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An affine Hecke algebra is additively the tensor product of a finite
dimensional Hecke algebra with the coordinate ring θ of a complex
torus. In this paper we give explicit formulas for eigenvectors of θ
in unramified principal series representations of the reductive /?-adic
group G associated to <%*. This leads to new information about
intertwining operators, Jacquet modules and submodules of principal
series representations.

Let G be a reductive p-adic group, τ an unramified character of a
minimal parabolic subgroup P, and /(τ) = indp τ the induced prin-
cipal series representation of G. The space I(τ)B of vectors in J(τ)
which are invariant under an Iwahori subgroup B affords a represen-
tation of the affine Hecke algebra %? corresponding to G. It is known
that taking ^-invariants yields an equivalence of categories between
(admissible G-modules generated by their 2?-invariants) and (finite
dimensional %? modules). Thus the representation theory of J(τ) is
captured by the action of %? on I{τ)B. The irreducible representa-
tions of %? have been classified ([K-L] and [G]). However, the de-
composition of I(τ)B itself, though well studied (see the references),
is not completely understood. The purpose of this paper is to describe
certain functions in I(τ)B which are important for finding the sub-
modules of this representation explicitly. This investigation enables
us to extend some results of Rodier [R] and Rogawski [Ro], and also
yields a new proof of the irreducibility criterion for I(τ) due to Kato
and Muller ([Ka], [M]).

Recall (cf. [L]) that as a vector space, %f is the tensor product of
two subalgebras

where %?w is the Hecke algebra of the finite Weyl group W of G and
θ is isomorphic to the coordinate ring of a maximal torus T in the
complex Lie group which is dual to G in the sense of Langlands. As a
^ '-module, I(τ)B is always the regular representation of %?w 9 so as
τ varies, the change in the structure of I(τ)B is seen in the action of
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θ . Now τ may be viewed as an element of T, hence as a character of
θ , and the semisimplification of the θ-module I(τ)B is isomorphic
t 0 (BwewτW Moreover,

HomG(/(τ), I(τw)) ^ Homθ(I(τ)B, τw) ~ ΈomP{I{τ)N, τwδ1'2),

where /(τ)# is the Jacquet module with respect to the unipotent rad-
ical N of P, and δ is the modulus of P.

We can write I(τ)B as a direct sum of indecomposable θ-sub-
modules, each containing a one-dimensional space of" θ -eigenvectors"
which transform under θ by the character τw, for some w e W.
Moreover, any invariant subspace of I(τ)B must contain a θ -
eigenvector.

Our goal is to describe all θ-eigenvectors in I(τ)B explicitly,
and relate them to the structure of I{τ)B as well as %? itself. We
are only partly successful. For some τ , we have found all θ-eigen-
vectors. For arbitrary τ , we have found all θ-eigenvectors for certain
identifiable characters τw. This is the content of Theorem (8.3),
which is the culmination of this paper. In more detail, the contents
are as follows.

We describe the θ-eigenvectors transforming by τw as linear com-
binations

yew

of standard basis elements φy G I(τ)B, which correspond to P\G/B
double cosets. Each aWίy is a rational function of τ (i.e., an element
of the function field C(Γ)) and is given by a recursive formula involv-
ing induction on the length of y. We have aWjW = 1 for all w eW
and aWyy = 0 if w ^ y in the Bruhat order. In the case that τ lies
in no root kernel, Rogawski ([Ro]) has described all θ-eigenvectors
in a completely different way, in terms of translates of a particular
eigenvector by the Kazhdan-Lusztig basis of %?w Our improvement
on this point is the determination of the basis coefficients aW}y, and
more importantly, their poles (see (5.2)). This gives us sharper infor-
mation for singular τ .

Actually, we give two recursive formulae for aw ,y ((4.2) and (4.9)).
The first comes from the compatibility of θ-eigenvectors with inter-
twining maps between principal series. The second formula arises
from a relation in β? between the generators of θ and those of %?w >
which we use to study the action of %?w on the θ-eigenvectors. The
formulae are in principle equivalent, of course, but it is not clear how
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to directly derive one from the other. Nevertheless, their similar ap-
pearance can be explained.

It is because intertwining operators come from multiplication in the
"extended" Hecke algebra

& := XT <g>θ C(T) =β?w® C(T)

by certain elements ^ e %?. These were defined by Lusztig in [L]
and are closely related to Rogawski's formulae for θ-eigenvectors.
Consider the ^-submodule

w°
where C(Γ) τ consists of those functions which are holomorphic on
τ e T, and Wq^is the long word in W. The ^-module I(τ)B is
a quotient of 3%. Assume for simplicity that no root of T takes
value q±ι on τ . ^ o r each y € W, the usual (normalized) inter-
twining operator stfy e Hom^(I(τ)B, I(τy)B) is the quotient of the
map ^ —• β%y given by right multiplication by ^w-^yw (see (4.11)).
Thus, both of our formulae for aWyy are related to multiplication by
basis elements of βf. Moreover, if s e W is a simple reflection, then
<9^+l e(Ts+ l)Θ (Ts is the generator of %?w corresponding to s),
and this accounts for the similarity.

In §5, we digress to combine our point of view with that of [Ro]
and derive an identity expressing the aWjy's in terms of the prod-
uct of certain Kazhdan-Lusztig basis elements of <%w. A priori, this
product involves Kazhdan-Lusztig polynomials, whose combinatorial
complexity is much greater than that of our aWjy 's. In our identity,
τ is playing the role of a deformation variable, and apparently some
of the combinatorics is being expressed in terms of the W action on
the deformation space.

We return to our main path in §6 and find the poles of the aw ,y 's.
In principle, the recursive formulae should be enough for this, but
other ideas were needed, namely the ^-decomposition of /(τ) and
the Jacquet module. In (6.2) we give a criterion for holomorphicity
of aWiy which depends only on w, telling us on which root kernels
our θ-eigenvectors are still defined.

If τ is not in the kernel of any root, then (and only then) the
action of θ on I(τ)B is diagonalizable, all aw^y are holomorphic
and we have found a basis of I{τ)B consisting of θ-eigenvectors. As
an application, we find, in (7.3), an explicit ^-composition series
of I(τ)B in the case that τ is regular. Consequently, we determine
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the lattice of submodules of /(τ) and generators of each submodule.
This extends earlier work of Rodier ([R], see also [Ro]), in which the
composition factors of I(τ) were parametrized.

If τ is unitary, we can use Harish-Chandra's theorem on inter-
twining operators to get a good upper bound on the number of θ -
indecomposable summands in I(τ)B. From this we deduce that ex-
actly the right number of aw ,y 's are holomorphic at τ , implying that
we have found all of the θ-eigenvectors. This is the Hecke algebra
version of the "Knapp-Stein dimension theorem" on intertwining op-
erators, first proven by Silberger [S] in a more general context, and
made explicit by Keyes [K]. We can then easily write down explicit
spanning sets for the spaces of θ-eigenvectors in each isotypic com-
ponent of I(τ)B .

The result for unitary τ is a special case of Theorem (8.3), which
applies to at least one element, said to be "good", in the W orbit
of any τ , and is a generalization of [Ro, Theorem (3.1)]. Assuming
that τ itself is "good", we determine a non-empty set of w e W,
depending on the roots of T which have (complex) modulus one on
τ, such that all θ-eigenvectors in I(τ)B with character τw are lin-
ear combinations of the ones given by our formulae. Proceeding along
Rogawski's lines, we can then strengthen Corollaries (3.2) and (3.3) of
[Ro] as follows. In (8.6), we give weaker sufficient conditions, neither
of which can be omitted, for I(τ) to have a unique irreducible quo-
tient and submodule. In (8.7) we give a new proof of the irreducibility
criterion for I(t)B, originally announced in [M] and proven in [Ka].

In §9, the paper concludes with some examples and a conjecture
related to the limitations of Theorem (8.3).

To make the paper easier to read, we have assumed that G is split.
This is not essential, and the motivated reader can adapt the compu-
tations to quasi-split groups.

I thank A. Moy, F. Shahidi and M.-F. Vigneras for useful discus-
sions. Much of this work was done while I was provided with the
stimulating environs of Universite de Paris VII and CIRM. Financial
support was also received from NSA grant MDA904-89-H-2027.

1. Notation. Let F be a nonarchimedean local field, and G a
Chevalley group defined over &, the ring of integers in F. We write
G for the F-rational points of G, and use similar notation for other
algebraic groups over <&.

Let A be a maximal F-split torus of G, and denote the rational
character group of A by X*(A). Let Δ, Δ+, Δ~, Σ e X*(A) be
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the roots of A in G, a choice of positive roots, with corresponding
negative and simple roots respectively. For a G Δ, we let ha: Fx —• A
be the corresponding one parameter subgroup. We set

A' = {a G A: \a(a)\F < 1 Vα G Σ}.

Let T = C x ®Z*(A), the complex torus dual to A. Let K =
a maximal compact subgroup of G.

We have a pairing

given by

This induces an isomorphism between A/A Π K and the group
X*(T) of rational characters of T as well as an identification between
T and the group of unramified (quasi)-characters of A.

For a e Δ we define ea G X*(T) by

for T G Γ ,

The Weyl group W = NoτmG(A)/A acts on ^ , X*(A), T, X*(T)
and the characters of A in such a way that

τ™(α) = τ(waw~x)

and

for ?/; G PΓ, T G Γ , α G i , a e A. We set

Wς = {w G ̂ | τ ^ = τ}, Δτ = {α G Δ|eα(τ) = 1}, Δ+ = Δτ n Δ+.

We also set

T° = {τ G 7Ί^α(τ) ^ 1 Vα G Δ}, Γ 0 0 = {τ G Γ| Ĥ τ = 1}.

If w G W, there is a representative for w in ΛΓ which we will also
denote by w , hoping there is no confusion.

2. The affine Hecke algebra. Let B c K be the Iwahori sub-
group corresponding to our choice of simple roots Σ, and let %? =
C£°(G//B). As a vector space, %? is the tensor product of two sub-
algebras

which we now describe (see [L]).
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The subalgebra %w consists of those functions in %? which are
supported on ί . It is isomorphic to the finite dimensional Hecke
algebra corresponding to W. The subalgebra θ is commutative and
has a linear basis {θa\a G A/A Π K} where the θa 's are defined as
follows.

For x G G, we let Tx G β? be the characteristic function of BxB.
Let aeA and choose a\, #2 £ ^ ~ such that α = α ^ 1 . Then

It is shown in [L] that this is independent of the choice of a\, <?2, and
then it is clear that θa depends only on the coset of a in A/AπK. In
this definition, / denotes the length function on the normalizer in G
of A ΠK. It is defined by the equation q1^ = [5x5: B]. If aeA,
we have

α:>0

This means we can also write

where
δ{a) =

is the modulus of the Borel subgroup corresponding to our choice of
simple roots.

Finally, we have the relation

θaθb, a,be A.

Thus θ is isomorphic to the group algebra C[A/A Π K]. The pairing
( , ) from § 1 moreover induces a ring isomorphism

θ ~ C[T]

under which θh (w) corresponds to ea, and τ G T is the algebra
homomorphism τ: θ —> C such that τ(0α) = (α, τ).

Let C(Γ) be the field of rational functions on T. Note that C(T)
is isomorphic to the quotient field of θ .

The Weyl group W acts on C(T) by (w α)(τ) = a(T^), for tt; G
fΓ, τ G Γ , a n d α e C ( Γ ) .

3. The unramified principal series. Let P = AN be the Borel sub-
group in G whose unipotent radical N is generated by root groups
from Δ + .



IWAHORI INVARIANTS 319

Our group G has the double-coset decomposition

G = U PwB.
wew

According to [C, (1.3)], we have

BwB C (J PxP;
x>w

hence also
PwB C (J PxP.

x>w

Finally, we have

PwB n PwP = (P n κ)w{N n A').

For τ G Γ, we set

where the induced representation consists of those locally constant
functions f on G such that f(pg) = τδι/2(p)f(g), forpeP,
g e G. The action is given by [n(g)φ](h) = φ(hg), for g, h G G
and φ G I(τ). We sometimes suppress the τ and write simply /
instead of I(τ).

Since τ is unramified, we have, for each w G W, a function φw =
φτ

w G I(τ) which is supported on PwB and satisfies

for all p G P, b e B. The set of all ^ 's is a basis of the space
I(τ)B of Iwahori-invariant vectors in I(τ). Of course / ( τ ) 5 affords
a representation of ^ \ In particular, I(τ)B affords an action of
C[A/A ΠK] via (a9φ)t-+ π{θa)φ, aeA, φ e I(τ)B .

For any P-representation (π, F ) , we denote the Jacquet module
of F b y (πN,VN).

(3.1) PROPOSITION. The natural projection j N : IB -• IN®δ~xl2 is
an isomorphism of C[A/A Π K] modules.

Proof. That jx is a linear isomorphism is well known (cf. [C]). For
the equivariance, we use [C, (2.5)] which says

jN(π(Ta)φ) = [BaB: B]πN(a)jN(φ)

for aeA~, φ e I. We have therefore

= jN(π(TaT-ι)φ) = [BaB: B]πN(a)jN(π(T-χ)φ),
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from which we conclude

jN(π(T-ι)φ) = [BaB: BΓιπN(a-ι)j

Now let a eA be arbitrary, and write a = a\a^x with aιe A~ . We
get

= δ-2(a)πN(a)jN(φ). •

In other words, the Θ-module structure of IB is essentially the same
as the y4-module structure of / # . This relationship can be strength-
ened as follows.

There is a P-stable filtration / = \JweWIw , where

Iw = I(τ)w = \f£ 7 ( τ ) l support of / c | J PxP \ .

This gives an ^-filtration

IN = [ J IW,N>
wew

hence a Θ-filtration

/^= U iwniB.
wew

Observe that x >w => φx e IWΓ)IB .

(3.2) PROPOSITION. The projection JN induces an isomorphism
Iw ΠlB -=• IW,N Moreover, {φx\x > w} is a basis of Iw ΠlB .

. By [C, (2.3)], the quotient

x>w

is one-dimensional, so

dimIwN = ϋ{x G H |̂x > w}.

On the other hand, counting φx 's shows

dimIwΠlB >%{xe W\x >w}.

This completes the proof, since jx is injective. D
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For the rest of this section, we assume τ e Γ 0 0 , and recall some
facts about intertwining operators that we will need later. See [C].

For x G W, let Nx be the subgroup of N generated by the roots
in

R(x) := {a > 0\xa < 0}.

Since τ e Γ 0 0 , the space HomG(I(τ), I{τx)) is one dimensional,
spanned by an operator stfx = sfx

τ with the property that

= / f{xή)dn9

if the support of / lies in

\JPyP.

(The measure on Nx is such that vol(Nx Π K) = 1.) Finally, if
x, y e W satisfy l{x) + l(y) = l{xy) then srfj* srfx

τ = stfx

τ

y .

4. ©-eigenvectors. We begin with a basic property of certain θ -
eigenvectors.

(4.1) LEMMA. Let τ e T, and assume w e W is maximal in its
coset Wτw, with respect to the Bruhat order on W. Then there exists
a unique function f* e I(τ)w Γ\I(τ)B such that

(2) π(θa)fί = }τw{a)f^ for all a e A.

Proof. In [C] it is shown, for any x e W, that A acts on the one
dimensional quotient

y>χ

by the character τxδ^. By (3.2), θ acts on the quotient

y>z

by the character τx .
Our hypothesis on w implies that τw does not appear in any θ -

invariant subquotient of Σy>w IyΓ\IB . Hence the quotient affording
τw splits off and we can find a nonzero f£ as in (2). Moreover, f*
must have PwB in its support, so we can normalize to get (1). D
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For a G Δ, we set

If we have also an element w eW, and a > 0, we define

f cac-a ifw~ιa > 0,
a '™ I 1 iΐw-ιa<0.

If α < 0, we set Λ:α,w = K-a,w.
Thus, J ^ α is an element of C(Γ) which is holomorphic on T°:

(4.2) THEOREM. Lβί τ e Γ 0 0, w e W, and a e Σ.

(2)
y>w

where the aXyyeC(T) are given recursively as follows:

ax,y = 0 ifx£y,

axx = 1 for all x e W

and finally, if sy > y, then

ax,sy = (1 - ca)aX9y + Ka9X(s - aSXty).

Proof. For any x e W and τi e Γ 0 0 , we can write

yew

for some complex numbers aXίy(τ\). By definition (see (4.1)), we
have aXiX{τ\) = 1 and aX9y(τ\) = 0 if x £y. We set ay = aWyy(τ),
by = aSWiy(τs).

Note that £fsfw
 a n d fsw a r e t w o functions in I(τs)B which trans-

form by τw under θ . The regularity of τ implies that this character
has multiplicity one, so there is a k = kaiWίT eC such that

From [C, (3.4)], we have

τy = (ca(τ)-l)φf + q-ιφfy if sy > y,

= (ca(τ) - q~x)ψy + φίy ftsy<y9
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SO

sy>y

sy<y

Comparing coefficients of φ'ζ , we find

- {
iz + asz if sz > z,
ι)&z + Q~^&sz 9 if sz < z.

In particular,

Uw iίsw
,

But bsw = aw = 1, and α ^ = 0 if 5tt; < w . We also have

(4.3) LEMMA. asw = 1 - cα(τ) if sw > w.

We first prove

(4.4) LEMMA.

(1) stfxφw(\) Φ O^w < x.
(2) s/wφw{\) = 1.
(3) s^swφw{\) = ca(τ) - 1 if w <sw .

Proof. Assume w ^ x . Then

PwB c\JPyPc{J

so

= / φw{xn)dn.
J N

However, if xN meets PwB then xiV meets P y P , for some y > w ,
which must in fact equal x, and this is a contradiction.

For (2), we start with the fact that PwPnBwB = (PΓ)K)w(NΓ)K).
Thus if wn e pwB for some n e Nw, p € P , w e have p~ιwn e

, so wn G Pw(NnK). By uniqueness of expression
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in the Bruhat decomposition, we have n e NnK, and then also p e
PΓ\K. Moreover this shows, since τ is unramified, that φw(wn) = 1.
We now can compute the integral:

•&wV>w(l)= φw{wή)dn
JNW

= / φw(wή)dn = / dn=l.
JNWΠK JNWΠK

For (3), we use the cocycle condition for the operators srfx to get

= (cα(τ) -

= ca(τ) - 1

by (1) and (2). D

We are now able to give the

Proof of Lemma (4.3). The functional f*->srfSwf{1) o n I(τ) trans-
forms under A by the character τswδ2, so s/swf^(l) = 0. On the
other hand, (4.4) implies

^swfZiX) = aSw + CLws/swφw{\) = asw + ca{τ) - 1.

Now, using the easily checked identity (ca - q~ι)(l - ca) + q~ι =
cac-a, we see that k = Ka9W(τ)9 and this proves (1) in (4.2). We
have also shown that

(*w,sy{τ) = (ca(τ)- l)aw,y(τ) + KaίW(τ)asw,y(τs) if sy >y,

so that we have finished the proof of (4.2).

(4.5) COROLLARY. Let t e Γ 0 0 , y, w e W. Then

(Recall that Riy'1) = {a > 0: y~ιa > 0}.)

Proof. Suppose the result is true for y and let s be a simple reflec-
tion such that ys > y. Then

βeR(y-1)

= Π KβA sy ιw'



IWAHORI INVARIANTS 325

Since R(sy~l) = R(y~ι) U {ya} and A ^ - i J τ ' ) = Kya9W(τ), we
have the result by induction. D

We can view the f* 's as specializations of elements in %? := C(Γ)®
%fw = C(T) ® θ & as follows. Define

Jw = / J &w ,y •*• y G "^

y>w

Let <^τ: CC°°(G) -• J(τ) be the projection given by

= /
Jp
/

Jp
where the measure on P is such that the volume of PπK = I. For
w G ί F , we have ^ ( Γ ^ ) = φτ

w .
We let C(Γ) τ denote the ring of functions in C(Γ) which are holo-

morphic at τ . We have a homomorphism of right %w -modules

given by evaluation of the coefficients at τ . If τ £ Γ° then all aWyy's
belong to C(Γ) τ and

ti=&τ{μτ(fw)).
Since α ^ ^ = 0 if w jt y and aw>w = 1, the ./^ 's form a basis of

the C(7>vector space M*.
We next describe the effect of right multiplication by a standard

generator Ts in terms of this basis. Applying ^ τ o μτ to this relation
tells how Ts acts on the θ-eigenvectors. In the process, we will derive
another recursive formula for the ax^y 's.

First of all, an easy computation shows, for y and w eW, that

Thus, if s is a simple reflection in W, we have

φws \ΐws>w,

tf^u j + (<7 - 1 ) ^ if WS < W.

The following relation in β? is fundamental ([L, (3.9)]). Let s =
sa, aeΣ, and let α e i . Set θa = θh (vσ). Then

^α(Γs + 1) - (Γ, ^

The right-hand side is actually in
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(4.8) LEMMA. Let M be any βf-module. Suppose that f e M
is an eigenvector for θ with character τ, and ea{τ) Φ 1. Then
(π(Ts) + qca(τ) - q)f is a Θ-eigenvector in M with character τs.

Proof. We have

so the fundamental relation gives

π(θa(Ts + \))fτ{sas~x)π{Ts + \)f + qc*{τ){τ{a) - r(sas~l))f

Since ea(τ) Φ 1, this can be rewritten as

π(θa)[π(Ts)f + q(ca(τ) - 1)/] = τ(sas-χ)[π(Ts)f + q(ca(τ) - 1)/],

whence the claim. D

We introduce another bit of notation: For a e Δ+ , w e W, set

a'w \ 1 if wa < 0.

Note that Ja,w(τ) = κ

a w~ι(τW)

(4.9) PROPOSITION. Let w eW, a e Σ, Sj= sa. 77^«

(2) Suppose y eW and ys > y.

^iu ,^5 = : v * Cwajftw ,y

Proof. We show that (1) and (2) hold when both sides are evaluated
at an arbitrary τ e Γ 0 0 . Then we will use (2) to get (1) as stated
above.

Since, for τ e Γ 0 0 , the algebra θ is diagonalizable on I(τ)B with
distinct eigencharacters, it follows from (4.8) that

π(Ts)f* + q(cwa(τ) - \)fτ

w = Cfτ

ws

for some complex number C = CayWfT. We will compute this con-
stant in the process of finding the new recursive formula for ax^y.
We have

= n{Ts)fl+q{cwa{τ) -
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Comparing coefficients leads to the formula

if ys>y,

Jyy if ys<y.

Letting y = ws, we get

q if ws < w,

1 + (qcWa(τ) - l)θw,ws if w s > w.

Suppose ws > w , and let wf = ws. Replacing w by w', so that we
know C α > t l / j T = #, we get

This means C = 1 +<7(CwQ! - ^ " ^ ( l -cwa), and this expression equals
qcwac-wa. Thus, if jw > y, we have

This proves (2).
To prove (1), we must show that

+ (q- \)Ty)
ys>y ys<y

= <?(1 -cwa) Σ a™>yτy + <lJ(*,w X)
yew yew

We compare coefficients of Ty on both sides. If ys > y, we must
show that

,ys = (7(1 ~~ Cwajflw ,y

but this is just (2), which was already shown. If JΛS < y, the equation
to be verified is

θw,ys + aWiy(q - 1) = q{\ -

We rewrite this as

wa)&w ,y "I" qJa,w&ws,y = &w ,ys

Now apply (2), with y replaced by ys, to both terms on the left of
this last expression, and use the relation

We get

~~ CwajGw ,y = q{q ~~ CwaC-wa)&w ,ys
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and

s + Ja,ws&w,ys\-

Now we add the two expressions and observe that Ja,wJa,ws =
-wa This gives (1). D

(4.10) COROLLARY. For w , y eW, we have

\aeR{y)

for certain cz eC(T).

Proof. This follows easily by induction on the length of y, just as
in (4.5). D

One reason for the similarity between the formulae in (4.2)(2) and
(4.9) (2) is that the intertwining operators s/s are also specializations
of multiplication operators in %? \— %? ® θ C(Γ). By this we mean
the following. Consider the left ^-module

where θ is viewed as a subring of C(Γ) τ^0. We have a surjection of
left ^-modules

given by στ{T ® /) = f{τw«)π{T)f^ , for T e XT and / e
Let s = sa be a simple reflection. If ea(τ) Φ 1, the intertwining

map J ^ : I(τ)B -> I{f)B is defined ([K]). If ea(τ) = 1, the normalized

intertwining map srfs = ^-J^ G End^(/(τ)^) is defined.

On the other hand, Luzstig ([L]) has introduced another basis

{%o: w G W} of %? consisting of invertible elements satisfying
= ZΓxy for all x, y eW. It suffices to know that

Set a = -w^a € Σ, and s_= s^. If ett(τ) ^ 1, we have

t, and if έ?β(τ) = 1 then j%<% = j$ξ.

(4.11) PROPOSITION. For all Γ e ^ we have

sfsστ{T) = σ^{TCa^), ifea(τ) φ\, and

fc ifea(τ) = L
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Proof. It is enough to check the equations when T = Te (= the
identity of Jf). In the first case, we need only then verify that

The right-hand side is

which is nothing but the formula for sfs(φl)) f°Γ τ G ^°° ( s e e PΓ0°f
of (4.2)). Both sides of the formula are holomorphic in a neighbor-
hood of ea = 1, so it is valid throughout that domain.

A similar argument applies to stfs in a neighborhood of ea = 1. D

5. Some identities. We make in this section some observations
about the aWyy(τ) 's for particular values of τ e T°. We need some
notation: If / c Σ, then Wj is the subgroup of W generated by the
roots in / and WJ = {w eW: w~λJ c Δ+}.

(4.12) PROPOSITION. (1) Let J c {a e Σ: ea(τ) = q}, x e WJ.
Then

ax,zy(τ) = aXiy{τ) for all z eWj ,y eWJ'.

(2) Let LC{aeΣ:ea(τ) = q-1}, xeWL. Then

ax,zy(τ) = {-q)-^)aχy{τ) for allzeWL,ye WL.

Proof. We prove (2) by induction on the length of z the proof of
(1) is the same. If a € L, and saz > z, then sazy > zy. Also,

Ka,w(τ) = ° S 0

ax,sazy(τ) = (ί-ca(τ))aXiZy(τ) = (-q-ι)aXiZy(τ).

The formula in (2) follows immediately. D

For example, if {a e Σ: ea(τ) = q~1} = Σ, then

wew

spans the Iwahori invariants in the Steinberg representation. If the
above set of roots is instead equal to - Σ , we get that fj = Σwew Ψw
is the spherical vector in I(τ). These seem to be the only cases where
it is possible to compute f£ in closed form for a general group.

We now record an identity between the aWiy 's and the Kazhdan-
Lusztig basis {Cw: w e W} of %?w F° r the complete definition of
this basis, see [K-Ll]. We mention only that Cs = q^(q~ιTs - 1) for
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a simple reflection s, that if ws < w then CWCS = — (g2 +
and that if ws > w, we have

CWCS = CWS+ ] Γ μ(z, w)Cz

zs<z

where μ(z, w) is the coefficient of wiW™)"^)"1) in the polynomial

/z,tι;(M) defined in [K-Ll].

(5.2) PROPOSITION. Let τ e T° and let w = s\ sr be a reduced
expression for w eW, where each Si is the simple reflection for some
α/EΣ. Then

y>wQw

In particular, if τo £ T is such that the Steinberg module is the irre-
ducible quotient of I(TQ) then

CSχ ' " C s r = q~2

y>wQw

Proof. Let s = sa be a simple reflection. As in [Ro], we consider
the element

q~>Cs + ca(τ) = q~ιTs + ca(τ) - 1 e&w

If ws < w we showed in the proof of (4.9) that

from which it follows that

π([Qr + qίcttr(τ)] [CSχ + q'c^

Let σ: %w —> I(τ)B be the linear isomorphism sending Tx to φx for
all s G W. By our remarks prior to (4.8) we have

σ(TyTχ-ή = π(Tx)σ(Ty)

for all x, y € W. Thus

ί Σ aWoW,y(τ)Ty.
y>wQw

The identity follows.
Finally, the Steinberg representation is a quotient of /(τo) for that

τo which satisfies cα(τo) = 0 for all a G Σ. D
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6. Holomorphicity of the fw 's. We will be interested in the poles
of the fl^j'son T. We can get some idea about them from our
first formula in (4.2). If we think of aWyy as a polynomial in an
indeterminant q~~ι, we see that the degree of aWyy is at most l(y) -
l{w). Moreover,

(6.1) PROPOSITION. Let WQ be the long word in W. For any w £
W, the coefficient of qι^~1^ in aw,Wo is

π -̂ ~
α>0 α

Proof. Let m ^ ^ be the coefficient of qι(w)-ιW in α ^ y . Then if
α G Σ, s = 5α and sw <w , sy < y, we have

g α r l
Mϊsw ,y — ~i ~ W-sw ,sy ~ ~] ~ ^ ' Wlw ,sy

On the other hand,

S ' TYlyj v — S ' \ ^ t ϋ .SV ~r
' ' I I ? ' J

1
• fflyj f sy

ea- l

so that

The result now follows by downward induction on w . D

We are now ready for the main result of this section, which says
that (6.1) essentially accounts for all the poles. This determines the
domain of holomorphicity of the fw 's.

(6.2) THEOREM. Let a be a positive root and w eW. If w~ιa < 0
then aWiy is holomorphic on {τ £ T: ea(τ) = 1} for all y eW.

REMARK. The condition means that w is maximal in Wτw with
respect to a certain partial order which is weaker than the Bruhat
order. See §8 and compare with the preliminary result (4.1).

p

Proof. We can write aWyy = -£ where Py, Qy £ C[T] are such

that Py is not divisible by ββ - 1 for any β £ Δ, and Qy is a

constant multiple of ΓU>o(^ ~ l ) m ^ for certain ntβ{y) £ Z. Set
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m = maxy^w ma(y). Since aWiW = 1, we have ma(w) = 0, and
hence m > 0. The theorem will be proved if we can show that m = 0.
To this end, we suppose m = ma(yo) > 0 and we will deduce that Py

vanishes on V = {τ e T: ea(τ) = 1}. We then argue as follows. Let
T be a maximal torus in the Langlands dual of the simply connected
cover of G. We may view C[T] CC[Γ], and from the formulae for
ax,y, it is clear that PyQ e C[7]. Now C[7] is the localization of the
polynomial ring C[eβ: β e Σ] at powers of HβeΣ

 eβ > s o t h e i d e a l i n

C[7] generated by ea-l is prime (we may conjugate by W to assume
a simple, and then (ea - 1) is clearly prime). It follows that ea - 1
divides Py in C[7], hence in C[T], and this is a contradiction.

Let

U = {τeT:Wτc(Sa)}.

Note that £/ Π V is a non-empty open subset of V, so it is enough to
show that Pyo vanishes on U.

Let TQEU . Then W^iu = {w} or {K; , 5αt(;}. In either case, w is

maximal in Wτw . By (4.1), there exists a unique f$ e I(τo)wΠl(τo)
B

τtransforming under θ by τ^ such that f$(w) = 1. On the other
hand, for each g e G, the function

is holomorphic on U and agrees with τ ι-» (eα(τ) - l)mfί(g) on
[ / n r 0 0 . Set

i^(g)= \im{ea{τ)-\)mfl{g).
Jw v

l.-rt0

τGΓ0 0

Then i7^ G /(τo)κ ΓΊ/(τo)5 , and transforms under θ in the same way
as f$ . By the uniqueness part of (4.1), we have F® = cf® for some
constant c. Evaluation at w gives

c = lim(έ?α - l ) m ^ ^ ( τ ) = lim(eβ - l)m(τ) = 0,

since m > 0 by assumption. But F$ is a linear combination of φy° 's
which are linearly independent. It follows that

for all y > w. Taking y = y 0 ? we find that PyQ(?o) = 0? and this
finishes the proof. D
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(6.3) COROLLARY. For g e G, the function τ ι-> fa(g) extends to
a holomorphic function on {τ G T: w~ιA+ C Δ~}. For τ in this
domain, we have fa e I(τ)wnI(τ)B and π(θa)fa = τw(a)fa for all
aeA.

REMARK. Proposition (6.1) says, at least for generic q, that the
fw 's do not extend to a larger domain in T.

7. The lattice of submodules of I(τ), τ regular. Throughout this
section, we assume τ G Γ 0 0 .

Let Sτ = {a G Δ: ea(τ) = q~1} . By [R], the irreducible subquotients
of /(τ) are parametrized by subsets of Sτ. (Our parametrization is
slightly different from that of [R].) If / c Sτ, the corresponding irre-
ducible subquotient πj is characterized by its set of Θ-eigencharacters
being {τw: w eW(J)}, where

W{J) = {weW:SτΓ) w(A') = /}.

Furthermore, πj is the unique irreducible submodule of I{τy) if and
only if y e W{J).

Note that y e W(J) & {a e Sτ: y~ιa < 0} = / .
Let πj be the submodule of I(τ) generated by {fa: w G W(J)} .

(7.1) PROPOSITION. (1) πj is the unique irreducible quotient of ftj .
(2) Every G-ίnvarίant subspace of I(τ) is a sum of %j 's.

Proof. Let
0->U -+πj-+V -+0

be an exact sequence of G modules, with V irreducible and nonzero.
Then V ~ %κ for some K c St. By definition, there is a w e W{J)
such that fa projects nontrivially into V. It follows that τw appears
in VB , so W(J) Π W{K) φ 0 , whence J = K.

For the second assertion, let M be a G-invariant subspace, and
suppose π^ , . . . , π/ is a complete list of the irreducible quotients of
M, up to isomorphism. Considering Θ-eigenvectors as above, we see
that Σ κ , < rπ/. c M. This containment must be an equality since
I(τ) is multiplicity-free. D

Given / c 5 T , we set

Rj=A+n(J\J-(Sτ\J)).

We have y e W{J) if and only if Rj = R(y~ι) n (Sτ U -Sτ). Next,
we define a partial order < on the set of subsets of Sτ by

K < J & Rκ C i?j.
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Note that if ^ C Δ + , then Rj = J for each / and the partial order
< is just containment. In general, the minimal and maximal subsets
are Sτ n Δ~ and Sτ Π Δ+ respectively, since

RSΠA- = 0 a n d RSτnA+ = (Sr Π Δ+) U -{Sτ Π Δ").

A version of the following result, stated in terms of characters in
Jacquet modules, appears in [R, Prop. 2].

(7.2) PROPOSITION. LetJcSt.Ifye W(J), then

_ W{K)

is a basis of (kers/y)
B.

Proof. It is immediate from (4.5) that (ker j^) 5 is spanned by
those f£ 's for which there exists a positive root a e StU -Sτ such
that w~ιa > 0 and y~ιa < 0. In other words, f£ e kerj^, ^
R(y~ι) n OS, u - 5 Ό ^ R(w~ι) n ( ^ u - 5 ^ &w e W{K) for some
jξ:^ / . D

(7.3) THEOREM. Let J and K be two subsets of Sτ. Then

Proof. Suppose J £ K, and take y e W(J). By (7.2), we know
πK c ker j^ . On the other hand, srfy is not identically zero on fcj
hence πj £πκ.

Conversely, suppose J < K, and again choose y e W(J). Since
πj is the irreducible quotient of ftj and is also isomorphic to the
irreducible submodule V of I(τy), we must have s/y(πj) = V. Now
if w G W(ΛT), we have sfy{f^) / 0 so that J^(π^) is nonzero; hence
V c J 4 ( * A : )

 T h i s means π j c π^ + kersrfy . Let x e W{J). The
character τx of θ does not appear in ker ̂ 4 , so it must appear in
UK. But then f* eϋjc . Since fij is generated by such /J 's, we have
ftj Cfiκ. Π

(7.4) COROLLARY. (1) The submodule nBj has a basis {f^: w e
w\κ)9 where RκCRj}

(2) The G-module I{τ) has a filtration
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where

Vt= Σ*j and Vi/Vi^* 0 πj.
\Rj\=i \R,\=i

Putting (7.1) and (7.4) together, we have found a basis of every β?
submodule of I(τ)B.

For example, suppose K c Sτ n Σ. Rogawski has defined a "repre-
sentation on a parabolic cone"

Comparing θ-characters with the aid of (7.2) and (7.4), we find that

8. Completeness of our eigenvectors. We return to the setting of an
arbitrary τ G T, but retain the notation Sτ = {a e A: ea(τ) = q~1}.
There is a canonical decomposition

where /(ti;, τ ) g e n is the largest θ-invariant subspace of I(τ)B on
which the operators π(θa) - τw(a), a G A, are nilpotent. The di-
mension of I(w, τ) g e n is \Wτ\. We also let I(w, τ) c I(w, τ) g e n be
the θ-eigenspace with character τw .

By (6.3), we have f* e I(w, t) for all z G Wτw with the property
that z~ιA+ C Δ " . This condition can be reformulated as follows.

First, define a Bruhat-like partial order <τ on Wτw by declaring
that xw <τ yw if and only if there exists a sequence a\, . . . , ar € Δf
such that 5αr •Λ'αj.x = y, (xti;)"1^! > 0, and (sa -saixw)~l(ai)
> 0 for all / = 1, . . . , r.

The maximal elements in Wτw with respect to this partial order are
precisely those z such that z - 1 Δ+ C Δ" . In particular, such elements
always exist. Moreover, given one such z, we have

where Rτ = {χeWτ: xΔ+ = Δ+} is the "i?-group".
Thus dim/(it;, τ) > | i? τ | . We seek conditions for equality. In other

words, when does {f*: z G Wτw, z - 1 Δ+ C Δ~} span I (w, τ) ?
Let
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Note that Δ'τ is a sub-root system of Δ containing Δ τ . We denote
the Weyl group of Δ'τ by W[.

(8.1) DEFINITION. We say the element τ e T is "good" if there
exists an intermediate group Wτ C WQ C W{ which is generated by
W0Π{sa:aeΣ}.

Note that WQ is the Weyl group of a root system ΔQ with base
Δo n Σ. For example, if Wτ is a standard parabolic subgroup of W,
then τ is good. Any unitary τ is also good. However, the advantage
of this definition is that for every τ e T, there exists w e W such
that τ™ is good.

(8.2) L E M M A . Let τeT.

(1) There exists w eW such that \ea(τw)\ < 1 for all a> 0. For
/ a w, τw is good.

(2) //* τ is goody then τw is also good for all w eW0.

Proof. The assertion (2) is clear. For (1), we observe that there
exists w eW such that

wA+ = {α e Δ: \ea(τ)\ < 1} U (Δ^ n Δ+),

because the right side is a positive system for Δ, whence the first part
of (1). For the second part, suppose a e Δ'τ ΠΔ+ and a = a\ H han

where each α/ belongs to wE. Then 1 = |eQ,i+...+Q,(τ)| = Πkα,( τ)l
But the choice of w insures that |eα.(τ)| < 1 for each /. Hence for
all i, |eα (τ)| = 1 so αz € A'τ. It follows that W{ is generated by the
simple reflections it contains, so τw is good. D

We are now ready to state the main result of this section.

(8.3) THEOREM. (1) // τ is good, then diml(e, τ) = |i? τ | .
(2) If Rτ is trivial and τw is good, then dim/(it;, τ) = |i?τ | = 1.
(3) Suppose y eW and R(y~ι) Π ±Sτ = 0. Then for all w eW,

I{w~ι, τw) - I{yw~ι, τw) and I(w, τ?) ~ I(yw , τ) .
In particular, ifSτ = 0 then dim/(3/, τw) = \Rτ\ for all y, w eW.

Proof The dimension of the space of θ-eigenvectors in I{w, τ)
equals the number of θ-indecomposable summands in I(w , τ), which
in turn is the dimension of Hom θ (/(τ), τw) ~ HomG(/(τ), I(τw)). If
τ is unitary, it follows from a well-known theorem of Harish-Chandra
(see [SI]) that the dimension of this last space is at most | i? τ | . This
finishes the proof in this case.
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We now let τ e T, w e W be such that τw is good. Let Wo, Δo be
as in (8.1), applied to τw . Consider the subgroup Go of G generated
by the roots from ΔQ . Since Go is again a Chevalley group (with Weyl
group Wo), we have an Iwahori-Hecke algebra %o f°Γ Go. We may
identify %?o with the subalgebra of %? generated by the elements TSa

and θ 0 , where θ 0 is the linear span of {θa: a e A n Go}. Let τ 0 be
the restriction of τ to A n Go. Note that τo is unitary.

(8.4) LEMMA. Under either of the hypotheses in (8.3)(1) or (2),
there exists z e Wτw with z~ιA+ c Δ" such that the ^o-module %?ofl
is isomorphic to the induced [principal series) representation ^O®Θ O

 τo

Proof. We have a surjective ^o-homomorphism

such that Ty ® 1 »-• π(Ty)f*. If i?τ is trivial, this map is injective
because the induced module is irreducible (cf. [K]).

Suppose τ is good and w = e. Let z be the long word of Wo. By
(4.9), we have

for some complex numbers cx. Since ί̂ o is generated by simple
reflections, x < y is equivalent to zy < zx. Thus

implying that {π{Ty)f*: y e Wo} is linearly independent. D

We can now finish the proofs of (8.3)(1) and (2). Since %ofl is a

unitary principal series representation of ^ o , it follows that %ofl has
[WQ: JVτw] generalized eigenspaces for ΘQ, each of dimension \Wτ\
and there are exactly |Λτ| θo-indecomposable summands in each
generalized eigenspace. On the other hand, I(w, τ) g e n also has di-
mension \Wτ\. It follows that I(w , τ ) g e n is a generalized eigenspace
for ΘQ in %ofl and hence there are at most |i?τ | indecomposable
summands for θ in I(w, τ ) .

For (3), we may assume y = sa is a simple reflection and ea(τ) Φ 1.
By (4.8) the operator

π(Ts) - q + qca(τ)
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maps the eigenspaces in I(τw) for characters τ and τs into each
other. The possible eigenvalues of Ts are - 1 and q, so this operator
is injective if a £ ±Sτ.

The second isomorphism results from the fact that the normalized
intertwining operator sfs € Hom ( ?(/(τ), /(τ5*)) is an isomorphism if
a φ ±Sτ . (Though well known, this also follows from (4.10).) D

REMARK. One can show, in the notation of the above proof, that

χewτ\w0

(8.6) COROLLARY. Suppose τ is good and Rτ is trivial. Then I{τ)
has a unique irreducible quotient and submodule, and these occur with
multiplicity one.

Proof. Note that τ is good if and only if τwo is good. Since Rτ = 1,
(8.3)(2) implies that I(w, τ) is spanned by f£ , which we know to
be a generator of I(τ)B. It follows that the sum of all submodules
not containing f£ is the unique maximal proper submodule of /(τ),
and the isomorphism class of the quotient has multiplicity one. The
hypotheses are the same for τ~ι, and I(τ~ι) is the contragredient rep-
resentation of I(τ), so /(τ) also has a unique irreducible submodule
with multiplicity one. D

The examples in §9 show that even for SL$, neither hypothesis can
be omitted.

(8.7) COROLLARY (Muller, Kato). /(τ) is irreducible if and only if
St = 0 and Rτ = 1.

Proof. We know the dimension of End^(I(τ)B) is at least | i? τ | ,
from our construction of θ-eigenvectors, so irreducibility implies Rτ

= 1. Suppose *Sτ is non-empty. Conjugating τ if necessary, we may
assume Sτ contains a simple root a. As in §4, let a = -woa e Σ.
Since wosaA+ C Δ~, and Ja,wQsa = cac-a(τ) = 0, (4.8) says that
ftw is an eigenvector for Ts_. It follows that f*w^ is contained
in a submodule induced from a character on nonminimal parabolic
subalgebra of %?. This submodule has dimension equal to the index
of the corresponding parabolic subgroup of W, hence is proper.

Suppose M is a nonzero submodule of I(τ)B . Since St = 0, (4.8)
implies that M contains θ-eigenvectors for every character in the
W-orbit of τ , and the dimensions of all θ-eigenspaces are equal.
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Since there exists w eW such that τw is good, (8.3) implies that
diml(w, τ) = |i?τ | = 1 for all w e W. It follows that M contains
all θ-eigenvectors. In particular, f* eλf, so M = I(τ)B . D

9. Examples. First, suppose τ is unitary. Then /(τ) is completely
reducible. Recall that we have a homomorphism r v-* srfr of the
group Rτ into the invertible elements in End^(/(τ)) = Έnd^(I(τB)),
where srfr is a normalized intertwining operator. This extends to a
ring isomorphism CRτ ~ End^(I(τ)B). Thus we have a decomposi-
tion I(τ)B = 0 £ F^ into isotypic components. Each Vη is a direct

sum of dim η pairwise isomorphic ^-modules. We will describe the
space of θ-eigenvectors in each Vη .

We identify η with its character and let

End(/(τ)*)

be the projection onto Vη. Let w e W, and choose ?̂ i e Wτ™
such that ϋJ^Δx c Δ " . It follows from (4.2) that the linear span
of {f?w : r eRτ} is invariant under Rτ, and in fact affords the regu-
lar representation of Rτ. This implies that

Uη(f?Wι:reRτ)

has dimension (dim 77 ) 2 and is the linear span of the θ-eigenvectors
in Vη which transform by τw .

Here is a pleasing example of this. Let

G = SLn and τ = diag(l, ω, ω 2 , . . . , ωn~x) e PGLn(C),

where ω is a primitive #th root of unity. Then Rτ = Wτ = (σ)
is cyclic of order n. All yj are holomorphic, θ is diagonalizable
on I(τ)B and each Vη is irreducible for %?. Choose a set of coset
representatives Ω for Rτ\W. Then {Tlηf^: w e Ω} is a basis of
Vη consisting of θ-eigenvectors. In particular, dimF^ = (n - 1)!.
Moreover, using (4.2) we see that

n-\ j
Π ^ = Σ T Γ Π K<*>wf£-'w'

i=0 σ aeR(σ')

We should also discuss at least one group thoroughly. Take G =
SL3(F), with Σ = {a, β} . Set s = sa , r = 5^ . The torus Γ may be
viewed as ( C x ) 3 modulo the diagonal action of C x , such that if τ e T
is represented by {x\, xι, X3), then eα(τ) = XiX^"1, ^ ( τ ) = 1
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Then in %? we have

Jsrs = -Isrs >

frs = Trs + (ί- ca)Tsrs, fsr = Tsr + ( l - cβ)Tsrs,

fr = Tr + ( l - ca)Tsr + ( 1 - ca+β)Trs + ( l - C α ) ( l - ca+β)Tsrs,

fs = Ts + ( 1 - cβ)Trs + ( 1 - ca+β)Tsr + ( l - c β ) ( ί - ca+β)Tsrs,

+ [(1 - ca){\ - cβ){\ - ca+β) + q-\\- ca+β)]Tsrs.

It is useful to know that

_ {\-ca){\-cβ)
Ca+β - (1 - ca) + (g-1 - cβ)'

We will find bases of I{w, τ) g e n for each r e Γ , W E ff, and
relate them to the 2? module structure on I(τ)B .

First, if Δτ = 0 , then either Wτ = 1 or τ is W-conjugate to
(1, ω, α>2), and these cases have been covered in (7.3) and above.
If Δτ = Δ then τ = 1, θ acts indecomposably, fs\s is the only θ-
eigenvector and I(l)B is irreducible.

Thus we arrive at the cases where ΔJ consists of a single root. Here
Rτ is trivial.

For each positive root γ, set Uγ = {τ e T: Δ+ c {7}}. The Uγ 's
form an open cover of Γ\{1}. One can verify directly that if τ e Uγ,
and w~ιγ < 0, then fw and fSyW-as7w,wfw belong to
Set hτ

w =&>τμτ(fSγW -aSγWfWfw). Then

We have, for τ e C/y n T°,

and

In fact, this last matrix coefficient is holomoφhic on all of Uγ. To
see this, we take a = hs(w) for some δ e Δ. Let ( , ) denote a
fF-invariant pairing on Δ, and set v = (1/, v)~xv, for 1/ G Δ. We
then have

In all cases except γ = a + β, w = srs, this last is

l
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which becomes
(q~ι - l)(wδ, y)ewδ{τ)

on eγ(τ) = 1. Note that this is never zero, so each I(w, τ), w~ιγ <
0, is spanned by f^ .

If γ = a + β and w = srs, the last matrix coefficient is instead

[(1 - ca)(ί - cβ) + q-ι](l - q-ι)ea+βewδ
\ A - ea+β

which tends to

1 , (a + β)v)ewδ(τ)

on ea+β = 1. This is nonzero unless τ = (1, q±ι, 1), in which case
hlrs = // - ae,srsfsrS

 i s a fourth ©-eigenvector, along with fs

τ

rs, /;τ

r,

To find the ^-invariant submodules, we use the relation from (4.9):

π(Ts)fi, = (1 - cωα(τ))Λ5 + Λ.fnΛS,

(and similarly for r = Sβ), as well as the fact that /J always generates

I{τ)B.
We have six remaining possibilities for reducible I(x)B .
If τ = (1, 1, q±ι) G Uβ , there is one ^-invariant subspace:

Since ^ τ

r 5 is the only Θ-eigenvector outside this subspace, we see that
I{τ)B has length two, and is indecomposable by (8.6).

If τ = (q±ι , 1 , 1 ) , the picture is the same with r and s inter-
changed.

If τ = (1, q±ι, 1), then I{τ)B splits into two irreducibles of di-
mension three:

I(τ)B = {fir > Kr > qhlrs " firs) ® ( Λ , Λr5 > «AJW + ί"7/r,).

(These facts are easiest to check by writing each vector in terms of
φy 's and checking the action of Tr and Ts.)

Note that the indecomposability of /(τ) may change throughout
the W orbit of τ .

For a general group, it is reasonable to make the following

(9.1) Conjecture. For τ e T and w e W, let

i ^ j τ ) = C(T)(fxw:x e Wτ)nC[T]v
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and recall the map

which sends aTy to a(τ)φy. Then
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