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We study the (weak) compactness of certain algebraic operations
on JB*-triples and we introduce multiplier triples. Applications to
structure theory are given and connections with the Radon-Nikodym
Property are described.

Introduction. Recently the authors [5] studied the Radon-Nikodym
property (RNP) in the dual spaces of some complex Banach spaces
known as JB*-triples. A number of intrinsic characterisations were
obtained. One of these was that, if 4 isa JB*-triple, then 4* has the
RNP if and only if 4 has a composition series of closed triple ideals
(i.e. M-ideals) for which successive quotients can be realised either as
spaces of compact operators from one Hilbert space to another or else
are reflexive. This hints at a connection between the RNP and com-
pact, and weakly compact, operators on A itself. This paper evolves
from an investigation into the form and extent of this connection.

Thus, in a fairly systematic way, we study the (weak) compactness
of natural algebraic operations, introduce the notion of a multiplier
triple of a JB*-triple (which may be of independent interest), and
explain how the resulting phenomena interweave with the RNP.

J B*-triples originate in the study of holomorphy in unspecified
(possibly infinite) dimension and can be realised as that class of com-
plex Banach spaces whose unit ball is a bounded symmetric domain
(in finite dimensions, the classical Cartan domains of complex analy-
sis) [23]. The considerable recent activity and rapid progress in JB*-
triples is due in no small part to fertile applications in, amongst other
topics (see [26, 27]), infinite dimensional Lie algebras, mathemati-
cal physics and operator spaces. Notably, the image of a contractive
projection on a C*-algebra is, while rarely a C*-algebra, always a
J B*-triple [15].

1. Preliminaries. Precisely a JB*-triple is a complex Banach space
A with a continuous triple product {...}: 43 — 4 which is linear and
symmetric in the outer variables and antilinear in the middle variable,
and satisfies
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(i) the operator a — {xxa} on A is hermitian with nonnegative
spectrum for all x in A;
(i) JH{xxx}l = |lx|P;
(111) the main identity

{ab{xyz}} = {{abx}yz} + {xy{abz}} — {x{bay}z}.

For x, y € A, the linear operator a — {xya} is denoted by D(x, y);
the antilinear operator a — {xay} is denoted by Q(x, y), and by
Ox)if x=y.

A JB*-triple which is a dual Banach space is called a JBW*-triple,
in which case the predual is unique and the triple product is separately
weak*-continuous. If 4 is a JB*-triple then A** is a JBW *-triple
in which, via the canonical embedding, A is a JB*-subtriple [2, 10,
20]. An element u of A is called a tripotent if {uuu} = u, with
which are associated the Peirce projections P(u): A— A, i=0,1,2,
defined by Py(u) = Q(u), Py(u) = 2(D(u, u) — Q(u)?), Po(u) =1 -
2D(u, u)+Q(u)?. The tripotent u is said to be complete if Py(u) =0,
minimal if {uAu} = Cu, and unitary if {uAu} = A. A subspace [
of A4 is called a triple ideal of A if {AAI} + {AIA} C I; if merely
{IAI} c I then I is called an inner ideal of A. Elements x,y €
A are orthogonal if D(x,y) = 0. Two triple ideals / and J are
orthogonal if D(x,y) =0 forall x € [ and y € J; equivalently, if
INJ =0. A JB*-triple is simple if it has no nontrivial norm closed
triple ideals.

A norm closed subspace of a C*-algebra which is also algebraically
closed under the triple product {xyz} = %(xy*z + zy*x) is a JB*-
triple. The JB*-triples which can be realised in this way are called
J*-algebras. Other examples of JB*-triples include the Cartan factors
Ci(i=1,...,6), where C4 is a complex spin factor, Cs5 consists
of 1 x 2 matrices over the complex Cayley division algebra O and
Cg the hermitian 3 x 3 matrices over Q. The types C;, C,, C;
are defined as follows for arbitrary Hilbert spaces H and H': C; =
BH,H); C={xe€eBH):x=—jx*j}; C3={xe€ BH): x =
Jjx*j},where j: H— H is a conjugation. Correspondingly, we define
(as in [5]) the elementary JB*-triples, K; (i=1, ..., 6) as follows:
K, = K(H, H') (the compact operators); K; = C;NK(H) for i =
2,3; Ki=C; for i =4,5,6. Each K; is a simple JB*-triple and
can alternatively be described as the subtriple of C; generated by the
minimal tripotents. Extensive (often tacit) use will be made of the
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polarisation identities:

3
4{xya} = Z *{x + iy, x +i*y, a};
k=0
3
4{axa} = (-D)¥i*a+x, *a+x, i*a + x},
k=0
2{axb}={a+b,x,a+b}—{axa} — {bxb}.

Further theory of JB*-triples can be found in [2, 8, 10, 11, 14-27].

REMARK 1.1. We will need the following supplementaries:

(a) If m: A — B is a weak* continuous triple homomorphism be-
tween JBW*-triples, then m(A) is weak* closed (and hence a JBW*-
subtriple) in B.

(b) If #: A — B is a triple homomorphism, where 4 is a JB*-
triple and B is a JBW*-triple, then # has a unique extension to a
weak* continuous triple homomorphism #: A* — B and 7(A4**) =
R(A)¥eak” .

It is easily seen that (a) follows from the fact [20, Theorem 4.2]
that kerm has a complementary weak* closed triple ideal in A4 to-
gether with the Krein-Smulian theorem. To see (b) note that since B
is a Banach dual space, there is a (unique) weak* continuous opera-
tor ¢: B* — B whose composition with the natural map B — B**
is the identity on B. By (separate) weak* continuity, ¢ is a triple
homomorphism. Then & = ¢ o #** is seen to fill the requirements.

For later use, we conclude this section with some ideal theory.
Given an element x in a JB*-triple A, we write A4, for the JB*-
subtriple of A generated by x. This is the Banach subspace of
A generated by the (triple) monomials in x defined by x() = x,
x@ntl) = fxx@n=Ux} for n>1.

LEMMA 1.2. Let x be an element of a JB*-triple A. Then Ax = A,
where y = x"*+V)  forall n > 0.

Proof. Let y = x(nt1) | It is enough to show that x € A4, for
n > 1. A, can be realised as an abelian C*-algebra B in which x
is nonnegative and generates B as a C*-algebra (cf. [22]). Since in
B, x(n+1) — x2n+1 "we need only observe [18, Lemma 5.7] that there
is a sequence (P;) of polynomials with zero constant term such that,
forall n>1, x** 1P (x?) — x**~! uniformly in B as k — co. So
x(2"=1) lies in A, and, by induction, so does x.
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ProProsITION 1.3. Let I be a closed subspace of a JB*-triple A.
Then the following conditions are equivalent:

(i) I is a triple ideal of A4 ;
(i) {4AI} C I,
(iii) {AlA}cCI;
(iv) {AII} CI.

Proof. The conditions are progressively weaker and (i) < (ii) is
proved in [11, Proposition 1.4]. So it is enough to show that (iv) =
(i1). Suppose then that {4/} Cc I andlet x€l, a€ A. Let n >0
and note that I is a JB*-subtriple of 4. Using [25, JP1], we have

{xax@+3)} = {xa{xx®"*Vx}} = {x{axx?*D}x} e I.

Therefore {xadixx}} C I and hence {xax} € I, by Lemma 1.2.
Thus, using [25, JP10], we have

{aa{xxx}} = 2{x{axx}a} —{ax{xax}} eI,

which, by appropriate use of the polarisation identities, means that
{AA{I11}} c I and hence that {441} C I, as required.

If X is an extremally disconnected compact space and / is a norm
closed inner ideal of C(X), then I = {f € C(X): f(Y) = 0} for
some closed subspace Y € X . Given a nonzero element g € I, the
sets U, = {x € X: |g(x)| > 1} and E, = U, are open in X with
E,NY = @, so the characteristic function XE, lies in /. Moreover
lg —gxell < 5 forall n>1.

LEMMA 1.4. Let A be a JBW*-triple and let I be a norm closed
inner ideal of A. For x € I, there is a sequence (u,) of tripotents in
I such that {uyu,x} = {upxu,} — x uniformly.

Proof. Let M be the weak* closure of A, in A. Then M can be
represented as an abelian W*-algebra, W, in such a way that x > 0
in W . In this way I N M corresponds to a norm closed ideal J in
W . By the preceding remarks, a sequence of projections in J, and
hence tripotents in 7 N M , can be chosen in the way required.

We note that the above proves that if I and J are norm closed
inner ideals in a JBW *-triple having the same tripotents, then 7 = J .

2. Multipliers. Given a JB*-triple B and a closed subtriple 4 C B,
we define
M(A,B)={x € B:{xAA} C A}
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and call it the set of multipliers of A in B. For the special case
A C A*, we write M(A) =M(A, A*).

Note that if 4 and B above are C*-algebras and x € B is such
that {xAA4} C B, then for each a € 4, , we have

xa* = {xaa} + {xa'*a'*}a — a{xa'?a'?’} € A.

Therefore x4 C A. Similarly Ax € A. Thus M(A, B) is the ide-
aliser of 4 in B and M(A) is the multiplier algebra of 4.

THEOREM 2.1. Let A be a JB*-subtriple of a JB*-triple B. Then
M(A, B) is a JB*-subtriple of B. It is the largest J B*-subtriple of B
which contains A as a triple ideal.

Proof. Since M (A, B) is clearly norm closed, the second statement
will follow from the first, by Proposition 1.2. Let x € M(4, B) and
a € A. Then we have {axa@®"*t3} = {a{xaa®*D}a} € A4 for all
n > 0. By Lemma 1.2, this means that {axa} € 4 and hence that
{AxA} C A, upon polarising. In turn, this shows that

{xx{aaa}} = 2{a{xaa}} — {{axa}ax} € 4

where we have used [25, JP10]. Therefore {xx{4A4A}} C A and
{xxA} C A.
In addition, the main identity and then [25, JP2] gives

{x{aaa}} = 2{{aax}ax} — {aa{xax}}
= 2{{aax}ax} — {a{axa}x} € 4

which implies that {xAx} C A. Consequently,
{{xxx}aa} = 2{xx{aaa}} — {x{aax}x} € A

from which we deduce that {{xxx}4A4} C A, so that {xxx} €
M(A, B). Hence M(A, B) is a subtriple of B.

LEMMA 2.2. Let A be a weak* dense JB*-subtriple of a JBW*-
triple B and let I be a nonzero inner ideal (not necessarily norm
closed) of M(A, B). Then ANI #0.

Proof. Let x be a nonzero element of 7. Then {xA4} C INA, using
Theorem 2.1. But {xAx} # O else, by separate weak* continuity of
the triple product, we would have {xxx} = 0 and hence x =0, a
contradiction.
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LEMMA 2.3. Let A and B be JB*-triples, n: A — B an isomor-
phism of A into B and n(A) a triple ideal of B such that m(A)NI # 0
for all nontrivial closed triple ideals I of B. Then there is an isomor-
phism B: B — M(A) such that Bn is the identity on A.

Proof. Consider the composition 4 " B £ n(A4)** % A** where

o is the natural isomorphism and p is the restriction of the natural
projection B** — m(A)**. Then B = ap is injective because kerp N
n(A) = 0 implies kerp = 0. Since 4 = fn(A4) is a triple ideal of
B(B), we have B(B) C M(A). :

THEOREM 2.4. Let m: A — B be a triple isomorphism of a JB*-
triple A onto a weak* dense JB*-subtriple of a JBW*-triple B. Then
the weak* continuous extension 7@: A** — B maps M(A) isometri-
cally onto M(n(A), B).

Proof. ™ is isometric on M(A) by Lemma 2.2, and 7M(A4) C
M(n(A), B) by Theorem 2.1. It follows from Lemma 2.2 and Lemma
2.3 that there is a triple isomorphism g: M(n(4), B) — M(A4) such
that 7B is the identity on n(A4). Thus, given x € M(n(A4), B)
and y € n(4), we have {xyy} € n(4) and {(WR(x) —x),y,y} =
np{xyy} —{xyy} =0. Since n(A4) is weak* dense in B, this means
that {(Zf(x) — x)BB} = 0 and hence that x = 7f(x) e TM(A). So
TM(A) = M(n(A), B).

COROLLARY 2.5. Let A be a JB*-triple. Then the natural projection
p: A*™ — (A**), where (A**), is the atomic part of A**, maps M(A)
isometrically onto M(p(A), (A4*),).

Proof. This is immediate from Theorem 2.4 because p is isometric
on A by [17, Proposition 1].

COROLLARY 2.6. Let A be a JB*-triple. Then M(A) isa JBW*-
triple if and only if A is a norm closed triple ideal in a JBW*-triple.

Proof. Let A be a norm closed triple ideal in a JBW*-triple B.
We may suppose that A4 is weak* dense in B. Then B = M (A4, B) =
M(A) by Theorem 2.4. The converse is immediate from Theorem
2.1

REMARK 2.7. For any elementary JB*-triple K;, we have that K;
is a triple ideal of K* = C; and so M(K;) = K/*. At the other
extreme, we have:
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PROPOSITION 2.8. Let A be a JB*triple with a complete tripotent.
Then M(A)=A.

Proof. Let u be a complete tripotent of 4. The Peirce projections
Pi(u): A - A (i =0, 1, 2) are weak* continuous restrict to the
corresponding Peirce projections A — A. Since Py(u)4 = 0, we have
Py(u)(A**) = 0. Since A is a triple ideal of M(A4), we clearly have
P(uyM(A) c A for i=1,2. So M(A4) = (Py(u)+ Py(u))M(A) Cc A
by Pierce decomposition.

3. Weakly compact and compact JB*-triples. Given a JB*-triple
A, we let Ky(A) denote the Banach subspace of 4 generated by the
minimal tripotents of 4. If x € A, then A(x) denotes the norm
closed triple ideal in 4 generated by x.

If T: X — X is antilinear, we define 7*: X* — X* by T*(p) =
poT where p is the conjugate of p in X*. Note that 7™ is also
antilinear. We employ the standard corresponding definitions and
notation for linear operators. This does not lead to conflict. For
example, if S, T: X — X are antilinear (so that ST is linear), then
(ST)* = T*S*.

DEFINITION 3.1. A JB*-triple is defined to be weakly compact if the
(antilinear) operator Q(x): A4 — A is weakly compact for all x € 4;
and to be compact if Q(x) is compact for all x in 4.

LEMMA 3.2. If A is a weakly compact (respectively, compact) JB*-
triple, then so is every JB*-subtriple and every quotient of A by a
closed triple ideal.

Proof. This is an elementary consequence of the definitions.

LEMMA 3.3. Let u be a minimal tripotent in a JB*-triple A. Then

(i) A(u) is the closed subspace of A generated by {AuA};
(i) A(u) is elementary;
(iii) Ko(A) is a triple ideal of A equal to the cy-sum of all elemen-
tary triple ideals of A.

Proof. (ii) u is a minimal tripotent of 4**, so A(u)** is a Cartan
factor by [8, p. 302]. For (iii), let {4;} be the family of all elementary
triple ideals of 4. The A; are mutually orthogonal by simplicity, each
A; 1is itself the closed linear span of minimal tripotents and by (ii),
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every minimal tripotent of A4 is contained in one of them. Hence
Ko(A) = (5, 4, -

(i) The elements of the linear space V' generated by {AuAd} are
linear combinations of elements of the form {aua} with ae 4. We
have {uAu} =Cuc V. Given a,be 4,

D(a, b)u = 2{{abu}uu} — {u{bautu} €V
and so, from [25, JP21], we have

Q(b)Q(a)u = (4Q({bau}) + 20(Q(b)Q(a)u , u)

- Q(u)Q(a)Q(b) — 4D(b, a)Q(u)D(a, b))u
which is in V. Therefore {4V A} C V. Hence the norm closure of
V' is a triple ideal, by Proposition 1.2 (iii) = (i), which must equal
A(u).

THEOREM 3.4. The following statements are equivalent for a JB*-
triple A.
(1) A4 is weakly compact,
11) D(x, x): A— A is weakly compact for all x in A,
iii) A is an inner ideal of A**;
v) M(A) = A*;
)
1)

_

—~
[l
=

(i
(

Proof. (1) < (iii). Given x € 4, Q(x): A — A is weakly compact
if and only if Q(x)*4*™ C A [13, p. 482]. By weak* continuity,
Q(x)™ = Q(x) on A*. Thus A is weakly compact if and only if
{xA*x} Cc A forall x in 4.

(ii) < (iv). In the same way (ii) holds if and only if {xxA4**} C 4
for all x in 4. By Proposition 1.3, this is equivalent to 4 being a
triple ideal of 4** and, by Theorem 2.1, to M(4) = A™.

(iv) = (iii) . Immediate from Theorem 2.1.

(ii1) = (v). Let u be any minimal tripotent of 4A**. Then J =
A**(u) is an elementary triple ideal of A** by Lemma 3.3. Suppose
(111) holds. Then I = AN J is a nonzero triple ideal of A since
0 # {AuAd} c I. Now I** is a weak* closed triple ideal of the Cartan
factor J* . Hence I** = J% . Therefore I is elementary by [5,
Lemma 3.2]. In particular, I is a triple ideal of I** and hence of J,
and so it is equal to J, by simplicity. So u € 4.

(v) = (vi). Suppose (v) holds. Then Ky(A4)** is the atomic
part of A**. Therefore (A/Ky(A))** which can be identified with

[

—~~

v) Ko(4) = Ko(A™);
1 Ko(A) =A4.

<.
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A**[Ky(A)**, has no nonzero minimal tripotents and so must be triv-
ial. Hence 4 = Ky(A4).

(vi) = (iv). Suppose that A is the cyp-sum of a family of elemen-
tary JB*-triples 4;. Then A; is a triple ideal of A7* for each i.
Hence A is a triple ideal of 4™ = (30, 47*);  and so M(4) = 4™
by Theorem 2.1. The proof is complete.

If A is a weakly compact JB*-triple, we will call the elementary
triple ideals of A the components of A. In this way A is the cy-sum
of its components.

COROLLARY 3.5. Let A bea JB*-triple. Then Ky(A) = Ko(4**)NA
and is the largest inner ideal of A which is also an inner ideal of A**.
It is also the largest weakly compact (closed) inner ideal of A. Further
Ko(J) = Ko(A)N'J for every norm closed inner ideal J of A.

Proof. By Theorem 3.4 (vi) = (i) and Lemma 3.3 (iii), Ko(A4) is
a weakly compact triple (hence inner) ideal of 4. So by Theorem
2.1 together with Theorem 3.4 (iv) = (i), Ky(A) is a triple ideal of
Ko(A)** and hence of A**. The same citations show that if I is a
norm closed inner ideal of A4, then it is weakly compact if and only if
it is an inner ideal of 4** in which case, since minimal tripotents of
I are also minimal tripotents of 4, I = Ky(I) C Ko(A4). It follows
from this, together with Lemma 3.1, that Ky(4) = Ko(4A**)N A. The
last claim in the statement is similarly proved.

THEOREM 3.6. Let A be a JB*-triple. Then the following are equiv-
alent:
(i) A is compact;
(i) A is weakly compact with no infinite dimensional C4 compo-
nents;
(iii) A is isomorphic to a subtriple of K(H) ® Cy(S, Cg) for some
complex Hilbert space H and discrete topological space S .

Proof. (i) = (ii). Let A be compact. Then it is weakly compact.
If I is a C; component of 4, then it contains a unitary tripotent
u. But then Q(u)?: I — I is both compact and the identity operator.
Hence 7 is finite-dimensional.

(i1) = (iii). The components of 4 of type K; (i=1,2, 3) can
each be realised as a subtriple of compact operators on a Hilbert space,
and the same is clearly true for any finite dimensional C4 component.
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Since C5 C Cg, we see that (iii) follows from (ii) by Theorem 3.4
(1) = (vi).

(iii) = (i). Assume (iii). For each x € K(H), the linear operator
a — xax is compacton K(H) (cf. [3, p. 174]). So a — xa*x = Q(x)a
is a compact antilinear operator on K(H). In other words K(H) isa
compact JB*-triple. But so is Cy(S, Cg), as follows easily from the
finite dimensionality of Cg and the discreteness of .S'. Since the /-
sum of two compact JB*-triples is clearly compact, (i) follows from
Lemma 3.1.

THEOREM 3.7. Let A be a JB*-triple. Then D(x,x): A — A is
compact for all x € A ifand only if A isa cy-sum of finite-dimensional
J B*-triples.

Proof. Suppose that D(x, x): A — A is compact for all x in 4.
Then A is weakly compact, by Theorem 3.4, and we may suppose it to
be a J*-algebra contained in B(H), say. Given a minimal tripotent
u of A, the operator S: A — B(H) defined by

S(x) = uw*x = 2uw*D(u, u)x — Q(u)*(x)

is compact. But the subspace of B(H), uu*A, is norm closed. In-
deed, suppose (b,) is a sequence in A such that uu*b, — b €
B(H). By the compactness of D(u, u), we may suppose that uu*b, +
byu*u - ae€ A. So uu*b, + uw*b,u*u — uu*a. Since uu*b,u*u =
uu*(uu*b,u*u) € uu*A, it follows that uu*b, € uu*4. Now ob-
serve that the identity operator on uu*A4, which is multiplication on
the left by uu*, is compact because S is. Hence uu*A4 is finite-
dimensional as, similarly, is Au*u. It follows that the linear span of
Au*A = Au*uu* A has finite dimension as therefore does the subspace
of A generated by {AuAd}. Therefore A(u) is finite dimensional by
Lemma 3.3 (i) and, since all components of A are of this form for
some minimal tripotent u, the proof is complete.

4. The RNP and compact elements. Given a JB*-triple 4, a nec-
essary and sufficient condition for 4* to have the RNP is that A** be
atomic [6, Theorem 2], whereas 4 has the RNP if, and only if, 4 is
reflexive [7, Theorem 6]. So the implications

A has the RNP = A is weakly compact = A* has the RNP

are clear from the results of §3, for example. We will examine the
relationship more closely. In addition, we will exploit the global results



COMPACT OPERATIONS AND RNP IN JB*-TRIPLES 259

of §3 in order to study the effect of the (weak) compactness of the
operators Q(x) and D(x, x) for individual elements Xx .

Recall that as well as having a largest weakly compact triple ideal
Ky(A), A also has a largest closed triple ideal I with the property
that 7* has the RNP [5, Proposition 3.7].

PROPOSITION 4.1. Let A be a JB*-triple. The following are equiv-
alent:

(i) A is weakly compact,
(ii) A* has the RNP and M(A) is a JBW*-triple;
(iii) P,(u)A has the RNP for all tripotents u of A and M(A) isa
JBW*-triple.

Proof. (i) = (ii). This follows from Theorem 3.4 and the above
remarks. (ii) = (iii). Suppose (ii) holds and let u be a tripotent of
A. Then Py(u)A = {uAu} = {uM(A)u} because A is a triple ideal
of M(A). Therefore by assumption {uAu} is a JBW*-triple. But
{uAu}* has the RNP because 4* does. Hence {uAu} is reflexive by
[7, Theorem 6].

(iii) = (i). Assume (iii). Let u be a tripotent in 4. Having
the RNP, and hence being reflexive, the closed inner ideal {uAu} is
weakly compact. So {uAdu} C Ky(A4) by Corollary 3.5. But by Lemma
1.4 and the assumption, given x € A4, there is a sequence (u,) of
tripotents of 4 such that x = lim,{u,xu,} € K¢(A4). Condition (1)
now follows from Theorem 3.4 (vi) = (i).

COROLLARY 4.2. If A is a JBW*-triple, then Ko(A) is the largest
closed triple ideal I of A for which I'* has the RNP.

COROLLARY 4.3. Let A be a norm separable JB*-triple. Then A
is weakly compact if and only if M(A) is a JBW*-triple.

Proof. The necessity being obvious (from Theorem 3.4). Suppose
that M(A) is a JBW*-triple, and let u be any tripotent in 4. From
the proof of Proposition 4.1, we see that {uAu} is norm separable
and is the dual of a Banach space, which means that it has the RNP
(cf. [9]). So A is weakly compact by Proposition 4.1.

The following should be compared with Corollary 2.5 and Theorem
3.4
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PROPOSITION 4.4. Let A be a JB*-triple such that A* has the
RNP and let py: A** — Ko(A)** be the natural projection. Then
Do is the identity on Ko(A) and maps M(A) isometrically onto
M(po(A4), Ko(A4)™).

Proof. Let I be any nonzero norm closed triple ideal of M(A4).
Then J =1INA#0 by Lemma 2.2, and, since J* has the RNP,
contains a nonzero minimal tripotent [5, Theorem 3.4]. Therefore
INKy(A) # 0. Thus applying Lemma 2.3 and its proof to the inclusion
Kyo(A4) ¢ M(A), we see that py: M(A) — Kyo(A)** is isometric and
is the identity on Ky(A4). Now applying Theorem 2.4 to py: 4 —
Ko(A4)*™ , we have poM(A) = M(po(A4), Ko(A4)™).

Recall [22, 23] that for each element x of a JB*-triple A4, there
is a locally compact subspace Sy of (0, oo) such that S, U {0} is
compact and there is a surjective triple isomorphism ¢: A, — Cy(Sx)
with ¢(x) the identity on S, . Moreover Sy and ¢ are unique with
these properties. Spectral theory provides a sharp comparison of the
RNP phenomena with weak compactness.

ProPOSITION 4.5. Let A be a JB*-triple.

(i) A* has the RNP < Sy is countable for all x in A.
(ii) A is weakly compact < Sy is discrete for all x in A.
(iii) A4 has the RNP < Sy is finite for all x in A.

Proof. (i) This was proved in [5, Theorem 3.4].

(ii) If A4 is weakly compact then, given x € 4, so is A, = Cp(Sx),
by Lemma 3.1. Since each component of the latter can only be a
copy of C, S, must be discrete. Conversely suppose that the spectral
condition is satisfied by 4. Let u be any tripotent of 4. Recall
that {uAdu} can be realised as a JB*-algebra. By spectral theory,
Sx = ag(x)\{0} for every x € {uAdu},. It follows from [4, Theorem
3.3] that {uAu}s, is a unital dual JB-algebra, so that u is a finite
sum of orthogonal minimal projections of {#Au}s,. Therefore u is
a finite sum of minimal tripotents of A. In particular, u € Ky(4).
But by hypothesis every element x of A4 can be written as a norm
convergent sum x = » >°, A,u, where 4, >0 and u, is a tripotent
of Ay = Cy(Sx). Hence x € Ky(A4) and A is weakly compact by
Theorem 3.4.

(iii) If 4 has the RNP, and so is reflexive [7], then A, = Cy(Sx)
is reflexive and hence S, is finite, for all x in 4. If on the other
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hand S, is finite for all x in A4, then 4 is weakly compact by (ii).
Suppose that (#,) is an infinite sequence of orthogonal tripotents in
A. Then x = 2%, un/n? € A and the monomials x?*+1) k>0,
are clearly linearly independent, implying that A, is infinite dimen-
sional, a contradiction. Thus 4 must be a finite sum of elementary
triples drawn from the following types: K(H, H') with dim H' < oo;
finite dimensional K, and K3 ; arbitrary K4, K5 and K¢. Hence 4
is reflexive.

REMARK 4.6. We note from the above proof that if 4 is weakly
compact, then each nonzero element x of A4 can be written as a norm
convergent (possibly finite) sum x = Y A,u,, where u, are mutually
orthogonal minimal tripotents of 4 and {4,} = Sx C (0, co) (cf. [18,
Theorem 3.3]).

We say that an element x of a JB*-triple A is a weakly compact
(respectively, compact) element of A if Q(x): A — A is weakly com-
pact (respectively, compact).

PROPOSITION 4.7. The set of all weakly compact elements of a JB*-
triple A is the triple ideal Ky(A).

Proof. Let x € A be a weakly compact element and consider the
norm closed inner ideal I = Q(x)A4, which contains x by Lemma
1.2, for instance. Given y € I, we have ||y — y,|| — O for some
¥n = Q(x)a where a, € A. Since [[Q(¥) — Q(¥n)| — 0 and Q(yn) =
0(x)Q(an)Q(x): A — A is weakly compact, Q(y): I — I must be
weakly compact. Hence x € I C Ky(4) by Corollary 3.5. On the
other hand, let x € Ky(A). By Corollary 3.5 and Remark 4.6, we have
X = Y Apun, where u, are mutually orthogonal minimal tripotents.
With x, = Ajui +---+A,u, and v, = uy +---+u,, we have Q(x,) =
Q(vn)0Q(xn)Q(vy,) and ||Q(x,) — Q(x)]] — 0. But v, is a weakly
compact element of Ky(A4), by Theorem 3.4, and hence of 4 since
Q(v,)3 = Q(v,) and Ky(A) is a triple ideal. Therefore x is a weakly

compact element of 4.

COROLLARY 4.8. Anelement x ofa JB*-triple A is weakly compact
if and only if D(x, x): A — A is weakly compact.

Proof. Let x be a weakly compact element of 4. Using Proposition
4.7 and viewing A, = Cy(Sx) C Ko(A), we see that x = y(® for some
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y € Ko(4). Now D(y, y): Ko(4) — Ko(A) is weakly compact by
Theorem 3.4. So, using [25, JP13],

D(x, x)+Q()Q(y, x)=2D(y,y)D(y,x): A— 4

is weakly compact since D(y, x)A C Ko(4). But Q(»): 4 — 4 1is
weakly compact by Proposition 4.7 and hence so is D(x, x).

Conversely, suppose that D(x, x) is weakly compact on A for
some nonzero element x in 4. Identifying A, = Cy(Syx), we have
D(x, x): Co(Sx) = Co(Sx) (¥ — x%y) is weakly compact. It follows
that all left multiplications on Cy(Sy) are weakly compact (x > 0 and
it generates Cy(Sx)). Hence Sy is discrete by [12, 4.7.20]. Hence we
can write, as a norm-convergent sum, x = » A,u, where 4, > 0
and u, are mutually orthogonal tripotents of Cy(Sy). Using [25,
JP4], Q(x{xxx})=D(x, x)Q(x): A — A is weakly compact. By the
rule that Q(u)Q(u, v)Q(u) = 0, whenever u and v are orthogonal
tripotents, we see that, for each n,

AnQ(utn) = Qun)Q(x , {xxx})Q(ttn): A — A
is weakly compact. Hence x is a weakly compact element of A4 by
Proposition 4.7.

COROLLARY 4.9. Let V be the set of compact elements of a JB*-
triple A. The following conditions are equivalent :
(i) V is a linear subspace of A,
(i1) V = Ko(4);
(i11) Ko(A) is a compact JB*-triple.

Proof. (iii) = (ii) is proved as in the second half of Proposition
4.4, and (ii) = (i) is trivial. Note that V' C Ky(A4), by Proposition
4.7. If Ky(A) is not compact, then by Theorem 3.6, it has an infinite
dimensional C; component B, say. We have u = u; + u, where
u 1is the unitary element of B and u;, u, are minimal tripotents.
Obviously #; and u, are compact elements of 4, but u is not, else
B is finite dimensional. Hence V is not a linear space. This proves
(1) = (ii1).

COROLLARY 4.10. Let A be a JB*-triple. The set {x € A: D(x, x)
is compact } is equal to the norm closed triple ideal I of A generated
by the class of all finite dimensional triple ideals of A.

Proof. We note that I is the cp-sum of all finite dimensional com-
ponents of Ky(4). Thus given x € I, Q(x) and D(x,x): I —
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I are compact by Theorem 3.6 and Theorem 3.7. The argument
in the first half of Corollary 4.8, transparently adapted, proves that
D(x, x): A— A is compact.

Conversely, suppose that D(x, x) is compact on 4 where x €
A\{0}. Then by Proposition 4.7, the closed triple ideal A(x) is
contained in Ky(A4) and it is weakly compact by Lemma 3.1. Thus
A(x) = (3°A4;)c, where each 4; is an elementary triple ideal of 4.
Writing x = Y x; with x; € 4;, the map D(x;, x;): 4; — A4; is
compact for each i. It is enough to show that each A; is finite di-
mensional. We may suppose therefore that A(x) is an elementary
J*-algebra in B(H), say. Observe that the argument used in the sec-
ond half of Corollary 4.8 shows Q(x): A(x) — A(x) to be compact.
Consider the spectral decomposition x = ) A,u, in A(x) where the
An > 0 and the u, are mutually orthogonal minimal tripotents. Now
with y = A7!x, we see that the map S: 4(x) — B(H) defined by

S(a) = wuia = wiui(yy*a+ay*y) —uyi(yy*ay*y)

is compact. Hence A(x) = A(u;) is finite dimensional as in the proof
of Theorem 3.7, and the proof is complete.

We conclude with the following relationship between the RNP and
the (weak) compact operations.

THEOREM 4.11. Let A be a JB*-triple. The following are equiva-
lent:

(i) A* has the RNP;

(ii) A has a composition series {Ip}o<p<p Such that I,.1/1, is
weakly compact for each p < 8,

(iii) Every JB*-triple quotient of A contains a nonzero weakly com-
pact element

(iv) Every JB*-triple quotient of A contains a nonzero compact
element.

Proof. The implications (i) = (ii) = (iii) follow from [5, Theorem
3.4] and Theorem 3.4, whereas (iii) = (iv) is trivial. Assume that (iv)
holds. Let I be the largest closed triple ideal of 4 for which I* has
the RNP. If A* does not have the RNP, then 7 # A and it follows [5,
Corollary 3.7] that Ky(A4/I) = 0. By Proposition 4.7 and Corollary
4.8, this means that 4/ cannot contain a nonzero compact element,
a contradiction. Hence 4* has the RNP.
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