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Harmonic maps are critical points of the energy functional for
maps between Riemannian manifolds. In this paper we study the
heat equation for harmonic maps from a non-compact manifold A/
into N. We show that if the target manifold N is compact and has
non-positive sectional curvature, and if the initial map has finite to-
tal energy, then there exists a solution u(x,?): M x[0,00) = N
and a sequence f; — oo, such that u(-, 7;) converges on compact
subsets of M to a harmonic from A/ into N. We also obtain some
basic properties of the solution u(x, ¢). In particular, we prove a
uniqueness theorem for the solution and a monotonicity theorem for
the energy functional.

Eells and Sampson proved that if (M, g) and (N, g’) are com-~
pact Riemannian manifolds, (N, g’) has non-positive sectional cur-
vature, then any smooth map # : M — N is homotopic to a smooth
harmonic map. They established the existence of a solution u(x, ) :
M x[0,00) — N, of (1.1) in §1, and showed that there exists
tj — oo, such that u(-, ¢;) converges to a smooth harmonic map
from M into N. Schoen and Yau showed that if A/ is complete non-
compact and if 2 : M — N has finite energy, then # is homotopic
on any compact subsets of A/ to a harmonic map. Their method is
based on Hamilton’s results on harmonic maps from a manifold with
boundary. By studying the heat equation directly, we recovered the
result of Schoen and Yau. We believe the basic properties of solu-
tions of the heat equation established in this paper will be useful in
the study of harmonic maps on non-compact manifolds.

1. Existence. Let (M™, g) and (N", g’) be complete Riemann-
ian manifolds. M is non-compact. We want to study the initial value
problem for the heat flow for harmonic maps. More precisely, we
want to study the following system for a map u : M x [0, 0c0) — N,
in local coordinates x = (x!, ..., x™), and u = (u',... ,u") on
M and N respectively:

ou . 0ub ou
o _ = — J———_ o
1.1 At ot & ox aerﬂW
(1.1) inMx(0,00),a=1,...,n;

u(x, 0) = h(x),
where A, is the Laplace-Beltrami operator on A, F’/?y are the
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Christoffel symbols on N, (g”) = (g;)~! and h € C®(M, N).
We use the convention that Latin letters range from 1 to m, and
Greek letters range from 1 to »n. In this section, we want to prove the
following:

THEOREM 1.1. Let M be a complete non-compact Riemannian man-
ifold. Suppose N is compact without boundary with non-positive cur-
vature. Then (1.1) has a solution for all h(x) with finite total energy.

Recall that for a map 4: (M, g) — (N, g'), the energy density of
h is given by ‘
Oh® ub
ij '

x1 oxi Sob

where x’, and u*,1<i<m, 1<a<n, arelocal coordinates of
M and N respectively. The total energy is defined as

(1.3) E(h) = /Me(h) V.

(1.2) e(h)=g

Let {Q}%2, be a compact exhaustion of M satisfying:
(i) Q. ccQp, k=1,2,3,...;

(i) Uil = M;

(iii) 0Qy is smooth, k=1,2,3,...;

(iv) diam(Q) < dist(2r, 0Q,1)-

Hence for x, y € Q, , any minimal geodesic joining x any y must
lie inside €Q;.;. In order to apply some results of heat kernels in
[C-L-Y], for each k we construct a complete manifold (M}, g) so
that

(i) @ C M, andin Q, g = g;

(ii) the complement of a compact neighborhood of Q; in M is
isometric to 9Q; x [0, oo0).

This can be done by considering the exponential map on the nor-
mal bundle of 9. Note that the curvature tensor of M and its
covariant derivatives are uniformly bounded, and the injectivity ra-
dius of M}, is also bounded away from 0. The following result is from
[C-L-Y]:

LEMMA 1.2. Forany T > 0, there exists a constant C; > 0 depend-
ing on My and T and another constant C, > 0 depending only on
m, such that if Hi(x,y,t) is the heat kernel of M) and if |D;H;|
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denotes the norm of the [th covariant derivatives of Hi.(x,y, t), then

CZrI%(x, y))

DH(x, v, 1) < it~ <'-"z—>eXp( t

forall x,ye My, and 0<t< T, where r, is the distance function
Of Mk.

Let r(x, y) be the distance function of M , then by the choices of
Q, and the construction of M, we have r(x,y)=ry(x,y) for all
X,ye Qk—l'

Let h € C®(M, N). By [H], for each k, there exists a unique
solution f; of

ou® ouf ou
a_ 9% _ _ij% oW
At = =8 T axi L Ay
(1.4) in Q x(0,00),a=1,...,n;

u(x, 0) = h(x) in Q; ; and
u(x,t)=h(x) on 9y, x [0, oco0).

LEMMA 1.3. For any T > 0, and for any compact set K CC Q C
M , there exists a constant C > 0 and an integer kg > 0 such that
if k > ko, then e(fi)(x,t) < C(E(h) + supqe(h)) for all (x,t)
€K x[0,T] and e(fi)(x,t) < CE(h) forall xe K,2T >t>T.

Proof. Obviously, it is sufficient to consider K which is of the form
B (%) such that R is less than the injectivity radius of x, where
B, (r) is the geodesic ball of radius r with center at x. Choose ky
large enough so that B,(R) C Q; for all k£ > ko — 1. By the computa-
tion in [E-S], using the fact that N has non-positive curvature, there
exists a constant C; independent of k such that for k > kg

0
Ame(fi) — Ee(ﬁc) > —Cre(fx)
on By(R) x [0, ).
Let g, = e(fi)exp(—Cit). Then g, satisfies for k > kg :
(1.5) Agi — aagtk >0 on Bx(R) x [0, o).

Since R < injectivity radius of x, so we can find a smooth function
n:M — [0, 1] such that # =1 on By (%), n =0 outside Bx(R).
Hence n(y)gi(y, t) is smooth on M x [0, oo).
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Furthermore, the support of #n(-)gi(-, t) is contained in Bx(R)
for all ¢t. Hence 7n(y)gr(y,t) can be considered as a function on
Mk0 x [0, c0). By the uniqueness theorem of Cauchy problem in
[K-L], noting that the volume of M, grows linearly, we have for

yeB(8),0<t< 00,

(1.6) &, =n0)g,?)
=—/0 dr/Mkono(y, Z,t—1)

< (8, = 55 ) (1282 D)V (2
¥ /Mk H (v, 2, On(2)8k(z, 0)dVay, (2),

where Ako is the Laplace-Beltrami operator of M. Since the support

of n(y)gr(y, t) is contained in By(R) C Qko—l , 1t is easy to see by
(1.5) that

(8- 2 ) etz ) = (A= 22) (a2l )

= 1(2) (A = 57 ) &z, 1)+ Burn(2) etz 9

+ 2(V’7(Z) s ng(Z > T))
2 (Aun(2))gk(z, 7) + 2(Vn(z), Vgi(z, 1))

Hence
t
(17 &, < —/ dr/ He (y,z,t-1)
0 B (R)
X (Aun(2))8k(z , T)dVa(2)
t
—2/ dr/ H (y,z,t—1)
0 B(R) °
X (Vn(z), Ver(z, 1))dVau(2)
+ [ H, 2 0nE)edz, 0dVi(2)
B,(R)
=I+1I+1II

where we have used the fact that in Q , the matrices of M and
M are the same. Using the same fact, Lemma 1.2 and the fact that

Ayn =0 on By (%), forany T > 0, thereexist C;, C3 and C4 >0
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such that if Kk > k; and 0<¢< T, then

1<c2/ dr/ G exp( fRT))gk(z,r>dVM<z>

<c sup [ 8(z, DdVir(2).
0<t<T /B (R)-B (%)

By [H, p. 135], the definition of g; , we have

(1.8) I<Cy sup e(fi)(z, 1)dVa(2)
0<t<T JB (R)-B (%)

< Cy sup /Q e(fo)(z, D)dVi(2)

0<t<T

<Gy /Q e(h)(2)d Vi (2)

k

Similarly, integrating by parts in II and use the estimate for the gra-
dient of Hko(y, z,t) in Lemma 1.2, for any 7 > 0, we can find
Cs such that for k > ky,

(1.9) II < CsE(h).
Also
(1.10) III < sup e(h)/ H (y,z,t)dVy (z)= sup e(h),
B (R) M, o B(R)
and
(1.11) NI<CT ZE(h) ift>T.
Combining (1.7)-(1.11), the lemma is proved. O

Let us imbed N isometrically in R? for some ¢ . This can be done
because N is compact. For Q C M, amap u:Qx[0,T) - N CR?
satisfies (1.1) in Q x [0, T) if and only if

Ayt — % = g /By, (24, 25)

(1.12) mQXWJ%A=Ln”q,am
u(x,0)=h(x) inQ,

where u = (4!, ... ,u9) and B is the second fundamental form of

N in RY,

Before we state the next lemma, let us introduce the following nota-
tions. Let Q be a domainin R” and 75, > 7, >0, u=u(x,t) isa
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function defined on Q7 1, = Q x (T, T3). For any positive number
[/, define

0 _
“lg, ., = g, . +Z O
where [/] = integral part of /, and
© -0 _
<”>Qr,,T2 =lulg, . aag'“"
= > |D’Dsu|
2r+s=j

l ! /2
<u>“2 W5, +<>§/Q;T2

_ -1
<u>x QT1 ) - Z <DrDs >x Qr T
2r+s=[I] a
1/2 B (l —2r—s
(u)t,QT T; - Z <D’Ds )t QT T;
P 0<l=2r—5<2 a
(u)'® = sup |u(x, 1) —ulx’, )| O<axl
x, QT1 T2 s IX - x/la ’ ’
(x,0,(x",0€Q; o,
W = sup |u(x, 1) — u(x, ¥)] O<a<l.
t’QTlvTZ (x,t),(x,t')Ger,Tz lt—t/la ’

LEMMA 1.4. Let the sequence of maps f,: Qr — N C R? as in
Lemma 1.3. Write fi, = (f}, ..., f{). Given any compact subdo-
main K of a coordinate neighborhood of some point with coordinates
(x1,...,x™), given T, > Ty > 0 and given any positive integer [,
there exist constants C >0, 1> a > 0 and positive integer kg, such
that if k > kg then

|f}( l+a <C

T Ty

for A=1,...,q.

Proof. This follows from Lemma 1.3, the fact that f,;“ are uni-
formly bounded, the results of Holder estimates of the gradients
and Schauder estimates of the solutions of parabolic equations. See,
for example [L-S-U, p. 210, Theorem 11.1 and p. 352, Theorem
10.1]. O

Proof of Theorem 1.1. Let f;, be the sequence of maps as in Lemma
1.3. By Lemmas 1.3 and 1.4, we can find a subsequence of f; , which
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we also denote by f;, such that f; together with their first and sec-
ond derivatives with respect to the space variable, first derivative with
respect to the time variable, converge uniformly on compact subsets
of M x (0, oo) to some f and its derivatives. Obviously f is a solu-
tion of the heat flow in (1.1) on M x (0, oo). In order to prove that
lim,_o f(x, t) = h(x), note that for any x € M, and T > 0, by
[L-S-U, p. 204] and Lemma 1.3, there exists 1 >a >0, C >0 and
a positive integer ky such that for £k > kg, 0<t< T,

IfA(x, 1) - fA(x, 0)] < Cre, A=1,...,q,

where as before N is embedded in R?. Since ka(x ,0) = h4(x) is
the initial data, therefore if we let kK — co we have

|f4(x, 1) — h4(x)| < Ct*, A=1,...,9,0<t<T.

Hence f isin fact a solution of (1.1). The proof of Theorem 1.1 is
then completed.

2. Properties of solutions of (1.1). Let us first prove a uniqueness
theorem for the solutions of (1.1). We need a maximum principle
which is a variant of a theorem in [K-L].

LEMMA 2.1. Let M be a complete noncompact Riemannian man-
ifold such that there exists a point p € M and a constant k > 0
satisfying

Vol(B,(r)) < exp(k(1 + 1))

forall r > 0. Let f be afunctionon Mx[0,T), T > 0. f issmooth
on M x (0, T) and continuous on M x [0, T). Suppose f satisfies
the following conditions:

@) (A—£)f>0o0n Mx(0,T);

(b) f(x,0)<0 forall xe M; and

© Jfy (fyrexp(—ar®(p, »)IVIP»)dVy(y))dt < oo, for some

a>0.

Then f<0on Mx[0,T).

Proof. Let 0 <n <min(T, g, 1&) be a fixed constant. Define
2

_ ey
g(yas)— 4(2n_s)a
where r(p, y) is the distance between p and y,and 0 <s < 7. Itis
easy to check

(2.1) |Vg|2+?9—§EO on M x (0, ).
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For K >0, let fx = max{min(f, K), 0}. Hence

K, if f(x,8)>K,
(2.2) e, =4 fx, 1), if0<f(x,0)<K,
0, if f(x, 1) <0.

fx is uniformly Lipschitz on any compact subset of M x (0, T'). For
O0<t<T, let
M;={xeM|f(x,t)>0}.

For any smooth function ¢ on M with compact support, by assump-
tion (a), for O0<e< 7,

/(/wegfx( f) )dsZO,

where we have used the fact that fx > 0. Hence

(2.3) 0< —f; (/M¢2eg(VfK, 2) dVM) ds

_/en (/M¢2eng(Vg, Vf)dVM) ds

—2/8" (/M(peng(qu,Vf)dVM) ds

[ (renon)a

I+ I+ T +1V.
n
(2.4) I=— / ( / ¢2eg|VfK|2dVM) ds.
e \n,
1 [
(2.5) m< 1 / ( / 02|V fI2dVas ) ds
2 e M
n
+1/ (/ p2ef|Vg|? I%dVM> ds.
2 € M
1/
(2.6) Im < & / / 02|V f12dViy | ds
2 € M,

+2 /: (/M e& 2|V ol? a’VM) ds.
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To estimate IV, note that

@.7) et (22 - 3L) = et et - 1)

~e5 28 fetfe— -5 (e .

From (2.2), we see that
Ok (f— 1) =

whenever %fSK exists.
By (2.1) and (2.2) we also have

%8 kU= 20,
Hence (2.7) gives

of

@28  —effoL L3

< —effx+ —{eng(fK N}

whenever %—sz exists.
Since fx is uniformly Lipschitz on compact subsets of M x(0, T,
therefore

(29) IV< —/" </ ¢2eng%€{<—dVM) ds

/(/¢ e fx(fx — f)}dVM) ds

= ——/ p’es ffdVu +—/ p’es fdVy
2 M s=n 2 M

1M 227208
+§/8 (/M¢ e fKEEdVM) ds

+ / 02e8 fx(fx — ) dVi
M

§=¢

s=n

- [ oetfili— N aVil _
M 5=

Combining (2.1), (2.3), (2.4), (2.5), (2.6) and (2.9), and letting
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¢ — 0, we have

n
0< - / ( / ¢2egIVfK|2dVM) ds
0o \Um
n
+ / ( / ¢2eg|Vf|2dVM) ds
M,

0
n
+2f (/ egf,%lvmdeM) ds — -;-/ 02t 12 dVis
0 M M s=n
where we have used the fact that fx(fx — f) <0 and that fx =0 at

s=0.
Hence

2.10) = / 028 [2dViy
2/

s=n

<[ ( [, press - |VfK12>dVM) ds

n
+2/ (/ egf,§|V¢|2dVM) ds.
0 M

For R>0, let ¢ besuchthat 0< ¢ <1;9=1on By(R); p=0
outside B,(R+ 1) and |Vg¢| <2, we have

(2.11) 1/ et fEdVy
2 /s,

S=n

n
< ( / egqu|2—IVfK|2>dVM) ds
0 B (R+1)NM,

n
+8/ (/ egf,ngM> ds.
0 \J/B (R+1)-B,(R)

Since 0 < 7 < min(1iz, &), 50 g(¥,s) < —2kr(p,y) and g(y,s)
< —ar’(p,y) forall 0 <s < n. Also fZ < K. By the assumption
on the volume growth of M, it is easy to see that the second term
on the right side of (2.11) tends to zero as R — oo. Since 0 <
V£ = |Vfk|? < |Vf]?, by assumption (c) if we let R — oo in
(2.11), we obtain

@12) 5 [ e favuy)

s=n

< /O" (/M ef(IVS1? - |VfK|2)dVM(J’)) ds.
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Since f2 approaches (f*)? as K — oo, where f* = max(f,0),
and forall s, |[Vfx|*> — |Vf]?> on M, by (c) again, if we let K — oo
in (2.12), we have

3 [ e ran)| <o

s=1
Hence f* =0 at t = . Since 5 is any number satisfying 0 < 5 <
min(7, 51& , —éE) , it is easy to conclude inductively that f* =0 on
M x(0,T). Hence f <0 on Mx[0,T). 0

REMARK 2.2. M will satisfy the volume growth condition in the
lemma, if there exists a constant C > 0 such that the Ricci curvature
at every point x € M satisfies Ric(x) > —C(1+r%(p, x)), see [K-L].

THEOREM 2.3. Let M be a complete non-compact Riemannian man-
ifold satisfying the volume growth condition in Lemma 2.1. Let N be
a complete Riemannian manifold with non-positive curvature. Suppose
uy and uy are two maps from M x[0, T) to N satisfying (1.1) with
the same initial condition. Suppose there exists a point p € M and
a > 0 such that

/OT (/M exD(_arz)e(”i)dVM) ds < oo

for i=1,2, where r=r(p,y). Then uy=uy; on M x[0, T).

Proof. Forany 0 < t < T and any x € M, let y be the geodesic
joining u;(x, t) and uy(x, t) which is homotopicto f: [0, 2¢{] — N,

where
{ul(xat—r)> OSTSt,

f = uy(x,1—-1), t<t<2t.

Since N is non-positively curved, y is unique. Let p(x, ¢) be the
length of 7, then p? is smooth on M x (0, T). We should remark
tht the function p may not be bounded even if N is compact.

Let w = (p2 + 1)1/2-1>0, then by [S-Y2, p. 369],

IV < 2(e(uy) + e(uz)).
Hence

T
[ ( / exp(—ar2)|Vl//|2dVM) dt < oo
0 M

by the assumption on #; and u,. Since u; and u, satisfy (1.1), as
in [S-Y2, pp. 368-369], one can obtain

(AM—%>V/ZO on M x (0, 7).
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Note that y(x, 0)=0 on M. Hence by Lemma 2.1, we have ¥ =0
on M x[0,T). Thatis, p=0, and u; =u; on M x [0, T). 0

Next we study the monotonicty of total energy. Let M™ and
N" be complete Riemannian mainifolds, M is non-compact. Let
u: M x (0,T) — N be a smooth map satisfying the heat equa-
tion (1.1) for harmonic maps. Let p € M be a fixed point. For
0<t<Tand R>0, let E(t,R) = pr(R)e(u(-, t))dVy, and

E(t, R) = supg.., E(t, R). Also E(t) = [, e(u(-, t))dVa.

_ THEOREM 2.4. Suppose there exists a constant k > 0 such that
E(T, R) <exp(k(1+R)) forall R > 0. Then E(t) is a non-increasing
function in t. More precisely, for 0 < t; < t, < T, if E(t;) < oo,
then

t2
E(t2)+2/ dt/ a2 dyg < E(11) < o0,
t M

REMARK 2.5. The condition of the theorem will be satisfied if (1)
SUpg«;<1 E(f) < 00 or (2) M has at most exponential volume growth
and SUPO</<T; xeB,(R) e(u(x, t)) is less than or equal to exp(C(1+R))
for some C > 0. Note tht if the Ricci curvature of M is bounded
below by —K, then M has at most exponential volume growth.

Proof of Theorem 2.4. It is more convienent to use moving frame.
Let f: M — N be a smooth map, and let 6,,..., 6,, be an or-
thonormal coframe in a neighborhood of some point ¢ € M. Let
®i, ... , W, be an orthonormal coframe in a neighborhood of f(g).
We have the structure equations for M and N

dH,-:ZH,-j/\Oj, 1<i<m,
J

and
dwa=2waﬂ/\wﬁ, 1<a<n.
B
Define f* and f%, 1<i,j<m,1<a<n, by

i ij?
fH(@a) = 3 /70

dfe+ > [ (wpa) + D [20;: = f26;.
B J J
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In our case u(x, t) is a map from M x (0, T) to N. Let dt be the
unit covector in the ¢ direction, then u{ is defined by

u(wy) = Eu‘;‘ﬁi +udt, 1<a<n.
i

Then

(2.13) e(u(-, ) =Y (u*(, 1), 1<i<m, 1<a<n.

Also we have

(2.14) > ug—ug=0, 1<a<n.
i

Let ¢ be a smooth funciton on M with compact support. By
(2.13) and (2.14), for any ¢ >0,

(2.15) %/Me(u(-, )02 dVis

2/ (Z u‘,?‘u?‘,) ¢2dVM=2/ (Zu‘i’uﬁ-) 0?dVy
M i,a M i,a

= —2/ (Zu%u?) ¢2dVM—4/ > (uutip) dVa
M\, M i,a

]

< —2/ ( )tp dVM+8/ (Z(ui’)z) 92 dVy
e / , )Vol2dVi
_ c/ )Vol2dVis

+(=2+¢) /M (E(u?)z) 02 dVi,

o

where C is a constant depending only on m and ¢. Without loss of
generality, we may assume u is smooth on M x[0, 7") and show that
E@)+2 [, dt [, 3, (u2)?dVy < E(0) for all T >t > 0. Hence, let
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us assume E(0) < co. Integrate (2.15) from O to ¢,

(2.16) /Me(u(-, )02 dVy — /M e(u(-, 0))p2 V)
<cf Cdr | etut- nIvoravi

+(=2+¢) /0 " dr /MZ(u‘,")Z(pdeM.

For R > 0, and for any positive integer j, let ¢ be such that
0<9<1, ¢9=1 on B,(jR), ¢ = 0 outside B,((j + 1)R) and
Vo| < %. By (2.16) we have

2.17 -
2.17)  E(, jR) +(2—¢ / dt/B(JR (Z(u )dVM
<O, G+ DR+ 55 [ E@. G+ DR dr
E(0, (J+1)R)+R2/E(‘t +1)R)dx.
We claim that for any integer v >0,
v Jj—1
(2.18) E(t,R)<EQ, (v + I)R)Z;—' (f‘}%)
j=1"

4C\" [t 5
+(—R7> /(;dsl/(; dsy---

/ E(sy, (v + 1)R) ds,.
0

By (2.17), (2.18) is obviously true for v = 1. Suppose (2.18) is true
for v. By (2.17)

E(sy, (v + )R) < EO, (v + 2)R)
4C S
+o /0 E(sye1, (v + 2)R) ds, 1.
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Hence

E(t, R) < E(0, (1/+1)R)Z (4Ct)

+(7{7) / ds, / ds, -
/Os” {E(O,(V+2)R)

4C 5
+ % | B, 0+ DR A5, | ds,
v+1 j—1
1 /4CtY’

4C v+l pt s,
+(§7) f dsy - / Esys1s (v + 2)R)dSys1.
0 0

Hence (2.18) is true for all ». Replace R by 2R in (2.18) and let
j=11in (2.17), we have

(2.19) E(t,R)+(2-¢) / dT/B(R)( )a’VM

<E(, 2+ l)R)Z (C’)

+E(t,2(v+ R) <ﬁ) /Odsl-.-/os”" ds,

< E(0) ,2:21% (%)j_l +E(t,2(v+ 1)R) (%)V . lt/_”'

< E(0)exp (ICp) + exp(k(1 +2(v + 1)R)) - (g) : %

For 0 <t < T and R fixed, if we let v — oo in (2.19), by the
Stirling’s formula v! ~ V27v*+ie~" as v — oo, we conclude that

E(t,R)+(2—¢) /0 dt fB ® (Z(u%)z) dVy < E(0) - exp (%)

Let R — oo, and then let ¢ — oo, the theorem is then proved. O

COROLLARY 2.6. With the same assumptions as in Theorem 1.1, let
u be the solution constructed in the theorem. Then E(u(-,t)) < E(h)
Jorall t >0, and E(u(-, t)) is non-increasing in t.
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Proof. By the construction of # and the result in [H, p. 135], we
have E(u(-, t)) < E(h) < oo for all ¢ > 0. By Theorem 2.4, we can
conclude that E(u(-, t)) is non-increasing in f. O

THEOREM 2.7. With the same assumptions as in Theorem 1.1 and
letting u be the solution of (1.1) obtained in Theorem 1.1. There
exists tj — oo with tj.y > tj+2 such that u(-, tj): M — N converge
together with their first and second derivatives in the space variable
uniformly on compact subsets of M to a harmonic map U..

Proof. Using Corollary 2.6, as in Lemma 1.3 one can prove that for
any R > 0 there exists a constant C which is independent of ¢ such
that e(u)(x, t) < C for all x € B,(R) and for all ¢{. As in Lemma
1.4, one can show that there exists f; — oo such that the sequence of
maps vj(x, t) = u(x, t;+t) from M x[0, 1] to N converge together
with their first and second derivatives in the space variable and the
first derivative of the time variable uniformly on B,(R) x [0, 1] for
any R > 0. By Theorem 2.4 and the fact that u is a solution of
(1.1), the result follows. O

REMARK 2.8. u. in the above theorem is homotopic to # on com-
pact subsets.
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