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Let F be a non-archimedean local field. In this paper the relation
between irreducible representations of GL(n, F) and SL(n, F) is
studied. Using the results on GL(n, F) a parametrization of (var-
ious classes of) irreducible representations of SL(n, F) by parame-
ters expressed in terms of cuspidal representations of GL(n, F) is
obtained.

Introduction. Before we give a more detailed description of the con-
tent of this paper, a few historical remarks on SL(n, F) are needed.
Gelfand and Naimark gave in [8] proof of the irreducibility of unitary
principal series representations of SL(n, C). The same proof gives
the irreducibility of unitary principal series for GL(n) over any local
field. Using the fact that the unitary principal series have non-trivial
Whittaker models for GL(n), and the uniqueness of the model proved
by Rodier ([18]), Howe and Silberger proved in [10] that the unitary
principal series of GL(n, F) restricted to SL(n, F) are multiplicity
free. The same idea appears in Labesse and Langlands paper [14]. In
this way, Howe and Silberger obtained that unitary principal series
representations of SL(»n, F) are multiplicity free. Shahidi observed
in [20] that one can prove, using the same idea of Whittaker models,
that any irreducible tempered representation of GL(n, F') restricted
to SL(n, F) is multiplicity free. In this way one obtains that the
parabolically induced representation of SL(n, F) by irreducible tem-
pered representation is multiplicity free. A general approach to the
reducibility and the multiplicities was done by Keys. The structure
of the commuting algebras of unitary principal series representations
for Chevalley groups was described by him in {11] and it turned out
the multiplicities are not always one. This was also shown earlier by
Knapp and Zuckerman in [12]. Gelbart and Knapp gave in [5] a de-
scription of irreducible constituents of the restriction to SL(n, F) of
the unitary principal series representations of GL(n, F). Their pa-
per [6] is based on two working hypotheses, the second of them is the
multiplicity one of the restriction to SL(n, F) of irreducible represen-
tations of GL(n, F). Bernstein showed in [1] that any parabolically
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induced representation of GL(n, F) by an irreducible unitary rep-
resentation is irreducible. In [13] Kutzko and Sally and in [17] Moy
and Sally, studying the restriction to SL(n, F) of cuspidal represen-
tations of GL(n, F) showed in the tame and in the prime case that
any cuspidal representation of SL(n, F) is induced from a compact
open subgroup. These papers contain a lot of informations about re-
strictions of cuspidal representations in these two cases.

Now we give a more detailed description of the content of this pa-
per. In the first paragraph it is shown that the restriction to SL(n, F)
of an irreducible smooth representation of GL(n, F) is a multiplic-
ity free representation. In particular, it proves “Working Hypothesis
2” of Gelbart and Knapp in [6]. Using the Bernstein result in [1] on
the irreducibility of the unitary parabolic induction for GL(n, F) it
is obtained that the parabolically induced representation of SL(n, F)
by an irreducible unitary representation of a Levi subgroup is multi-
plicity free.

The second paragraph presents some simple general facts about re-
striction of irreducible representations of a connected reductive group
G over F to a connected reductive subgroup G; of G which con-
tains the derived group G9*. We need those facts in the sequel. Most
of them were observed and proved by a few authors, the greatest part
by Gelbart and Knapp in [5] and [6]. Here we present proofs because
Gelbart and Knapp were dealing with the case of char F = 0. In this
case G/Z(G)G, is a finite group (Z(G) denotes the center of G).
This is not always the case in the positive characteristic.

Let P = MN be a parabolic subgroup of GL(n, F), and M, =
SL(n, F) N M. In particular, one may consider the case of M =
GL(n, F) and M, = SL(n, F). For an irreducible smooth repre-
sentation # of M, Xy (w) denotes the set of all characters x of
F* such that n = (x odet)n. This is a finite group and it has been
introduced by several authors, for example in [S], [14], [17]. Fix a
non-trivial unitary character of F . Take a pair consisting of an orbit
@ for the action of characters of F* on the classes of irreducible
representations of M and a from the dual group of X M, (m) where
n € @ . Considering Whittaker models and the Langlands classifica-
tion we fix an irreducible subrepresentation A((#, a)) of n|M;. In
this way a parametrization of all irreducible representations of M is
obtained by irreducible representations of GL(»n, F) (Theorem 3.1).
One can obtain a parametrization of other classes of irreducible repre-
sentations of M; because A((#, a)) is square integrable if and only
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if the orbit & is square integrable, A((&, a)) is unitary if and only
if the orbit & is unitary,.... Let us observe that the parameters for
the irreducible constituents of unitary principal series of SL(n, F)
introduced in [5] are of the same type.

In the last paragraph the parametrization of A is reduced to cuspi-
dal representations of GL(n, F) and groups Xsi(,, r)(p) for cuspidal
representations p. Further reduction would be a description of the
groups Xsj(», r)(p) in terms of a classification of cuspidal representa-
tions. A great amount of information and calculations of these groups
can be found in the paper [14] by Kutzo and Sally, and the paper [17]
by Moy and Sally. In the tame case these groups appear naturally (see
Remark 4.3). In this paragraph we give a necessary and sufficient con-
dition for the irreducibility of parabolically induced representations
by irreducible unitary representation (Theorem 4.2).

Note that in the case of GL(n, C) or GL(n, R) the question about
the multiplicities of the restriction of irreducible unitary representa-
tions to SL(n) is pretty simple. Since R* has two characters of finite
order and C* only one, by (a simple) Lemma 3.2 of [5] the multiplic-
ities of the restriction are always one and the length can be at most 2
for R, and 1 for C (for C it is evident since GL(n, C) is a product
of SL(n, C) and its center).

This author is thankful to P. J. Sally for conversations on the prob-
lems considered in this paper and for suggesting to write this paper.

1. Multiplicities one. 1. We fix a locally compact non-archimedean
filed F. By A (resp. A;) we shall denote the maximal torus in
GL(n, F) (resp. SL(n, F)) of all diagonal matrices. The Borel sub-
group of all upper triangular matrices in GL(n, F) (resp. SL(n, F))
will be denoted by B (resp. B;). The choice of the Borel subgroup
determines in a natural way a set of positive roots and further, the set
of simple roots.

Now we have a well known

1.1. LEMMA. Let (o, V) be a smooth representation of a Levi fac-
tor M of a parabolic subgroup P = MN in GL(n, F), where N
denotes the nilpotent radical of P. Set M = M NSL(n, F). Then
Py = M\N is a parabolic subgroup of SL(n, F) and P, = M\N isa
Levi decomposition of P, . The representation IndgL("’F )(a)l SL(n, F)
Is isomorphic to Ind?,L(" F )(alMl) with an isomorphism given by re-
striction to SL(n, F) .
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Let 7 be an irreducible smooth representation of GL(n, F). Then
n|SL(n, F) is a finite sum of irreducible representations. This can be
obtained from [21] (see Lemma 2.1 for a more detailed explanation).

1.2. THEOREM. For an irreducible smooth representation (n, V)
of GL(n, F), n|SL(n, F) is a multiplicity free representation.

Proof. We consider Langlands parameters of n. We can choose a
parabolic subgroup P = M N of GL(n, F) containing B, an irre-
ducible tempered representation 7 of M and a positive-valued char-
acter y of M satisfying the positiveness condition with respect to
roots of Proposition 2.6 in Chapter XI of [3], such that # is a unique
irreducible quotient of IndgL("’F )( x7). We shall assume that we took
a Levi factor M which consists of diagonal block matrices for a suit-
able partition of n=mny+---+ n;. Then

M = GL(ny, F) x--- x GL(ny, F)

and we identify M with GL(n;, F) x --- x GL(n;, F). Set M; =
MnSL(n, F) and Py = M{N.

Note that 7 =17, ® --- ® T, where t; are irreducible tempered rep-
resentations of GL(n;, F). Since 7; has Whittaker model by [25],
in the same way as in [10] one obtains that 7;|SL(n;, F) is multi-
plicity free (this was observed in [20], see also Proposition 2.8). Thus
7|SL(n, F) x --- x SL(ng , F) is multiplicity free. Since SL(n;, F) x
-+« x SL(ny , F) C M;, t|M; is multiplicity free.

Note that t|M is a direct sum of irreducible representations of Af;
(for a more detailed explanation see Lemma 2.1). Let 7= @/_, 7; be
a decomposition into irreducible representations of M; . Observe that
all unipotent radicals in M are contained in M; and thus the Jacquet
modules for parabolic subgroups of M and M, are the same spaces.
Applying Theorem 2.8.1 of [23] one obtains that 7y, ..., T, are tem-
pered representations of A; (central exponents of Jacquet modules
of M,-representations are obtained by restricting central exponents of
Jacquet modules of M-representations, see also Proposition 2.7).

The representations 7; are inequivalent irreducible tempered repre-
sentations of M| and yx; = x|M, satisfies the positiveness condition
of Proposition 2.6 in Chapter XI of [3], considered for SL(n, F).
Thus Ind?,{“(” o F )( X17;) has a unique irreducible quotient say (n}, V).

Since all 7; are inequivalent, x}, ..., n, are all inequivalent. By
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Lemma 1.1 we can fix an isomorphism

p
Ind§™" ) (y7)| SL(n, F) = Ind5- ") (@ xm)
i=1

T St F
5@ (n (o).

Let v : EB?ZI Ind?,L("’F )( X1Ti) — W be a non-trivial morphism of
SL(n, F)-representations where (o, W) is an irreducible SL(n, F)-
representation. Suppose that y| IndiL("’F)( x17;) #0. Thus o = n{-o .

Since 7, ..., m, are inequivalent, t//]Indif‘(”’F)(xlri) =0 for i #
ip . If we have another SL(n, F)-morphism

p
Y @Ind;L(n’F)('//ﬂi) — W
i=1

it must be proportional to ¥ by the uniqueness of irreducible quotient
(3D:

Consider a decomposition 7n|SL(n, F) = @;’.: | ®@; into irreducible
representations of SL(n, F). Consider the natural morphisms of
SL(n, F)-representations

q
9, :IndS""F(y7) - 7 = P — =;.
i=1
Suppose that z; = n; for some i # j. Let A be an isomorphism of
m; onto 7;. Then

0js Ao pi:Indp" ") (x1) — m;

are non-trivial SL(n, F)-morphisms. Note that ker¢; # ker(Ao ¢;).
Thus ¢; and Aog; are not proportional. This contradicts the above
observations about SL(#n, F)-morphisms y . Thus n; # n; for i # j.
This proves the theorem.

1.3. REMARK. The above observations on SL(n, F)-morphisms
w imply that {z,..., gz} C {#},...,m,}. It is not difficult to
obtain p = ¢ and thus {n,..., 7} = {#n},..., m,} (otherwise
Indg’L("’F)( x7) would have two different irreducible quotients). In
this way there is a natural bijection between irreducible subrepresen-
tations of yo|M; and irreducible subrepresentations of n|SL(n, F).
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1.4. THEOREM. Let P, be a parabolic subgroup of SL(n, F) with
a Levi decomposition P, = M\N. Let (6, U) be an irreducible uni-
tary representation of M,. Then Indf,L(”’F ) (0) is a multiplicity free
representation. l

Proof. Choose a parabolic subgroup P of SL(n, F) with the Levi
decomposition P = MN such that M; = M NSL(n, F). Then
P, = PNnSL(n, F). It is not difficult to see that there exists an ir-
reducible unitary representation gy of M such that o is a subrep-
resentation of agg|M; (for the proof see Propositions 2.2. and 2.7).
Now Indf,lL("’F )(a) is a subrepresentation of Indlsgf‘(" F )(00|M1) which

is isomorphic to IndgL(”’F ) (60)|SL(n, F) by Lemma 1.1. Thus, to
prove the theorem it is enough to prove that Indg’l‘(" - F) (g9)|SL(n, F)
is multiplicity one. Since IndgL("’F )(ao) is irreducible by Corollary
8.2 of [1], IndS™">F)(a)|SL(n, F) is multiplicity free by Theorem
1.2

2. Some general remarks. In this paragraph we collect some general
remarks, most of them well-known, about the connection of represen-
tations of reductive groups G; C G which are in a position analogous
to the position of SL(n, F) C GL(n, F). A great part of this is
proved, among other papers, in [5], [6], [18], [20]. For the sake of
completeness we shall give proofs for which we do not know a pre-
cise reference in considered generality. Usually it was considered the
situation when G{Z(G) is of finite index in G but this is not nec-
essarily true if char F # 0. (Z(G) denotes the center of G). Since
G/G,Z(G) is always compact, the case of infinite G/G,Z(G) is a
slight modification of the case of finite G/G{Z(G).

We shall denote by G the group of rational points of a connected
reductive group over a non-archimedean field F, and by G9 the
group of rational points of its derived subgroup. The center of G
is denoted by Z(G). By G, it will be denoted rational points of a
connected reductive subgroup of G containing G9r. The set of all
classes of irreducible smooth representations of G will be denoted by
G while the subset of all unitarizable (resp. tempered, square inte-
grable modulo center, cuspidal) classes will be denoted by G (resp.
T*(G), D*(G), C(G)). The subset of G of essentially square inte-
grable representations (resp. essentially tempered representations) will
be denoted by D(G) (resp. T(G)). Set C*(G) = C(G)NG.
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For (n,V) € G and ¢ a continuous automorphism of G, 7,
will denote the representation 7,(g) = 7m(o(g)) which is again in
G. Clearly Moo, = (”0'1)02' Let x € G and let y(x) be the inner
automorphism of G defined by y(x): g — xgx~!. For (z, V) € G
set

Tx = Ty(x)IG,-
In this way G acts on 51 . This action factorizes to an action of
G/Z(G)G,.
Now we have an easy consequence of [21].

2.1. LEMMA. For 7 € G, 7|Gy is a finite direct sum of irreducible
representations of G; .

Proof. Let for a moment G, G%* and Z(G) will be considered
as algebraic groups over an algebraic closure of F. Let Z(G)y be
the connected component of Z(G). Then the multiplication G9¢* x
Z(G)y — G is an isogeny ([2], 14.2, Proposition). Let us return to
the groups of rational points. By [21], #|G%'Z(G) is a finite direct
sum of irreducible representations of G4*Z(G) and moreover, by the
Schur lemma, of GYr. Thus |G, is a finite length representation.
This implies that 7|G; is completely reducible (see proof of Lemma
3 of [21)).

Let # € G. Denote by & () the set of all v € Gy, which are
isomorphic to a subrepresentation of 7|G, . Clearly, & (7) is a finite
set and it is invariant for the action of G (since n = &, for g € G).
The action of G on & (n) is transitive (since 7 is irreducible). Set

|Gy = @ n(t)t.
1€d(n)
The linear independence of characters together with the transitivity
of the action of G on &g (%) implies that all n(7) are the same, say
mg (7). Thus
|Gy = mg (n) P .
T€0 (1)

The cardinality of & (n) will be denoted by ng (7).

By %G it is denoted the set of all g € G such that |x(g)|r =1 for
all F-rational characters y of G. Then °G/G9" is compact, G/°G
is a free Z-module of finite rank, say n, and G/°GZ(G) is finite.
Thus

°GZ(G)/°G = Z(G)/(Z(G)N°G)
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is a free Z-module of rank n. Therefore
Z(G)— Z(G)(Z(G)NOG)

splits. Denote by S the image of a splitting homomorphism. Then §
is a closed discrete subgroup of Z(G) which is a free Z-module of
rank n, SN°G = {1}, S(Z(G)N°G) = Z(G), and °GZ(G) = °GS.
Note that SG9T is a closed subgroup of G and that G/SGYr is
compact. Also SGYT is a direct sum of S and G9. Note that
9GZ(G)/°G =°GS/°G = S is also of rank n and it is of finite index
in G/°G. Let k be the rank of °GG,/°G. Then

°GS/°G) N (°GG,/°G) = (°GS N °GGy)/°G
is also of rank k. Let
S'={s€S8;5°G c°GSN°GG,}.

Then
°GSn%GG, =°GS'.

Let .S; be a maximal subgroup of S among subgroups satisfying S| N
S"={1}. Now S| is of rank n—k and S8’ is of finite index in S.

Consider S;G,. First note that S; N°GG, = {1} (in particular
S) N G; = {1}). This implies S,G; N °GG; = G;. Since °G is an
open subgroup of G and G, is closed, it is easy to see that S;G; is
a closed subgroup of G. It is a direct product of S; and G;. Note
that

°GS,G,/S:1G, =°G/(S,G; n°G)

is compact since °G/G9" is compact. Since G/°GS;S’ is finite and
0GS,S’ C9GS,G;, G/°GS G is finite. Thus G/S|G, is compact.

2.2. PROPOSITION. Foreach t € G, there exists n € G such that t
is isomorphic to a subrepresentation of n|G, . If the central character of
T s unitary, then there exists such m with the unitary central character.

Proof. Let (t,U) € G;. Extend 7 to a representation of S1G,
defining that each element of S; acts as identity. Let (x;, V}) be the
representation Indg%;l 6,(7) . This is an admissible representation. Then
f— f(1), 1 - U 1s a §,G;-intertwining whose restriction to any
non-zero G-invariant subspace is non-zero (thus it is surjective).

Let ¥, be any non-zero finitely generated G-subrepresentation of
Vi . Then we have a surjective S| G -intertwining « : V5 — U . Since
V5 is finitely generated and admissible, it is of finite length. Therefore,
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we can choose an irreducible G-subrepresentation V3 of V5, with the
property a(V3;) = U. This completes the proof of existence.

Suppose that the central character w; of 7 is unitary. Then for
the central character w, of n we have w,|S; = | by construction.
Consider |wg|. It extends to a character y of G into RY. First
x|G; =1 since y = 1 on the center of G;. Therefore x|S;G; =1
and finally |G =1. Thus |w,|=1.

2.3. CoOROLLARY. Let (1,U) € G,. Set
G.={geCG:1,=1}.

Then Z(G)Gy C G, and G is an open normal subgroup of G of finite
index.

Proof. Choose (n, V) € G such that there is a G-subrepresentation
Vi CV equivalent to U. Let vy € Vi, vg # 0. Denote by K an
open subgroup of G fixing vg. Then KZ(G)Gy C G, and KZ(G)G,
is open in G and has finite index.

Similarly as in Lemma 3.2 of [5] we obtain the following:

2.4. PROPOSITION. Let (my, V), (m, V) € G. Let hGl(m , 2)
be the number of all characters y of G/G; such that ym, = mn, as
representations of G. Then h(;l (my, my) is finite and equal to the di-
mension of

Homg (7, 75).

Proof. First we shall prove the proposition in the case when the
restrictions of central characters of n; and 7n, to S; are the same.
Observe that with this assumption

Homg (7, m2) = Homg ¢ (71, 73).
By Frobenius reciprocity
Homs g, (71, 72) = Homg() , Ind g (72)).

Denote by C*(S1G;\G) the representation of G by right translations
on the space of locally constant functions on G constant on S;G;-
cosets. We have an isomorphism

a:C®(S|G\G) @V, — Indfq;l 6,(m2)
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given by f®v — (x — f(x)m(x)v). It is obvious that a is a
well defined injective intertwining. Let ¢ € IndgG (mp). Let X be
an open compact subset such that SGi X = Gf lChoose an open
compact subgroup K fixing ¢ and fixing each element of the finite set
{my(x~He(x); x € X}. Let g,..., g € X be the representatives
for S1G1\G/K . Define ¢; by ¢;|S:G,8:K = ¢|S1G1gK and ¢;(x) =
0 otherwise. Then ¢ = ¢+ ---+ ¢, and ¢; € Indglg (mp). Let yx;
be the characteristic function of S;G;g;K. Now l

1 ®ma(g (g - 0i

and this proves the surjectivity.

Note that C*°(S;G1\G) is isomorphic to the sum of all characters
of G/S:G;. Thus the set of all unitary characters y of G/S;G; such
that ym, = m; is finite and the number of such x is the dimension of
Homslcl(nl , T2) = Homg (7y, 7,). Note that for a character y of
G/G, such that ym, = m; it must be x|S; = 1 (consider the central
character).

Now let 7; and 7, be arbitrary. Let w, be the central character
of n;. Consider wy |S; as a character of

$,°GG,/°GG; = ;.

Note that G/S|°GG; is finite. It is easy to see that w, |S) extends to
a character of G/°GGy, say x;. Then

Homg (7, m3) = HomGl(Xl_lﬂl , Xy ).

Now we can apply the first part of the proof and the proposition is
proved.

2.5. COROLLARY. Let n;, my € G. Then the following statements
are equivalent:
(i) There exists a character x of G/G' such that ym, = ;.
(il) g (m1) NG (M2) # @ .
(iii) g (m1) = g (m2).

By the above corollary the orbits of the action of G on G, are in
the bijection with the orbits of the action of the characters of G/G,
onto G.

2.6. REMARK. Let 7 € G. We shall denote by XG,(ﬂ) the group

~

of all characters y of G/G; such that yn = n. It is simple to
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see that a character y of G which is trivial on G, , where m; is
any irreducible subrepresentation of #|G;, is in XG‘(n) ([6], Lemma
2.1, (e)). If =n|G; is multiplicity free, then the converse is true: if
X € Xg, (m), then x(Gr ) =1 ([6], Corollary 2.2). The converse is a
consequence of comparison of two finite cardinal numbers.

2.7. PROPOSITION. Let (n, V) be an irreducible smooth represen-
tation of G with unitary central character. Then the following equiva-
lences hold:

(i) meGe 05 (n) C G & (m)NG # 2.

(ii) 7 € C¥(G) & 5 () C CH(Gy) & B (1) N C*(Gy) # @
(iii) 7 € D¥(G) & &5 (1) C D*(G) & &, (1) N D“(Gy) # 2.
(iv) 7€ T4(G) & & (1) C T*(G1) & O (M) N TUG) # 2.

Proof. We shall outline only the proofs of implications which are
not completely trivial. R R

The only such implication in (i) is & (n) C Gy = n € G. Suppose
g (m) C G, . Now we can choose a G-invariant scalar product (, 1
on V. Then n|S|G; is unitary. For vy, v, € V set

(v1,v2) = / . (m(g)v1, n(g)v2)1d8g.
171
This is a G-invariant scalar product on V.

It is easy to obtain directly all implications of (ii).

One obtains implications in (iii) by directly comparing integrals
of matrix coefficients (one can also prove (iii) using the criterion for
square-integrability in Theorem 2.7.1 of [23]).

Let V; be an irreducible tempered Gj-subrepresentation of V.
Then V) is a subrepresentation of suitable Indfl‘ n(0) where M;N
is a parabolic subgroup of G; and é a square-int’egrable representa-
tion of the Levi factor Af;. Now it is easy to see that all elements
from the orbit G, (m) are subrepresentations of the same type of rep-
resentation. We can choose M;N in such a way that there exists a
parabolic MN in G and M; = MNG,, M\iN = MNNG,. Then
we can choose by Proposition 2.2, an irreducible representation &y of
M with the unitary central character such that J is a subrepresen-
tation of Jo|M;. By (iii), Jpis square integrable. Then we have a
projection of Indle(éo)lG onto V;. Thus there exists 7’ € T%(G)
such that V; is a subrepresentation of n’'|G;. Now Proposition 2.4.
implies n’ = yn with y unitary. Thus 7 € T%(G). The implication
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n € T*(G) = & (m) € T#(G,) proceeds in the similar way. One can
prove also (iv) using the criterion in Theorem 2.8.1 of [23].

One can prove the next proposition in the same way as the Theorem
in [10]. Nevertheless we shall present the proof because we shall need
it in the later discussion.

2.8. PROPOSITION. Suppose additionally that G is a split group and
that (n, V) € G possesses a Whittaker model. Then n|G, is multi-
plicity free.

Proof. Let B = AN be a Borel subgroup of G such that 4 is a
maximal split torus of G and N the nilpotent radical of B. Suppose
that # has a Whittaker model with respect to a nondegenerate char-
acter ¥ of N. Then there exists a non-trivial linear form ¢ on V
such that ¢(n(u)v) = %(n)p(v), neN, veV.

Let V =V; +---+ V, be a decomposition into irreducible G-
representations. Then ¢|V; # 0 for some i. We may take i = 1.
The uniqueness of the Whittaker model with respect to ¥ implies
@|Vi =0 for i > 2 ([18]). Thus V;, i > 2 do not have Whittaker
models with respect to §¢. This implies that 7] is not isomorphic to
V; for any i > 2. Therefore, n|G; is multiplicity free.

2.9. REeMARK. Consider the proof of Proposition 2.8. Take a €
A. Denote by 8, a character 9,(n) = %(ana~!). Now if n; has
a Whittaker module with respect to 9, then (m;), has a Whittaker
module with respect to 9,. Denote

Aﬂl = Gnl n A.
Since AG; =G,
A[An = GGy,
Now a +— (m;), is a parametrization of &g (7) by A/As . Let ao €
A. For any a € agAz , (m1)s, has a Whittaker model with respect to
9, . The proof of the preceding proposition implies that 7} € a6, (m)
such that #{ 2 (n 1)a, » cannot have Whittaker model with respect to
¥, with a € apA, . For a finite group X of characters of G set
Gy ={ge€G;x(g)=1,Vy e X},
Ax ={a€Ad; y(a)=1,Vx e X}.
Since n|G; is multiplicity one, Remark 2.6 implies

Gnl = GXG1 (7) » Anl = AXGl (7).
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Thus for fixed ¢, (4/A4 X, (n)) parametrizes &g (m) in the following
way: for each a4 X, () € (A/A X, (m)) there exists a unique o € g (7)
characterized with the property that ¢ has a Whittaker model with
respect to U,.

3. Parametrization of representations of SL-groups by GL-param-
eters. In the rest of this paper we shall consider reductive groups
GL(n, F), SL(n, F) and Levi factors of their parabolic subgroups.
The parabolic subgroup P of GL(n, F) will always be considered
to contain upper triangular matrices, and for a Levi decomposition
P = MN, M will always be assumed to be diagonal block-matrix
(for suitable decomposition n = n; + --- + n;). Now parabolics in
SL(n, F) will be considered to be of the form

P, =PnSL(n, F),
M, =MnSL(n, F),
P, = M|N.

For M we know M = GL(n;, F) x --- x GL(n, F) in a natural
way and we consider parabolic subgroups of M which are products
of the above described parabolics of GL(#n;, F)’s. A similar choice
is made for Levi decompositions. The corresponding notions for AM;
we shall assume to be obtained from M by intersecting with M;. We
shall always assume that the maximal torus 4 in M (and GL(n, F))
consists of diagonal matrices, and the maximal torus A4; in AM; to be
AN M;. We shall always consider identifications

det: M/M; — F*,
det: A/4; — F~*.

Using the first identification, we have an action of (F*)~ on M and
(F*)~ on M.

A non-trivial unitary character y, of F will be fixed. Fixing y, we
have a canonical non-degenerate character ¥ of the unipotent radical
of the Borel subgroup of GL(n, F).

(1 uin U3
1 Usz3
1 : = oty + Uz + -+ Up_1,n).

un—l,n
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For the unipotent radical of the Borel subgroup of a group A (and
thus of M;), we shall consider the nondegenerate character obtained
by restricting 9, and again denote it by 9.

For RC M (resp. M ) invariant for the action of (F*)™ (resp.
(F*)™) we introduce a notation (R/ ~) x )?M1 (resp. (R/7) x /?Ml) :

R/~ xXy = | {FH -7} x Xy (x)"
(F*)~neR/(F¥)”
resp. (R/V)x Xy = )  {F) -7} x (X, (n)”
(F*) meR/(F)"

Here {(F*)~n} (resp. {(F*)"m}) is considered as a one-element set
consisting of one orbit. We shall give a more detailed description of
these objects.

First suppose that 7’ € (F*)“n. Then Xu (n) = Xp(7n'). Thus
the above notations are well-defined. Recall that Xy (7)) = {x €
(M/M)~; xn Z2rn} ={y € (4/4,)"; xn = n} (after identification
M/M; and A/A;). Let m; be an irreducible subrepresentation of
n|My. Then M, = {m € M;(ny)m = n;} by Theorem 1.2 and
Remark 2.6 equals

My ={meM; x(m)=1,Yx € Xy (n)},

and
Apr, =Mz NA={aed; x(a)=1,VYx € X ()}
Thus
Ar, = Xur, ()"
in 4, and
(A/Az)” = Xy (1) = A[ Az, = (X, (7))
canonically.

We have seen that there is a canonical description
R/ ~)xXp, = |J AF)7} x (4/4x, ),

R/(F¥)~
(R/7) x Xy, = U {(Fx)Aﬂ}X(A/Alem))-
R/(F*)"

Note that 4, C Ay, () and therefore we can identify using the deter-
minant homomorphism A/Ax (n) with FX/FJ where
My M ()

F;Ml (m) = det(AXMl (7!:))-
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Since M/M; = A/A; = F* by the determinant homomorphism,
we may identify (M/M;)~, (A/4;)” with (F*)~ and thus consider
Xum (m) C (F¥)~. Now

Fy, @ ={x € F*; x(x) =1, Vx € Xy, (n)}.

Now we shall give a canonical parametrization of 7'(M;).

Take x € (T(M)/ ~) x Xy, . Then x = (FX)*n, adx, (n)-
Now the decomposition 7|M; does not depend on 7 from the orbit
(F*)~m. By Remark 2.9. there exists a unique irreducible subrepre-
sentation A(x) of m|M; possessing a Whittaker model with respect
to 9,;. Then results of §2 imply

A: (T(M)] ~) x Xar, — T(My)

is a one-to-one correspondence.

Let x € (M/ ~) x )?Ml, x = ((F*)™n, aAXMl(n)). Consider the
Langlands parameters of n: let P’ = M’N’' be a parabolic subgroup
in M and o an essentially tempered representation of M’ satisfying
necessary positiveness condition, such that # is a unique irreducible
quotient of Indff,(a). Set M| = M’ N M, . Note first that XM{(O') -
Xum (7). The uniqueness of the Langlands parameters implies that
we actually have the equality X Mf(a) = Xp (7) and thus 4 X, (1) =
Ax,(0)> A/Ax,, @) = A/Ax,(0) -

Now we shall parametrize irreducible subrepresentations of 7|
using tempered representations. We shall use the parametrization
obtained in Remark 1.3 (see also the proof of Theorem 1.2). To
x' = (F*)~o, aAXMl(,,)) = ((F*)~o, adx, (s) we have attached
A(x') € T(M7). Recall that A(x’) is an irreducible subrepresenta-
tion of o|M]. Now Ind];,l,l (A(x)) has a unique irreducible quotient
which will be denoted by A(x). Note that A(x) is an irreducible
subrepresentation of n|A/;. Thus we obtained a mapping

A (M[~)x Xp — M.
Sometimes we shall write (7, ady () or simply (m, a) instead
of (F*)~m, adx, () or (F*)"m, adx, (n)). Now §2 implies:
3.1. THEOREM. The map

A:(H/ma)x)?Ml—»ﬂl
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is a bijection. The restriction
AZ(M\/A)XXMI —>A71

is a bijection. For (m,a) € (]/v.f\ /7)) X X M, the following equivalences
hold:

A((m, a)) € C*(My) & n € C¥(M),

A((m, a)) € D¥(M,) & n € D*(M),

A((n,a)) e TYM,) & neT“M).
In particular (GL(n, F)~] ~) X )?SL(,,, F) parametrizes SL(n, F)~,
(GL(n, F)~/")x Xsy(n i) Parametrizes SL(n,F)~, (D¥(GL(n, F))/")
X Xsi(n,F) parametrizes D*(SL(n, F)) etc.

Now we shall give a description of the unitary induction for
SL(n, F). Recall that for = € M, IndS™"*)(z) is irreducible by [1].
It is easy to see that XMl(n) C Xsin, F)(IndgL("’F )(n)) and thus

SL(r, F)

3.2. PROPOSITION. Let m; € ﬂl and Kl(nl) = (n,aoAXM (1)) -
1
The representation Ind?,L(”’F )(nl) is multiplicity free, its length is
1

card(Xsp (s, F)(IndgL(" P/ x, M (%)) and the parameters of all irre-
ducible factors are contained in {n} x /\A’SL(,,, F)(m).

Proof. One needs only to find the length of Ind?,L(” ;). Set
p= cardXM‘(n),
g = card(Xsi(n, ;) (Indp " (m))/ X, ().

Let n|M; = m; + --- + m, be the decomposition into irreducible sub-
representations. Then

D
Ind§" ") (x)| SL(n, F) = Indy ") (n[My) = P Indy ") ().

i=1
Now A/A X, (m) acts simply transitive on the above decomposition.
1
Thus all Ind?,L(”’F )(ni) are of the same length, say r. But the length
1

of IndgL(”’F)(n)l SL(n, F) is pg and from the other side pg = pr.
Thus r=gq.
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3.3. COROLLARY. The representation Indf,f“("’F ) (my) is irreducible
if and only if .
Xsvn, ) (Indg™" (1)) € Xy, ().

Note that the irreducibility of Ind;i}“ FNA((r, a))), with A((z, a))
unitary, depends only on 7.

4. GL-parameters. We continue with the notation of the preceding
paragraph. -

In the last paragraph we defined a parametrization of AM; (in par-
ticular of SL(n, F )~) and some important subclasses, by parameters
defined in terms of M (in particular of GL(n, F)~).

In this paragraph we shall describe further (H / ~) X X M, (]Tl\ /") %
Xu» (T x Xag s ...

We shall fix an isomorphism of M onto GL(n;, F) x --- X
GL(ny, F) and identify these two groups. Now, there are natural
bijections given by tensoring representations

k

M~ [[GL(, F)~,
i=1
k

M~ [[GL(n:, F)~,

T

C(M) - IkIC(GL(n,-, F)),
=1

CH(M) e ﬁC"(GL(ni, F)),
i=1

D*(M) & ﬁD“(GL(ni, F)),
=1

T“(M) - ﬁ T*(GL(n;, F)),

-~
—

= |l

T(M) « [[ T(GL(n;, F)).
i=1
We shall identify M /M, with F* and thus (M /M)~ with (F*)~.
Let .
T=m® - EM.
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For x € (F*)~ we have

AT = (x7) ® -+ ® (X7y)-
Thus
Xm(m) = XsLn,, F)(M1) N+ N Xsp(n, , F)(Tk ).

Up to now, we made a reduction of the parameters to the GL(n, F)-
case. Now we shall continue to describe the parameters in this situa-
tion.

For smooth representations t; of GL(n;, F), i =1, 2, we shall
denote by 7, x 7, a smooth representation of GL(n,+n,, F) parabol-
ically induced by 7, ® 7, from a suitable standard parabolic subgroup
(see [25]). If we have three representations, then (7; X 73) X 73 i8S
naturally isomorphic to 7; X (72 X 73). We denote by v the character
|det( )|r where | |r is the modulus character of F . Set

In:DGL(n,F)N, Irr“:GGL(n,F)",
n=0 n=0

szjD(GL(n,F)), D“:GD“(GL(n,F)),
n=1 n=1

C=[jC(GL(n,F)), C“=GC“(GL(n,F))
n=1 n=1

T = Ej T(GL(n, F)), T = G T*(GL(n, F)).
n=1 n=1

For a set Y, M(Y) will denote the set of all finite multisets in
Y. They are all finite unordered n-tuples, with any n € Z,. For
(yla cee 3yn)a (y17 oo ,J’m)eM(Y) put

(J’l,---aJ’n)"‘(yll,---,J’;n)=(yl,o--,J’ns)’ia---:J’;n)-

For any 7 € T there exist a unique 7 € 7% and e(7) € R such
that

T =74,
Clearly 1 € D & 1 € D“.
For t =(1y,...,1Tn) € M(T) and x € (F*)~ we define
Xt=(XT1, .., XTn).

In this way one obtains an action of (F*)~ on M(T). The stabilizer
of ¢t will be denoted by X(¢).
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Let d = (6, ..., d,) € M(D). We can choose a numeration of d
such that e(d;) > --- > e(d,). The representation J; X --- X J, has a
unique irreducible quotient which depends only on d and which will
be denoted by L(d). Now d — L(d) is a Langlands-type parametri-
zation of Irr by M (D) (see for example [19]). One has

xL(d) = L(xd)

for y € (FX)~. Thus Xs (»,r)(L(d)) = X(d).

For p € C and n € N the representation v("76 x ("7~ x - - - x
v~(*3)§ has a unique essentially square integrable subquotient which
will be denoted by d(p, n). Now (p, n) — d(p, n) is a parametri-
zation of D (resp. D*) by C x N (resp. C* x N). Similarly as
above

x6(p,n)=0o(xp,n)

(see [25]).
The mapping

(M(D)\{2})2(T1, ..., Tn)— T X - XTp €T

is a parametrization of 7% by M(D*)\{@} (see [22] and [25]).
For 6 € D set

u@d,n) =L((w'T6,vT'8,..., v T8)),
n(u(d, n), a)=v*u(d, n) x v-u(d, n)
where 0 < o< 1/2. Set
B={u(o,n), n(u(d,n),a);0eD* neN,0<a<1/2}.

Then by [24]

MB)>(ry, ..., )~y X - X 7y € Ir*
is a parametrization of Irr* by M(B). Again

xu(@,n)=u(yé,n),  x€(F*)"
and
xn(u(d, n), o) =n(u(yd,n),a),  x€F)".
According to formulas
2L(d) = L(xd),
xd(p,n)=0o(xp,n)
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and previous observations, we have a reduction of parameters (]\7 / ~)
X Xp, to computing of Xgi(, r)(p) for pe C.

4.2. REMARK. Consider an essentially square integrable represen-
tation 0 of GL(m, F). Let P = MN be the minimal parabolic
subgroup among those for which the Jacquet module of 6 for P
is non-trivial (it is the parabolic subgroup from which is induced
VTP XX v p if § = o(p, n)). This parabolic subgroup is ho-
mogeneous and the Jacquet module is cuspidal and irreducible. Take
a € Xsyn,r)(0). Then A((d, a)) is an essentially square integrable
representation and all such representations are obtained in this way.
Set My =SL(n, F)NM and P, = M|N. It is easy to see that the
Jacquet module of A((d, a)) for P; is irreducible and cuspidal.

We can express now the irreducibility condition of Corollary 3.3 for
unitary parabolic induction more explicitly:

4.2. THEOREM. Let P=MN be a parabolic subgroup of GL(n, F),
My = MNSL(n, F) and P, = M\N. Let ny = A((n, a)) be an
irreducible unitary representation of M,. We may suppose M =
GL(ny, F)x---xGL(ny, F). Let t =n' x---xnk and n' = L(d;),
d; € L(D). Then Ind?,f‘(”’F V() is irreducible if and only if

X(di+--+dy)d; Cd; foreachi=1,..., k,
or equivalently X(dy+---+di) C X(d;), i=1,...,k.

4.3. REMARK. We have reduced the parameters to the computa-
tion of Xgi(, r)(p) for p cuspidal (equivalently to Xsi(n,r)(p)”

or Ay (p) OF Fy p)). The following step would be to ex-
n.F SL(n, F)

press (some of) these groups in terms of a parametrization of C.
R. Howe constructed in [9] cuspidal representations in the tame case.
H. Carayol in [4] classified the cuspidal representations in the prime
case. A great number of informations on the above groups in these
two cases can be found in papers [13] by P. Kutzko and P. Sally and
[17] of A. Moy and P. Sally. Let us illustrate this by an example.
Suppose that we are in the tame case. Then the cuspidal representa-
tions of GL(n, F) are parametrized by admissible characters of the
multiplicative groups of n-dimensional extensions E of F, modulo
conjugacy. In [17] A. Moy and P. Sally showed that in two of the three
possible cases the answer is particularly nice:

F))(CSW,F)(n) = Ng/r(E”)
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where Ng/p : E¥ — F* denotes the norm map (char ¥ = 0). For
details one should consult [17].
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