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The present paper studies existence of solutions to the problem
pA'(x) = B'{x) where A and B are Frechet differentiate func-
tionals on a Banach space. For every given value of A(x) = t we
prove existence of a solution x and present an expression for the
eigenvalue p = p(t). The result is applied to quasilinear elliptic
equations.

1. Introduction. A typical problem of the second order studied be-
low is

(1.1) -divΛ£'(x, Vu) = / ( x , i ι ) ,

where Ω c R " is an open bounded domain,
and "ellipticity" of sf is defined as:

(1.2) £s?(x, ) is convex for any X G Ω ,

s f ξ ' ( x , ξ ) ξ > c \ ξ p 9 p > l , c > 0 , ( x 9 ξ ) e Ω x R n .

When J / is a quadratic form of ξ and p = 2, (1.1) becomes a
semilinear equation. The study extends also to equations of higher
order and to systems.

Our approach follows the approach of Browder [2] and Berger [1]
with a subsequent refinement due to [3] and [4], Let X be a Banach
space, A, B eCι(X ->R). We consider a critical point equation

(1.3) pA\x) = B'{x).

This equation might be associated with the maximum problem

(1.4) σ{t)= sup B(x).
A(x)=t

Under general compactness conditions, the maximum in (1.4) is at-
tained and provides (1.3). Remarkably the eigenvalues p are deriva-
tives of the function of critical values σ(t). More precisely, since
we prove that σ might have different right and left hand derivatives
σ±(t), both of them are eigenvalues. Under additional conditions
we prove that (1.3) is solvable for any p between mftσL(t) and
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suptσ+(t). Thus, if the graph of σ(t) has a slope less than 1 and
a slope greater than 1, then A'(ύ) = Br(ύ) will be solvable. Applica-
tions to quasilinear elliptic problems then follow.

2. Maxima on the level sets. Let X be a reflexive Banach space and
let A, B G C 1 (X --• R). Let us list several conditions to be used later.
Let

(2.1) St = {ueX:A(u) = t},

(2.2) ωt = {ueX:A(u)<t}

and define for those t when Stφ 0 ,

(2.3) σ(t) = sup B(u),

(2.4) y?(ί) = sup B(u) = sup σ(τ).

LEMMA 2.1. Assume the following conditions:
(Al) A is coercive, i.e., \\Uj\\ —• oo => A{uj) -+ oo.

(A2) A is weakly lower semicontinuous.
(A3) (A'{u) ,u)>0 for ue X\{0}.
(Bl) B has no local maxima on X.
(B2) B is weakly continuous.
Then

(2.5) σ(t) is increasing on [0, oo),

(2.6) σ(t) is continuous on [0, oo),

(2.7) the maximum in (2.3) is attained for every t >0.

(An immediate consequence of (2.5) is that σ{t) = β{t).)
Without loss of generality one can assume from now that

(2.8) ,4(0) = 0.

Then, due to (A3)

rι d rι

(2.9) A(u)= / ^-A(tu)dt= / μ'(ta),w>,
Jo "t Jo

Γι(A'(tu),tu)dt>0, unless u = 0.

dt
at ' j 0

10

By (Al) the range of A is [0, oo).

-i
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Proof of Lemma 2.1. Consider a maximizing sequence Uj G ωt in
(2.4). By (Al) it is bounded in norm. Then there is a weakly con-
vergent renamed subsequence Uj -̂ -> WQ . By (A2) UQ G ωt. By (B2)
B(Uj) —> B(UQ) = /?(ί). If UQ φ St, then it is a point of interior max-
imum for B in ωt. This contradicts (Bl). Consequently, UQ G St.
This implies in turn that σ(t) = β(t) and it is a monotone increasing
function. For the given t, the point u$ is a point of maximum over
St. Thus, (2.5) and (2.7) are proved.

Consider

(2.10) σ(t0 + 0)= liminf σ(ί),

(2.11) <7(ί o-O)= limsup cτ(ί).
t-*toj<to

Let ί7 > ô > 0 —*• ?o and let σ(tj) be attained an Uj G ̂  . Then by

(Al) Uj has a renamed weakly convergent subsequence: Uj - ^ UQ G

ω ί o . Therefore,

(2.12) σ(ί0 + 0) = 5(ιio) < sup B{u) = σ(t0).

The converse inequality is true by monotonicity of σ. Thus

(2.13) σ(ίo + O) = σ( ί o ) .

Let now UQ be a point of maximum in (2.1) at t = to. Then by (A3)

(2.14) t(s):=A(suo)

is a monotone increasing function and

t(s) -• ίo 5 ί( ί) < *o as 5 -^ 1, s < 1.

Therefore,

(2.15) σ(t0 - 0) > lim sup 5(Λ W0) =

The converse inequality is due to monotonicity of σ. Thus o{tQ—0) =
cr(ίo) and (2.6) is proved. D

LEMMA 2.2. Assume the conditions of Lemma 2.1. Let UQ be a point
of maximum in (2.3), t > 0. 7 7 ^ ί/zere wα /> > 0, such that

(2.16) ^ / ( « o ) = 5/(MO).

Proof. Let ΐ e l b e such that

(2.17) (
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By Lemma 2.1 UQ is a point of maximum of B in ωt and

(2.18) B(uo + θυ)<B{uo)

for θ > 0 sufficiently small. Thus,

(2.19) (B'(uo),v)<0

for any v satisfying (2.17). From (2.17), (2.19) a routine argument
shows that A'{UQ) and B'(UQ) are parallel. By (A3), A'(uo) φ 0 and
(2.16) follows immediately. D

Let us define a set Λ* c St x [0, oo), t 6 (0, oo):

(2.20) Λ, = {(«, p): J9(κ) = σ(ί), pA\u) = B'(u)}.

By Lemmas 2.1, 2.2 At is nonempty. Let

(2.21) Λ ^ = {p > 0: 3w e St, (u, p) e Λ J ,

(2.22) Λίw) = {M 6 5/: 3/> > 0, («, /̂ ) 6 A,}.

By (2.20), one has also:

A(

i

u) = {ueSt:B(u) = σ(t)}

and

(2.23) A\p) = {p = (B'(u), u)l(A\u), u), WE AJW )} .

LEMMA 2.3. Assume the conditions of Lemma 2.1 ατz<ί m addition

(A4) If Uj-^Uuo, then

A(Uj) -+ A(u0) & (A'(Uj), Uj) -+ (A'(u0), u0).

(B3) (J?;(w), u) is weakly continuous.
Let Γ c (0, oo)

(2.24)
teT

If T is compact in (0, oo), then Aτ is weakly compact in X x (0, oo).

Proof. Let (Uj, pj) € Λ*., tj e T. Consider a renamed con-

vergent subsequence tj -+ t0 e T. Then by (Al), (A2) Uj has a

weakly convergent (renamed) subsequence Uj - ^ Wo Ξ ω^ . By (B2),

U(M/) —> B(uo)y by Lemma 2.1 5(MQ) = σ(ίo) and UQ e St , i.e.,
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UQ <E Λ ^ . By Lemma 2.2 Uj satisfy (2.16) with eigenvalues, say, /?,,
0

«o satisfies (2.16) with some po, and

(2.25) pj = {B'(uj), Uj)/(A'(Ui), Uj),

Po = {B'(u0), uo)/(A'(uo), Mo)

Note now that (B'(UJ), Uj)-+(B'(u0), u0) by (B3) and (A'(Uj), Uj) -»•
MQ) by (A4). Thus pj —> po. D

3. Critical values and eigenvalues.

T H E O R E M 3.1. Assume

(Al) 4̂ w coercive, i.e., \\UJ\\ —• CXD => ^4(M7 ) -> oo.

(A2) 4̂ w weakly lower semicontinuous.
(A3) (Λ;(κ) ,u)>0 for ue X\{0}.
(A4) If Uj -^u0, then

A{uj) -> ̂ («o) <=> (A'(uj), Uj) -+ (A'(u0),

(Bl) 5 Aα.s1 no local maxima on X.
(B2) B is weakly continuous.
(B3) (Bf(u),u) is weakly continuous.

Then for every t>0 there exist left and right derivatives σ±(t), <τi(ί) <
σ/(/). Moreover,

(3.1) < ( ί ) =

(3.2) σL(t)=inf{peA<

i

p)}.

Before we prove the theorem, we wish to note that supremum in
(3.1) and infimum in (3.2) are attained on some u± € ΛJw) due to
Lemma 2.3. As a result one has

THEOREM 3.2. Under conditions of Theorem 3.2 for every t > 0
there exist u± eSt, such that

(3.3)

(3.4) σ

Proof of Theorem 3.1. 1. Let u0 e ΛJW) . Let θj-^ 1, tj = A(θjU0).
Then by continuity of A, tj• -> A(uo) = to . Moreover,

(3.5) tj -to = A(θjUQ) - A(u0) = {A'(u0), uo)(θj - 1) + o(θj - 1).
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Consequently,

(3.6) σ(tj) - eτ(ίo) > B(θjU0) - B(u0)

= ((B'(u0), uo)/{A'(uo), MO»(O - to) + o(tj - ί0)

Fro (3.6) and (2.23) one has immediately,

(3.7)

(3.8)

2. Let now Uj G Λ ^ , f, —• ί0 By Lemma 2.3 a renamed sequence

Uj converges weakly to u0 G Λ^w). Let us define θj > 0 by

(3.9) A(θjuj) = to.

By (A3), the function θ —> A{θuj) is monotone for any w ^ O and by
(Al) the range of it is [0, oo). Thus, for given to > 0 and u}• Φ 0,
(3.9) has a unique solution θj > 0. Since 4̂ G C 1 , there exist f/7 e
[β7 , 1], such that

(3.10) 0 - ί0 = i4(«7 ) - A(θjUj) = (A'(ηjUj), Uj)(l - θj).

From (3.9) it follows that θj is a bounded sequence. Let us consider

a renamed convergent subsequence: θj —• 0Q Then θ7 w7 -̂ -> ^owo

and, necessarily, θo = 1. Therefore τ/7 -• 1 and

(3.11) tj -to = (A'(UJ)9UJ)(1 - θj) + o(l - θj).

Similarly,

(3.12) B(Uj)-B(θjUj) = (B'(Uj),Uj)(l - θj) + o(l - θj).

Therefore

(3.13) σ(tj) - σ(ί0) < < ^ ( ^ ) , uy-)(l - 07) + o{\ - ^ )

= «i?'(W;) , Uj)/(A'(Uj) , ̂ » ( 0 - /o) + O(0 - ί0)

We have to note only that (A'(UJ) , Uj) —> (^'(wo) ? wo) by (A4) and
{B'(uj)9 Uj) -> (B'(uo),uo) by (B2). Then from (3.13) follows:

(3.14)

(3.15) D-σ(ίo) > i ^

3. Let us combine (3.7) and (3.14). Then

sup{/> G Ajf}} < D+σ(t0) < D+σ(t0) < sup{/> G
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i.e., σ'+{to) exists and satisfies (3.1). Similarly, (3.2) follows from
(3.8) and (3.15). D

4. Continua of solutions. Range of solvability. In this section we
assume the conditions of Theorem 3.1.

PROPOSITION 4.1. Assume that for every t e (s\, s2) c (0, oo) the
set Λ ^ consists of a single element ut. Then the map t —> ut is
weakly continuous on {s\, s2).

Proof Let t0 —• ί0 € (s\, s2). Then {tj} is compact in (0, oo) and
by Lemma 2.3 ut has a (renamed) weakly convergent subsequence

ut - ^ Wo € Λ ^ . Since A^ = {uto}, the original sequence ut must

be weakly convergent to the same element uίo. •

COROLLARY 4.2. LWer conditions of Proposition 4.1 the problem

(4.1) />Λ'(a) = 2?'(w)

possesses a weakly continuous family of eigenfunctions t —> ut corre-
sponding to eigenvalues pt = {B'(ut), Ut)/(A'(ut), ut) continuous in
t e(s\, s2). The function (2.3) has a continuous derivative on (s\, s2)
and ρt — a'{t).

The proof follows from Theorems 3.1 and 3.2.

PROPOSITION 4.3. Let h: X2 -• X be a map, such that
(Ah) A(h(u, υ)) > max{,4(w), A(v)} for u Φ v.
(Bh) B(h(u ,υ))> min{B(u), B(υ)} for u,veX.

Then the assertions of Proposition 4.1 and Corollary 4.2 hold for any
ί > 0 .

Proof. Let u, v e A[u)u Φ υ . Then by (Ah), h(u, v) e ωt>, t' < t,
but by (Bh) B(h(u, υ)) > B(u) = σ(ί). This contradicts Lemma 2.1.
Thus the conditions of Lemma 4.1 are satisfied at any / > 0. D

A simple example when (Ah), (Bh) are satisfied, can be provided by

COROLLARY 4.4. Let A be strictly convex and B be concave on
X. Then the assertions of Proposition 4.1 and Corollary 4.2 hold for
ί e ( 0 , oo).

Proof. Take h(u, v) = λu + (1 - λ ) v , λe (0, 1). D
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If σ e Cΐoc(0, oo), then (4.1) is solvable (with u φ 0) for any
p G I (A, B), where

(4.2) = ^infσl(ί), s u p < ( ί ) ) .

However, σ does not generally have a continuous derivative (cf.
[4]). Thus we wish to answer the question, for what subsets of I {a, b)
does (4.1) still have a non-zero solution.

PROPOSITION 4.5. Let the function pt - σ{t) have a local minimum
on (0, oo). Then (4.1) has a non-zero solution.

Proof. Let pt - σ(t) have a local minimum at to > 0. Then
σL(t0) > p > σ'+(t0). By Theorem 3.1, σL(t0) < σ+(fo) τ h u s > σ

is differentiate at t0 and σ;(ίo) = P Then by Theorem 3.2, (4.1)
has a solution with A(u) = t$. •

In order to get a more extensive result we use a mountain pass
theorem from [5].

THEOREM 4.6. Let G e Cι(X -> R) am/ to w0 e X\{0}. ^
N c X be an open bounded set, such that 0 e N but UQ φ. N.
Assume that

(4.3)

(4.4) G(0)<0, G(uo)<O.

Then there is a sequence uk E X and γ > 0 such that

(4.5) G{uk)->γ,

(4-6) l|tf(κ*)lljrll«*lk->0.

Let now

(4.7)

(4.8)

(4.9)

and let

(4.10)

Aθ = θ{A'(u),u)-A(u),

Bθ = θ(B'(u),u)-B(u),

Φ = {θ E R: \Aβ\ is coercive},

Q(θ) be set of limit points for Bg(u)/Aβ(u)

when ||w|| —• oo, θ EΦ.

Set now

(4.11) e*=n
θeΦ
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THEOREM 4.7. Assume, in addition to conditions of Theorem 3.1,
that:

(ABw) A', B' are continuous from X to X* with regard to respec-
tive weak topologies.

Then for every p £ I (A, B)\Q* the equation (4.1) has a nonzero
solution.

Proof. 1. Let p e I (A, B)\Q*, i.e., p is a slope of a secant to the
graph of σ(t), the functional \AΘ\ is coercive for some θ and p is not
a limit point of Bθ/Aθ at infinity. If pt- σ(t) has a local minimum
at t Φ 0, then /? is an eigenvalue (Proposition 4.5). Thus we would
consider the case when pt-σ(t) has no local minimum. If p = σ+(to)
or p = σ'_(to) for some to > θ, then it is an eigenvalue by Theorem
3.2. The remaining case is: for some to > 0, σ'(to) < pσ+(to). This
implies that to is a point of local maximum of pt - σ(t). Since we
assume that pt - σ(t) has no local minimum, to is a point of strict
global maximum. In particular, δ := pto - σ(to) > 0 - σ(0) = 0, and
there exists t\ > to, such that δ\ := /?/i - σ(t\) < δ.

2. Let

(4.12)

Then all the conditions of Theorem 4.6 are fulfilled with N = {u €
X, 4̂(w) < ί0} and w0 E Stι. Let ŵ  G X, y > 0 satisfy

(4.13)

(4.14)

Then

(4.15) ^(^(Mfc), Mfc> - {^(Mfc), Mfc> — 0

and, consequently,

(4.16) pAθ(uk)-Bθ(uk)-+-y-δ.

If \\uk\\ -> oo, then | ^ ( κ * ) | -• oo, p = limBθ(uk)/Aθ(uk), which
contradicts the assumptions. Thus the sequence u^ is bounded in
norm. Let now u^ be a renamed weakly convergent sequence, and
u0 = wΊimuk . Then by (ABw) from (4.14) follows:

(4.17) pA'(uo) = Bf(uo).

Moreover, by (B3), (4.14), (4.17)

(4.18) limp(A'(uk), uk) = lim<*'(u*), uk) =

= p(Af(u0), wo)
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Then by (A4)

(4.19) HmA(uk) = A(u0).

Thus by (4.13), (B2),

0 < δι + γ = lim pA{uk) - B{uk) = pA(u0) - B(u0)

which proves that UQΦQ.

COROLLARY 4.8. Let p* = infθ€φ\hΩsup\\u\\^^Bθ(u)/Aθ(u).
(4.1) Aαs a non-zero solution for

peI(A9B)n(p*,oo). :

5. Applications to quasilinear elliptic problems. Let Ω c R " be an
open bounded set X = w£>p(Ω)k, p > 1, / e N, k e N . Let i/(/) be
the number of multi-indices of length not exceeding /. Assume that
rf(x> {ya}\a\<ι) and 3S{x, {ya}\a\<i-i) are C 1 real valued functions
of {ya} whose derivatives are Caratheodory functions of (x, {ya}).
Without loss of generality we assume that

(5.1) J / ( J C , O ) = O, ^ ( x , 0 ) = 0.

We require for the function s/ the following ellipticity condition:

(5.2) sf{x9 •) is convex for almost every x e Ω

and the following coercivity condition:

(5.3) -τ-t&(x,{tya})\t=i>cΣ\y«Y'> c>O,xea.
\a\=I

We also require the following upper bounds for J / ' and £%':

(5.4) K ( * , { y β } ) l < c | 1 + > Jya\
p'1 I , c>0,

(5.5)

+ Va({yβ}\β\<l-n/p)

\β\<l-i
\β\>t-n/p

where

C > 0

(5.6) WaeU«,ra = \ iϊl-\a\>n/p,

ra > pn/ipn - n -p(l - |α|)) if/-

^ is a continuous function,
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* * > n-p<J-\β\) i f / H > ^ '
pn-n+p(l-\a\) ,Γ Ί . . ,

*°β< n-p(i-\β\) ' l f / - H <«//>•

PROPOSITION 5.1. Assume (5.2)-(5.6). Then the functionals

(5.7) A(u)= I stf(x,{dau})dx,
Ja

(5.8) B(u)= I &(x,{dau})dx
Ja

satisfy ( A 1 - A 4 ) , ( B 2 ) , ( B 3 ) , ( A B w ) o n X = J V ^ k

Proof. The verification of continuity and differentiability proper-
ties is standard and based on compactness in the Sobolev embedding
theorem. We wish to make remarks on only a few details.

1. Relation (5.3) implies (A3) and also (Al), since it immediately
gives

(5.9) | - j / ( χ , {tya}) > cf'1 ] Γ \yaψ, t > 0.
a t lαN

2. Relation (5.2) implies that the set (2.2) is convex. Thus it is
weakly closed and A is lower semicontinuous.

3. Due to (5.9), (5.4) weak convergence of a sequence Uj together
with convergence of either A(UJ) or of (Af(Uj), Uj) is equivalent to
convergence in norm. D

To verify the condition (Bl) in most of the applications it suffices
to prove that B'(u) φ 0 unless u = 0 and that u = 0 is not a point
of maximum. Two particular cases are given below.

LEMMA 5.2. Let

> ° f°rfr°} *°

Then (Bl) holds.

Proof. From (5.10) it follows that {B'(u), u) > 0 unless u = 0.
The point u = 0 is not a point of maximum, but rather of mini-
mum, since for every « e I \ { 0 } , B increases along the line t —• tu,
t>0. •
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LEMMA 5.3. Let k = 1, b{x, {ya}) = F(yo) and assume that with
some ε > 0,

(5.11) F'(yo)>O fory0e(0,ε) and

F'iyώφO fory0e(-ε,0).

Then (Bl) holds.

Proof. Let u be the point of maximum of b and let ΰ be a de-
creasing spherical rearrangement for u. Then u is a W^/)/?-function
dependent on the radial variable only. Therefore ΰ is continuous
away from the origin, the range of ΰ is a closed interval / containing
zero. Moreover, the range of u is dense in / , for if (s, t) is not in
the range of u, (s, t) is not in the range of ΰ. If u is a point of
maximum for B, then F' = 0 on the range of u, and since F1 is
continuous F = 0 o n / . By (5.11), therefore, In (-ε, e) c {0}.
However, w = 0 is not a maximum: one can perturb 0 by a function
v > 0 of an arbitrarily small norm so that B(v) > B(0) = 0. D

The following statement is now an immediate corollary of Theorems
3.1, 3.2.

THEOREM 5.4. Assume (5.1-5.6) and (Bl). Then for every t > 0
there exists a semistrong solution uf e W^p(Ω)k satisfying the re-
spective equations:

(5.12) σ'±{t)

Moreover,

(5.13) A(uf) = t

and the function σ is given by

(5.14) σ(t)= sup B{u).
A{u)=t

We now will look for realization of conditions (Ah), (Bh) to get
continuous curves of eigenfunctions.
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THEOREM 5.5. Assume(5.1-5.6) and(Bl). Let &(x, •) beconcave
for a.e. x G Ω. Then there is a continuous family t —*• {pt, ut) €
(0, oo) x ^ " " ( Ω ) * , such that

(5.15) dajtfy'a(x, {d?ut(x)})

(-l)]a]da^;a(x,{dγut(x)}).

Proof. Apply Corollary 4.4. Then ut satisfies (5.15) and t —• ut

is weakly continuous. However, by (5.4), (5.9) convergence of tj =
A{ut) together with weak convergence of ut. is equivalent to conver-
gence in norm and the family (pt, Ut) is continuous. D

THEOREM 5.6. Let sf{x9 {dau}) = \Vu\p, 38 {x9 {ya}) = F(y0),
k = 1. Assume also that F e C 1 ,

(5.16) F'(s)>0 fors>0 and F'(s) = 0 fors<0,

and that the map

(5.17) s-+F(sχlp) is concave for s > 0.

Then there is a continuous family t -»(p t, ut) satisfying

(5.18) -ptdiγ(\Vut\
p-2Vut) = F'(ut), ut>0.

Proof Let

(5.19) hβim, u2) = (β |mp + (l - θ)\u2ψγip, o € (0, l ) .

Then, applying Holder inequality with i + Λ = 1,

(5.20) IV^IwiP7 + (1 - 0 ) | w 2 n i ; T

^ P l ^ i P ' ^ l ^ l + Cl - β)p|M2lp"1V|M2l P

P {θ\u{\P + {I - Θ)\U2\P)1/P'

The relation (5.20) makes sense a.e. when u\,u2 e CQ(Ω) and the
equality holds only if u\ = u2 or one of them vanishes. Then the
following will be true on W* 'P(Ω):

(5.21) A{hθ{ux, u2)) < ΘA(Uι) + (1 - θ)A(u2)
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with the same remark on equality. By (5.16)? (5.17),

(5.22) B(hθ(uι, κ2)) < ΘB(uι) + (1 - θ)B(u2).

Thus (Ah), (Bh) are satisfied and the assertion follows from Theorem

5.11. One has only to note that tj —> to and ut. -̂ -> ut() implies

utj -> to. •

Now we wish to find some realizations of Theorem 4.7.

LEMMA 5.7. Assume (5.1-5.6) and (Bl). Let

(5.23) <^;a(x,{ya}) = ol Σ I^Γ"1] uniformly in Ω.

(5.24) (2*c{0}.

Prao/. By (5.3), (5.4), Aθ > \\u\\p with θ sufficiently large. By
(5.23), Bθ(u) = o(\\u\\η . Thus Q* c {0} . D

THEOREM 5.8. Assume (5.1-5.6), (Bl) and (5.23). Then for every

(5.25)

there is a non-zero solution of

(5.26) p

(5.27) supσ (ί) > supB(u)/A(u).

. By Theorem 4.7, (5.26) is solvable for p e I(a,b). The
lower bound in I(a9 b) is less than σ(t)/t which goes to zero when
t tends to oo. The upper bound of I (a, b) is greater or equal to
any given slope of a secant line to the graph of σ, e.g. σ(t)/t, which
implies (5.27). D

THEOREM 5.9. Assume that k = 1,
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Let F e C 1 and if n >p, let F!{s) = o(\s\«~l), q < pn/(n -p).
Assume that for some ε > 0

(5.28) F'(s)/sp~ι+ε is an increasing function

in a neighbourhood 0/+00,

F'(s) = o(\s\p~ι) ass->-oc.

Then for every

(5.29) />e(infσi(0,oo)

there is a solution u φ Q for

(5.30) -pp div(| Vu\p~2Vύ) = F'(u).

Proof. Note that sf , ^ satisfy (5.1-5.6) and Bl .
From (5.28) it follows that 3BB{μ) < o(\\u\\p) for θ > l/(p + ε).

Thus Q* Π (0, 00) = 0 , and one can apply Theorem 4.7. By (5.8)
supσf

+(t) > sup, σ(t)/t = 00. D

As a general realization of 4.7 we state:

THEOREM 5.10. Assume (5.1-5.6) and (Bl). Then (5.26) has a non-
zero solution u for

(5.31) p

6. Examples. The following examples illustrate the solvability re-
sults of this paper.

EXAMPLE 6.1. Let Ω c R n be an open bounded set. Consider

t , x . -pάiγ(\V\p~2Vu) = ua+ uβ, u>0,p>
(6.1)

Case 1. 0 < α < / ? < j p - l . Then by Theorem 5.6 there is a
continuous family (pt, wf) of eigenfunctions. By Theorem 5.4, the
range of eigenvalues p is I (A, J?) which is here (0, 00).

Case 2. 0 < α < j p - l < / ? . I f # > p assume also β < np/(n - p)
- 1. Then (6.1) has a solution for every p e (p0, 00), p0 > 0 and

.2) />o<inf sup r ι ί (-^—ua^
t ||κ||lf,=l 7Ω \ α + l

(6.
t ||κ||lf,=l 7Ω \ α +

P + 1 /
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Solvability for p El (A, B) is provided by Theorem 5.9.

Case 3. p - 1 < a < β and if n > p, β < np/(n -p) - 1. Similarly,
(6.1) is solvable with p e (0, oo) by Theorem 5.9.

Case 4. 0<a<β=p— 1. The argument is like in Case 1, only
I(A,B) = (O,po)9

(6.3) po= sup \-
Hll P

Case 5. 0<a=p-l<β, if n>p, β < np/{n - p) - 1 . T h e
argument follows one of Case 3, but I(a, 6) = (po, oo), where po is
like in (6.3).

EXAMPLE 6.2. Let Ω c R n , n < 6, be an open bounded domain.
Consider a system:

-3/?div(|Vw| + \\Vv\*l2\Vu\-ιl2)Vu = 5w4,

-3pdiv(\Vυ\ + ^ |VM| 3 / 2 |VV |- 1 / 2 )VV = 4v3, w, v|an = 0.

This system corresponds to

\3 + \V

J
I

A(u, v)= [ (|Vw|3 + \Vv
Ja

B(u,υ)= f(u5 + v4)dx.
Ja

By Theorem 5.9, it is solvable for peI(A, B) and I (A ,B) = (0,oo).

REFERENCES

[1] M. S. Berger, Nonlinearity and Functional Analysis, Academic Press 1977.
[2] F. E. Browder, Infinite dimensional manifolds and non-linear elliptic eigenvalue

problems, Ann. of Math., 82 (1965), 459-477.
[3] M. Schechter and K. Tintarev, Spherical maxima in Hilbert space and semilin-

ear elliptic problems, Differential Equations, 3(5) (1990), 889-899.
[4] , Eigenvalues for semilinear boundary value problem, Arch. Rational Mech.

Anal., 113 (1991), 197-208.
[5] M. Schechter, A variation of the mountain pass lemma and applications, J. Lon-

don Math. Soc, (to appear).

Received July 26, 1990 and in revised form May 13, 1991.

UNIVERSITY OF CALIFORNIA

IRVINE, CA 92717



PACIFIC JOURNAL OF MATHEMATICS
EDITORS

V. S. VARADARAJAN
(Managing Editor)

University of California
Los Angeles, CA 90024-1555-05

HERBERT CLEMENS
University of Utah
Salt Lake City, UT 84112

F. MICHAEL CHRIST
University of California
Los Angeles, CA 90024-1555

THOMAS ENRIGHT
University of California, San Diego
La Jolla, CA 92093

NICHOLAS ERCOLANI
University of Arizona
Tucson, AZ 85721

R. FINN
Stanford University
Stanford, CA 94305

VAUGHAN F. R. JONES
University of California
Berkeley, CA 94720

STEVEN KERCKHOFF
Stanford University
Stanford, CA 94305

C. C. MOORE
University of California
Berkeley, CA 94720

MARTIN SCHARLEMANN
University of California
Santa Barbara, CA 93106

HAROLD STARK
University of California, San Diego
La Jolla, CA 92093

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF

(1906-1982) (1904-1989)

SUPPORTING INSTITUTIONS

K. YOSHIDA

UNIVERSITY OF ARIZONA
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON



Pacific Journal of Mathematics
Vol. 153, No. 1 March, 1992

Patrick Robert Ahern and Carmen Cascante, Exceptional sets for Poisson
integrals of potentials on the unit sphere in Cn, p ≤ 1 . . . . . . . . . . . . . . . . . . . 1

David Peter Blecher, The standard dual of an operator space . . . . . . . . . . . . . . . .15
Patrick Gilmer, Real algebraic curves and link cobordism . . . . . . . . . . . . . . . . . . 31
Simon M. Goberstein, On orthodox semigroups determined by their

bundles of correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
John Kalliongis and Darryl John McCullough, Homeotopy groups of

irreducible 3-manifolds which may contain two-sided projective
planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Yuji Konishi, Masaru Nagisa and Yasuo Watatani, Some remarks on
actions of compact matrix quantum groups on C∗-algebras . . . . . . . . . . . . . 119

Guojun Liao and Luen-Fai Tam, On the heat equation for harmonic maps
from noncompact manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

John Marafino, Boundary behavior of a conformal mapping . . . . . . . . . . . . . . . 147
Ji Min, A remark on the symmetry of solutions to nonlinear elliptic

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Paul Nevai and Walter Van Assche, Compact perturbations of orthogonal

polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Kyril Tintarev, Level set maxima and quasilinear elliptic problems . . . . . . . . . 185

Pacific
JournalofM

athem
atics

1992
Vol.153,N

o.1

http://dx.doi.org/10.2140/pjm.1992.153.1
http://dx.doi.org/10.2140/pjm.1992.153.1
http://dx.doi.org/10.2140/pjm.1992.153.15
http://dx.doi.org/10.2140/pjm.1992.153.31
http://dx.doi.org/10.2140/pjm.1992.153.71
http://dx.doi.org/10.2140/pjm.1992.153.71
http://dx.doi.org/10.2140/pjm.1992.153.85
http://dx.doi.org/10.2140/pjm.1992.153.85
http://dx.doi.org/10.2140/pjm.1992.153.85
http://dx.doi.org/10.2140/pjm.1992.153.119
http://dx.doi.org/10.2140/pjm.1992.153.119
http://dx.doi.org/10.2140/pjm.1992.153.129
http://dx.doi.org/10.2140/pjm.1992.153.129
http://dx.doi.org/10.2140/pjm.1992.153.147
http://dx.doi.org/10.2140/pjm.1992.153.157
http://dx.doi.org/10.2140/pjm.1992.153.157
http://dx.doi.org/10.2140/pjm.1992.153.163
http://dx.doi.org/10.2140/pjm.1992.153.163

	
	
	

