LEMMA 4.3. Let [ be a symmetric function in k variables. Then

b

Z kKf(ny, ..., n) _ Z f(nl,..., ng)

Ry, 21 ny(ny+nz)---(ny+-- + ny) n 21 niny--- Ny

provided the sums converge.

Proof. We proceed by induction on k. The result is immediate for
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k = 1. Now assume it for k£ and consider

(k+1)!f(n1,...,nk 1)
1 n. E"kPl 1(”1+"2)"'("1+"'++”k+1)

k!
zn’gk ni(ny+nz) - (ng + -+ ny)
Z (k+1)f(n1,...,nk+1)’

Ryt ey

nk+l=l

where f is symmetric in k + 1 variables. Since the function

io: (k+1)f(nla :nk+1)

ny+ -+ Py

nk+l=1

is symmetric in ny, ..., n;, we can apply the induction hypothesis
to transform the right-hand side of (1) into

)3 k+1 Z Sy, ..., ngyq)
n>1n1n2 ny+---+ Ny
R

n

Let S be this sum divided by k + 1. Then

Z f(nla"'snk+l)_S

OU/ARM US|

12° k+1—

1
=Zm

1

nyye,n 21
1 1
Y S o) [ - ]
nkz: " iy ny+ -+ By
+1
= > Z S, s M)+ - + i)
nem21 " ko 2 ”k+1(n1+ )
k
=E Z f(ny, ..., mg)n;
1 Sy M M (4 My
J 0 k+l

By permuting the variables, we see that each of the k& terms in the
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latter summation is just S'. Thus, the sum is kS and we have

Z f(nla--'snk+l)=(k+1)S

nmny---n
nl nk+1 k+1
Z (k+1)!f(n1,...,nk+1)
.= Zlnl(n1+n2)"'(nl+"'+nk+l)

TERIER (]

Applying the lemma with f(n;, ..., ng) = (n; +--- + ng)~" gives
1
Ah+1,1,...,1)=
( ) >

~~ , nk>1'11(’11+’12)"'(’11+"'+nk)h+1
pa— 17"" —

1 1
_F Z nl...nk(nl+...+nk)h'

Ry, n 21

Putting this together with Corollary 4.2, we have

THEOREM 4.4. For integers h, k > 1,
Ah+1,1,...,1)=Ak+1,1,...,1).
N ! N——
k-1 h—1

From the remarks in §3, Theorem 4.4 is just the duality conjecture
for indecomposable sequences of &.

5. Evidence for the conjectures. For the computations of this sec-
tion, the following result will be useful.

THEOREM 5.1. Let iy, iy, ..., iy be any sequence of positive inte-
gers with iy > 1. Then

k
ZA(i],..., il+1,---,ik)
=1

-2
= Z ZA(ila--'a il—la il_j?j+15 il+la---’ik)‘
1<I<k j=0
i>2

Proof. By multiplying series, we have

(1) A(i1+1,i2,...,ik)+A(i1,l,iz,...,ik)
+A(i1,i2+1 'k)+--~+A(i1,i2,...,ik,1)

- Z 2_

Ry, 21 Sl 32 Sk Jj= 1
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where we write s, for n; + --- + n,. But the right-hand side of (1)
can be written

(2) ) ——I—Z[I—L]

k s gl Mgyl Sk+t
ny,..,n 21518 Sk n,,>1 + +

and by a standard partial-fractions identity we have

-1

11 ' 1
i - i J+1 0
Measty meast 520 SEs
or
-2

17 1 1
T-[ - }: '+ZW—-

5! Rr+1 Sk+1

Thus, (2) can be rewritten as

1
s s --si2 n sil
By s s ey 2197 2 k—1""k+1k 41
L2 1
+z > —
j=0n,,. nk+,>1s1 Sz k— lsk Sk+1

or, since the first sum is unchanged by permuting n, and ny,,

-2
1 ' . .. . .
e +ZA(ZI—J:J+1912"":”€)'
k X
Rpsens My 21 Sl s2 sk lnksk+1 Jj=0

Now we use the partial-fractions expansion

‘ S
i ]+1 12 J

nksk nksk 1 j=0 Sk

to obtain
1

I e L oh A
e My 21 S8, Sie—1"MSkc 1

_ Z 1

n k+,>151 : Sk 2Pk~ lsksk+1

1?2
i,—1

+ D A(iy, =, 1, 03, )
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Continuing in this way, we conclude that (2) equals

i-2
S AGy =, i+ 1,0, k)

J=0
i—1
+ 3 Ay, b= j,J+1, 03, ., i)
Jj=0
-1
ik Y Ay, e By =, S+ 1)
=0
1
+ ik ik—l il ’
Mysees M 21 1S3 8300002 gy
and since the last sum is A(ij, ..., iy, 1) the conclusion follows by

substitution for (2) on the right-hand side of (1) and appropriate can-
cellation.
Note that by taking £ = 1 in Theorem 5.1 we get

A(ly+ 1) = A, )+ A - 1,2)+ -+ A2, 51— 1),

which is just the sum conjecture for two arguments. Recall that the
sum conjecture for n — 1 arguments (where » is the sum of the argu-
ments) follows from Theorem 4.4: using this together with Theorem
5.1 applied to the sequence

we get the sum conjecture for n — 2 arguments.

Now we consider relations among the quantities A4(iy, ..., i) with
n=ij+---+i <6. For n =3 we have 4(2, 1) = A(3) by Theorem
4.4, For n =4 we have A(2,2,1) = A(4) and A(3, 1)+ A4(2,2) =
A(4) from Theorems 4.4 and 5.1; since the sequences (3, 1) and
(2, 2) are both self-dual, all instances of both conjectures hold in this
case. For n = 5, Theorems 4.4 and 5.1 establish the sum conjecture
for all values of k. Also, 5.1 applied to the sequence (3, 1) gives

(3) A(4,1)+A(3,2)=A43,1, 1)+ A4(2,2,1).
But the sum conjecture implies

A4, 1)+ A(3,2)+AQ2,3)=A(3, 1, )+ 4(2,2, 1)+ 42, 1, 2),
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so A(2,3)=A(2, 1, 2) (an instance of the duality conjecture). Now
A(3,1,1)=A(4, 1) by Theorem 4.4, so A(2, 2, 1) = A(3, 2) from
(3) and all instances of the duality conjecture hold in this case.

For n = 6, we get the sum conjecture immediately for k =2, 4, 5.
Theorem 5.1 applied to the sequences (4, 1), (3, 2),and (2, 3) gives
respectively

(4) A(5,1)+A(4,2)=A(4,1,1)+A4(3,2,1)+A4(2,3,1)

(5) A4,2)+A3,3)=A4(3,1,2)+4(2,2,2)+ A(3,2,1)

(6) A(3,3)+A4(22,4)=A4(2,1,3)+A4(2,3,1)+ A(2, 2, 2).

On the other hand, 5.1 applied to the sequences (3,1, 1), (2,2, 1),

and (2,1, 2) give

(7) A(4,1,1)+A43,2,1)+4(3,1,2)
=A3,1,1,1)+A4(2,2,1,1)

(8) A3, 2, 1)+ A2, 3, 1)+ 4(2,2,2)
=A(2,1,2, 1)+ A4(2,2,1,1)

(9) AB,1,2)+4(2,2,2)+A4(2,1,3)
=A(2,1,1,2)+4(2,1,2,1)

respectively. Since we know the sum conjecture holds for £ = 2 and
k = 4 in this case, the sum of the left-hand sides of (4) and (6) is
£(6), as is the sum of the right-hand sides of (7) and (9). Thus

A4, 1, )+ A3,2, 1)+24(2,3, )+ A2, 1,3)+ 42,2, 2)
= A4, 1, 1)+A3,2,1)+24(3,1,2)+A(2,2,2)+ 42, 1, 3),

or A(2,3,1) = A(3, 1, 2), an instance of the duality conjecture.
(Note that all other sequences of length 3 are self-dual.) Using this
fact, we can add equations (4) and (6) to get the sum conjecture for
k = 3. Also, we can conclude from (4) and (7) that

A5, 1)+ A(4,2)=A3,1,1,1)+42,2,1, 1).

But A(5, 1) = A(3, 1, 1, 1) from Theorem 4.4, so this means A(4, 2)
= A(2,2,1,1). Now we can use (5) and (8) to conclude similarly
that 4(3, 3) = 4(2, 1, 2, 1), and finally (6) and (9) to get 4(2, 4) =
A(2,1,1, 2). Thus all instances of both conjectures are true when
n==6.
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