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ON THE REPRESENTATION
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SHOHEI TANAKA

This paper gives the explicit representation of the determinant of
the Harish-Chandra C-function of SL(n, R) (n > 3) and some
application.

1. Introduction. Let G be a semisimple Lie group with finite center,
K amaximal compact subgroup of G. Let 6 be the Cartan involution
of G fixing K. Let P be a cuspidal parabolic subgroup and P =
MAN its Langlands decomposition. For ¢ in ﬂd and y in K , We
set T = (y, y) and denote the space of the 7,,-spherical cusp forms
on M by %€y (M, 1)). The Harish-Chandra C-function Cpp(1:v)
has important information in the representation theory.

In the determinant of C5, Pl p(1:v), L. Cohn has proved the following
results.

THEOREM (see [2], p. 129). There exist functions i, ..., ur € a*
and constants p; j, q;,; (i=1,...,r,j=1,..., ;) depending on
T such that

roJ, > s+ )
(22 £

det CP|P(1 v) = const - HH ( ) ,
=1 j=1 ( ) Di,j

where o, ..., o, are reduced a-roots.

He gives a conjecture that the constants p; ; and g; ; are rational
numbers and depending linearly on the highest weight of the irre-
ducible components of 7.

Let G be SL(n,R) and P the minimal parameter subgroup of
G. In the case that » = 2, the Harish-Chandra C-function and
determinant of it are well known explicitly. If n is 3 or 4, in [4]
Eguchi and the author give the explicit formula of the determinant of
Harish-Chandra’s C-function of G, which solves Cohn’s conjecture
affirmatively. The purpose of this paper is to extend the result in [4]
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to G and apply it to the study of the reducibility of np , ,. The
application does not give any new result but it gives another proof of
Speh-Vogan’s reducibility condition ([12], [13]).

The author would like to thank Professor M. Eguchi and Professor
K. Okamoto for their helpful suggestions and encouragement.

2. Notation and preliminaries. Let G be a semisimple Lie group
with finite center and g its Lie algebra. Let [ be a maximal com-
pact subalgebra of g, g = [+ p the corresponding Cartan decompo-
sition and 6 the Cartan involution defining the decomposition. We
introduce an inner product By on g in the standard way such that
By(X,Y)=-B(X,0Y), where B is the Killing form on g. Let q,
be a maximal abelian subgroup of p. We fix an order in the dual space
(ap)* of ap, and put n, =3 8., Where g, denotes the root space
of the ap-root a, and we let v, = On,. Then we have an Iwasawa
decomposition g =[+a, +n, of g. Let m, = Z((ap) the centralizer
of ap in [.

We now let K = Ng([) be the normalizer of [ in G, M, = Zk(ap)
the centralizer of a, in K and M) = Nk(ap) the normalizer of a, in
K. Let Ay, N, and ¥} be the analytic subgroups of G corresponding
to ap, n, and v, respectively.

Any conjugate of m, @ a, ® n, is called a minimal parabolic sub-
algebra, and any Lie subalgebra s that contains a minimal parabolic
subalgebra is called parabolic. Then s has a Langlands decomposi-
tion (relative to §) s=m@a®n. Here m® a = Zy(a), and we can
impose an ordering on the a-roots so that n is built from the positive
a-roots. Let v = On. If ap; is a maximal abelian subspace of mNyp,
then a@® aps is a maximal abelian subspace of p and can be taken as
ap in our theory. When we introduce an ordering on the a,-roots so
that a comes before a,s, then the positive a-roots are the nonzero
restriction to a of the positive ap-roots. The sum of the root spaces
for the positive a,-roots that vanish on a is denoted by nys.

Let My, A, Ay, N, V, Nj be analytic subgroups corresponding
to m, a, ay, n, v, np respectively and put M = MyM, . The group
P = M AN is a parabolic subgroup. The subgroups in our discussion
have the following properties (see e.g. [8]).

(1.1) (1) MA=Zg(a), MAN = Ng(m@ ad®n), MAN is closed,
and (m,a,n)e M x Ax N — man € MAN is a dif-
feomorphism onto,

(2) 6|n is a Cartan involution of m, and K3, = KN M is
the corresponding maximal compact subgroup of M,
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(3) M = K Ay Ny is an Iwasawa decomposition of M,

(4) Ap = AyA and N, = Ny N diffeomorphically,

(5) G=KMAN with the KM, A and N components
unique,

(6) KNMA=KnNnM,

(7)) VNMAN = {1},

(8) the M, group for M equals the M, group for G.

Two parabolic subgroups with the same M A are associated. The
choices for N are in obvious one-to-one correspondence with the Weyl
chambers. Let M’ = Ng(a)M and W(a)=M'/M. If w isin M,
then w acts on characters of A and representations of M by

w-v(a) =vw law), w-a(m) = o(w 'mw).

Then W (a) acts on characters of A and classes of representations
of M. An a-root is said to be reduced if ra is not a root for 0 <
r<1 (reR). Let B be areduced a-root in the dual a*, Hp the
corresponding member of a under the identification set up by By,
and (Hg)! the orthogonal complement of R-Hy in a. We set nlf) =
> es08cp> 0B =0nB) =3 9.5 andlet gl#) be the subalgebra of g
generated by n® and v(®) . Let N® , V(® and G» be the analytic
subgroups corresponding to n(#), v and g(#) respectively.

Let K and M be the set of all equivalence classes of the irreducible
unitary representations of K and M respectively. For each 0 € M
we fix a representation (6, H?) in ¢ and, abusing notation, we use
also o for ¢. For each y in K we fix an element (my, H”) in y.

We recall the generalized principal series representations. Let P =
MAN be a parabolic subgroup and pp = -3, o(dimgs.)a. Let o
bein M and v in ac (the complexification of a*). Let Cp 4,,(G)
be the space of all continuous functions f from G to H® such that

f(xman) = e=+P)1088) g (1)1 f(x) (x €G).

Let hP>9:¥ be the completion of Cp , ,(G) by the norm

1P = /K IfK)I2dk  (f€Cp.o.u(G)).
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The representation zp 5 , is given by

p,0,,(8)f(x) = flg"'x) (g€G).

The compact picture is the restriction of the induced picture to K .
Here the dense subspace C,;(K) is

{f: K — H°|f is continuous and f(km) = a(m)~' f(k)}

and is independent of v. According to the decomposition G =
KMAN of (1.1) each g € G is written as

g =x(g)u(g)(expH(g))n(g),
(x(g) €K, u(g)e M, H(g)€a,n(g)EN).

Then representation is given by

I

P, o, (8)f (k) = e~ HPIHE R f(ic(g7 k).

If y isin K , the projection operator E, defined by
E,=dn)7,*f (f€Ce(K)),

where d(y) and x, denote the dimension and the character of y
respectively. For y in K, we put

HP,O',V — {fEHP’G’V|Eyf:f}-

3. Some lemmas for the intertwining operators. Let P = MAN’
and P’ = M AN’ be associated parabolic subgroups and let ¢ be in
M and v in af. For f in Cp 5 ,(G) we set

AP :P:o:v)f(x)= . Sf(xv)dv

where V = ON and dv is the normalized Haar measure on V' N N’

by
[ emmogy -,
VﬂN

The operator A(P' : P : o : v) is called the intertwining operator.
In this section we shall describe the properties of the intertwining
operators, which are well known results (see e.g. [8]).

The inner product By on g induces an inner product on the dual
a* of a, which we denote by (-, -).
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Let pjs be half the sum of the positive ays-roots. Since the para-
bolic subgroup P = M AN contains the minimal parabolic subgroup
P, = M,A,N, such that a, =a@ay .

For each a-root B, set Cp = max{py(H,)}, where the maximum
is taken over all a,-roots « satisfying o, = f.

LEMMA 3.1. Let P=MAN and P'=MAN be associated parabolic
subgroups and suppose that (Re v, B) > Cg for every a-root B such
that gg CnnNv'. Then the integral A(P':P:o:v)f(x) (x€G, f€
Cp.¢.v(G)) is a convergent. Moreover, if f is a K-finite function
in the compact picture of np , , then the integral has an analytic
continuation to a global meromorphic function in v .

LemMA 3.2. If o isin M and v in at., then we have
AP :P:o:v)np q,,(8) =np , ,(8)AP' :P:0 V)

forall g in G.
For w in M', let R(w)f(x) = f(xw). Then it follows from Lemma
3.2 that

(3.1) Ap(w, o, v)=R(w)A(w 'Pw:P:c:v)
satisfies
np we,w()Ap(w, 0, v)=Ap(w, 0, v)np ¢ ().

LEMMA 3.3. Let P=MAN and P'=MAN’' be associated parabolic
subgroups. Then there exists a scalar-valued function y(P': P :0 :v)
meromorphic in v such that

(3.2) AP:P :0:v)AP :P:0:v)=nP' :P:0:v)l.

Let P=MAN and P' = MAN' be as in Lemma 3.3. A sequence
P, = MAN; (0<i<r) iscalled a string from P to P' if there are
P-positive reduced a-roots B; (1 <i<r) such that

Vi nN=VB or NB)  (1<i<r),
Py=P and P =P.
The string P; from P to P' is called minimal if we have
VianN;=vH  (1<i<r),
Ph=P and P.=P.
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LEMMA 3.4. Suppose that P = M AN and P’ = MAN' are associ-
ated parabolic subgroups and P; = MAN; (0 < i <r) is a minimal
string from P to P', with associated P-positive reduced a-roots {f;}.
Then

(1) the set {B;} is characterized as the set of reduced a-roots o that
are positive for P and negative for P’.

(2) r is characterized as the number of a-roots described in (1).

(3) the intertwining operators satisfy

AP :P:oc:v)=AP:P_1:0:v) - AP : Py:0:v).

__LeEMMA 3.5. Let P = MAN be a parabolic subgroup, let a be in
M and v in of such that Re v is in the open positive Weyl cham-
ber. Then rmp o , has a unique irreducible quotient J(p, o, v) and
J(P,a,v) is isomorphic with the image of the intertwining operator
AP:P:o:v) on HP-9V where P = MAV .

4. The Bf-functions. In this section we shall work only with min-
imal parabolic subgroups and omit the subscripts p. Let P, P’ be
associated minimal parabolic subgroups and let y be in K, ¢ in
M and 4 in Hom,,(V?, H?), where V7 denotes the representation
space of y. For v in af, v in V7, let

Lp(4, v, v)(kan) = e~ @209 (. (k1))

for kK in K,a in A, n in N. Then an easy computation shows that
Lp(A,v,v) isin Hf’”"’ . Furthermore the map

V7’ ® Homp (V7 , H°) — HE-7-7

givenby v® A4 — Lp(A4, v, v) is a bijective K-intertwining operator.
Set
Ay(P':P:o:v)=AP :P:0:v)|yron.

Then we have 4,(P': P:0o:v) isin HomK(H;DI’”’”, H%v).

LEMMA 4.1. (See [4], [15]).) If v isin af and (Rev,a) > 0 for
all P-positive roots o then we have
Ay(P':P:o:v)Lp(A,v,v)=Lp(AoB,(P :P:v),v,v),

where

By(P':P:v)= / 7, (1 (v)) - e~ +PHO gy
VNN’
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Furthermore B,(P': P :v) satisfies the following conditions,
(1) By(P': P:v) is absolutely convergent.
(2) By(P':P:v) isin End(V?") and satisfies

By(P': P:v)my(m)By(P': P:v) (meM).
Now we define B;,’-functions. If ¢ isin M , we denote the o-
component of V7 by V). Let
BJ(P':P:v)=By(P':P:v)|y.

Then BZ(P': P :v) isin End(V7) and from Lemma 3.1 it has an
analytic continuation to a global meromorphic function in v . Partic-
ularly, B,(P: P:v) is called Harish-Chandra’s C-function.

COROLLARY 4.2. If w isin M’, v isin af suchthat (Rev, o) >0
for all P-positive roots o, then we have

Ap(w, 0,v)Lp(A,v,v) = Lp(AoBy(P,w, v)ony,(w)™!, v, wr),

where
B,(P,w,v)=By(w 'Pw:P:v).

Let w bein M' such that
(4.1) wlPw=P and w=ww,_; --wy,

where each w; (1 < i <r) is the reflection with respect to the P-simple
a-root y; and r is the length of w. Then by the relation

(4.2) Ap(w, o0, V)
= Ap(Wy, Wy -+ W0, Wp_y---wyv)---Ap(wy, 0, V)

and Corollary 4.2, we have
(4.3) BJ(P:P:v)
= BI(P, wy, v)ng(w;)B,"’ (P, wy, wyv)
...B;"r—l‘"wl"(p’ Wy, Wy_y - WV)
N (W) (w).

In connection with Lemma 4.1 we have the following proposition.

PRrOPOSITION 4.3. Let w be as above. We set

P, = (wjw;_--wy) ' Pww,_y--wy)  (0<i<r)
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and
Bi=(wi—y--wy)ly;, (1<i<r).
Then P; (0 < i <r) is a minimal string P to P, with associated
reduced P-positive a-roots {f;} and we have
A(P:P:o:v)
=AP :P_1:0:V)APr_y: Pr_y:0:v)---A(Py: Py:0:v).
Proof. By an easy computation, we have
(4.4) ViinN;=VE)  (1<i<r).
We shall prove reduced a-roots f; (1 <i < r) are P-positive. For
an integer i such that 1 <i<r we set
[Ni] = {a|a is a P -positive and P; -positive reduced a-root}
and denote the cardinality of [N;] by »;. Since r is ny, we have
(4.5) ni_y—n;=1 (1<i<r).

From (4.4) and (4.5), B; (1 < i <r) are P-positive. Therefore P;
(1 <i<r) is the minimal string with associated P-positive reduced
a-roots {B;}. The other assertion follows from Lemma 3.4(3).

5. The B,-function in the SL(n, R) case. We shall specialize to
SL(n, R) the notation described in the previous sections. Our nota-
tion is as follows. Let G be in SL(n, R), the group of n-by-n real
matrices g of determinant one. Let

6 = — transpose,

K = SO(n),

a = the vector space of the diagonal matrices of trace 0,
M ={meG|m=diag(m;, ..., my) and m; = +1 (1 <i <n)},
A= expa,

N = {n € G| n is the sum of the identity and strictly upper
triangular matrices},
P=MAN.

Then P is a minimal parabolic subgroup of G. Let ¢; (1 <j < n)
be the linear functional on ac that picks out the jth diagonal entry
and set oj =ej—ej;; (1 <j<n-1). Then simple a-roots are o;
(1 <j < n-1). We denote the simple reflection with respect to «;
by s, .
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LEMMA 5.1. If v isin ag suchthat (Re v, a) > 0 for all P-positive
a-roots «, then for each integer j such that 1 <i<n-—1 we have

B(P. sa, ) = Const - [ fx) D, (£(x) i)~ dix,

where
fx)=+x)2, v =2, ;) (aj, o)
and
j—1
f(x) |
(e \|
| | j—1
f(x)1 I
_____ +_._+_.__._.__
. _ 11 —x|
kj(x) = Ix 1 |
_____ - - — =
| I f(x)
| !
| | "
I ' f(x))

Since the results are obtained by an easy computation, we omit the
proof.

Let E;; (1 <1i,j<n) bethe matrix that is 1 in the i — jth entry
and O elsewhere. Set
h= Z R-Hj,

1<i<[n/2]
where H; = Ey_y 5 — Ey -1 (1 £1<[r/2]) and [f] (¢ €R) is
the integer satisfying [¢] < ¢ < [t]+ 1. Then exp} is a maximal torus
of K.

LEMMA 5.2. Let y be in K, u a weight of V? and v in ag .
If v, is a p-weight vector of V?, then for each integer j such that
0<j<n-1and j=1 (mod2), we have

By(P, Saj , I/)’Uu = Const 'a(l/]‘ s V —1#(11[(j+1)/2]))’l}/‘ ,
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and
By(P, s, v)vu = Const -a(—vj, V—1u(Hi(j+1)/21)) Vs »
where
y(HTCE)
= seC,nelZ
a(s, n) r(s+12—n )r(s+£+n) ( )

Proof. From Lemma 5.1, we have
(5.1) By(P, Sa, v)uy
— Const - /w £~ D (F(0) k() v dx.
We note that
7y (exp tHy(jy1y/2))Vu = e Hywmly,  (teR).
Putting cost = f(x)~!, sint = x/f(x), we obtain that

1+ \/—_lx> ~V=Tu(Hp )
eate T V.

R
Thus (5.1) is equal to

o Ian “/:1—”(H[(j+\>/21)
Const - [ 7770 ()

Therefore, the assertion of the lemma follows from the next proposi-
tion.

dxv,.

ProPosITION 5.3 (¢f. A.3 in [3]). Suppose that s is a complex num-
ber and n an integer. Then we have

00 —v=1x\" —IrE)r(-L
[m(1+x2)—(s+1>/z (__(11 +iz_)llj‘;) dx = YT :
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Let C; (1<1<[(n+1)/2]~1) be the n-by-n matrix defined by

21-2
e e ——
(1 ! | \
1 | x
20-2 o l
11 |
__.._._.+ _____ +,____
| 1
l -1 ! eM .
o1 !
__.__.+ _____ +._.__._..
[ i
! 1
I P
! ! 1)

Then C12 is equal to identity and we have
(5.2) Cp-ky(x)-Cit = kyy_y(x),
whenever 1 <1 <[(n+1)/2]-1 and x €R.

LEMMA 5.4. Suppose that y isin K, 1 a weight of V' and v in
ac. If v, is a p-weight vector of V7, then for each integer j such that
0<j<n-1and j=0 (mod2), we have

7y(Cj2)By(P, Sa,, V)Ty(Cj2) = By(P, Sa,_,, —(Cjp2-v)),
where Cjjy-v isin ag defined by
Cjjp-v(H) = u(cj—/;ch,z) (H € ac).
Proof. By Lemma 5.1 and (5.2), we have
(5.3) 7y(Cj2)By(P, Sa, v)y(Cjp2)

= Const - /oo FO)™H D, (F(0) ey ()"  dx.

Since the bilinear form (-, -) is invariant under the action of Cj),,
we have

(—(Cja-v), aj_1)-{aj_1, ajg) ™
1

=—(v,Cipn-aj_1)-{aj, o) ' =, a;)-{aj, a;)" 1.
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Therefore (5.3) is equal to

— Const - / F0) " CCM g )~k () dx
=By(P, sq, ,» —(Cjpa-v)).
This proves the lemma.
6. M-isotypic components of y. In this section we shall describe

the M-isotypic components of y in K. We fix y in K. Let o bei in
M and denote the g-isotypic component by V7. Then we have

V,=Y_ V7  (direct sum).
oeM

Let P, be the projection map V? — V. From Lemma 4.1(2), for
P, P in #(A) and v in af we have

(6.1) By(P':P:v)P; = P;B,(P': P:v).

Let u be a weight of V7 and let [u] denote the equivalence class
of u, which is defined as follows; u4’ isin [u] if and only if u(H,) is
equal to +u'(H;) for any integer / such that 1 </ <[n/2]. Let j be
the set of the equivalence classes [u¢] and V7-# the u-weight space
of V7. Set

ViE=Po(y7#) and VW= 3 vk
el

LEMMA 6.1. In the above situation we have

ZEDY viW (direct sum).
[n1ey

Proof. Let m be a positive integer and y; (1 < k < m) a weight
of V7 such that p; is not equivalent to uy, if k # k’. Suppose vy,

(1 <k <m) arein V)" which satisfy the following relation,

m
Z Vi) =0
k=1

To prove the lemma, it is enough to show that

U[ﬂk]=0 (13k_<_m)
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We shall prove by induction on m. If m = 1 it is clear. Suppose
the assertion is true for 1 < m < t. We check the case that m = ¢.
Suppose that

t
(6.2) > v =0.
k=1
Then for an integer i such that 1 < i </ we have
t
0= (By(P, wyi_1, V) —a(vyi_1, V-1u1(H;))) (Z U[ﬂk]) ,
k=1
by Lemma 5.2 and (6.1)
t
=Y (a(vai-1, V=T (Hy)) = a(vaioy , V=11 (H;)))vpp, -
k=2

Applying the inductive hypothesis, we have
(a(r2i-1, V=1pp(H;)) = a(vai—1, V=11 (H;)))vp =0
2<k<t).
Since [ux] # [u1] (2 <k <t), we obtain
’U[”k]=0 (ZSkSZ)
From (6.2) we have
v[ﬂk]=0 (lf_k_<_t)
This proves the lemma.
LEMMA 6.2. Suppose v is in af. and j an integer such that 1 <
Jj<n-—1. Then BJ(P, Sa,, V) are diagonalizable and
() if j=1 (mod2), we have
deg(Bg(Pa aj s V))
= Const - H a(I/j s V —-lﬂ(lf[(j+1)/2]))d(y’a’[“]) 5
luley
(2)if j=0 (mod2), we have
det(B] (P, aj, v))

= Const - H a(Vj s V— llu(H[(j+l)/2]))d(y s Gy @ - 14D) ,
luley
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where d(y, o, [1]) is the dimension of the space v gnd Cip-o
(1<j<n-1,j=0 (mod2)) are defined by

Cj/z-a(m)—a(C 2 Cip) (meM).

Proof. The relation (1) follows immediately from Lemma 5.2, Lem-
ma 6.1 and (6.2). The relation (2) follows from Lemma 5.4 and (1).
The first assertion is obvious.

7. The determinant of the C-function. Let w be in W and satisfy
that
wlPw=P and w=ww,_; - w;,

where each w; (1 <i <r) is the reflection with respect to the simple
a-root a; and r is the length of w. Then we have
AP :P:0:v)=R(w)dp(w, o, V).
By the relation
(7'1) AP(w » 0, V) = AP(wra Wy_p-- W10, Wy_q - "U)ll/)
- Ap(wy, wi0o, Wiv)
-Ap(wy, 0, v)
and by Corollary 4.2, we have for 7 in K
(72) BJ’(F 1P V) = B}’(P’ wy, V)n}’(wl)B}’(Ps wy, wly)
"By(P> Wy, Wyr—1 ""le)
- Ty (W) 7y (w) .
For each integer j such that 1 < j <n-1, we define C-o (e M )
as follows:
if j=0 (mod?2),
éj'O' = Cj-(wj_l '--’le'),
if j=1 (mod2),

Cj'0'='wj_1""wl0'.

THEOREM 7.1. Suppose v is in af,y in K and o in M. Then
we have
det(By(P: P:v))
= Const - H IT a2 (v, Bi) - (Bis B) ™" V=Tu(H 1)) w

i=1{uley
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where B; (1 <i<r) areasin Corollary 3.3 and
diy=4d, C~'j,. 0, [u]).
Proof. From (7.2), we have
BI(P:P:v)=BJ(P, w, v)nl(w)B)"’ (P, w2, wv)
e B;U"Imwla(P , Wy, Wp_y++- wly)

mwla(wr)ﬂ;ua('lU) ,

wr—l
. ny
where pJ(w') (w' € W) is my(w')|pr.
Let i be an integer suchthat 0<i<m-1 and~a’ in M such that
V4 #{0}. We extend Bf (w;, -) to an operator Bf (w;, ) of V? by
~ 1 Bal w', * Vy,
13 B, y={ B W) ot
identity  on V7, (" # d')

and define
(7.4) BS(P:P:v)=BI(P,w, v)nl(w)B)"" (P, wy, wv)
e 'E;Ur—]mwla(P: Wr, Wyp—1 "LU]V)

o1y (w,)mO (w) .

Then we have

(7.5) By(P:P:v)ly =Bj(P:P:v)
and
(7.6) det(BS(P: P:v)) =d;- det(BI(P: P:v)),

where d; is a nonzero constant which is independent of v. On the
other hand, from (7.3) and (7.4) we have
(7.7)  det(BI(P: P:v))=d,- det(BI(P, wy, v))

.. -det(B;Ur_lmwla(P, Wy, Wy - 'wly)) s

where d, is a constant such that |d,| = 1. Therefore, from (7.6) and
(7.7) we have

det(Bf(P: P:v))
= Const - det(B) (P, w;, v))
.. .det(Bwr-l"'wla(P, Wy, Wy_q - 'wll/))
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by Lemma 6.2

r
= Const - [T [T a((wies---wiv);,, V=Tu(Hgj 1)) %

i=1[uley

by Proposition 4.3

= Const - H IT « ) (Bis B, V=Tu(Hygs1y2) %m0

i=1{[uley

This proves the theorem.

8. The reducibility of np , , in the nonsingular case. Let v be in
ac such that (Re v, o) # 0 for all P-positive roots. In this section
we shall describe a necessary and sufficient condition for that np 4,
is reducible.

Let B be a reduced P-positive a-root and G# as in §1. In this
case G'#) is isomorphic to SL(2, R) and we can put

MnGH ={e, mg},

where e is the identity matrix. Let ¢ be in M. Since M is abelian
and any element of M is of order two, g(m) (m € M) is a scalar
operator and the scalar is £1. We define integers o such that 0 <
o < 1 by

a(mg) = (=1)%1I,

where I is the identity operator.

LEMMA 8.1. Let ¢ bein M, v in K and U a weight of V?. Let
J be an integer such that 0< j<n—-1 and j=1 (mod2). Suppose
that

(81) V—lﬂ(H[(j+1)/2]) - O'aj =1 (mod2)
Then we have
v = (0.
Proof. Let v be in V¥ By an easy computation, we have
Ty (Mo )V = V=1 p(Hyj11)/2)v
On the other hand, we have

ny(maj)v =0a0.
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Therefore, from (8.1) the element v must be zero. This proves the
lemma.

LEMMA 8.2. Let v be in K, o in M and let Jj be an integer
suchthat 1 < j<n-1and j=1 (mod2). If v isin at such
that (Re v, aj) >0, then the operator Bj (P, Sa, » v) has a nontrivial
kernel if and only if

(cl) v; is an integer and vj+ 1 =0, (mod2).

(c2) there exists a weight u of V' such that

W=Tu(Hyjsy) 2 vi+1 and VW £ {0},

(c3) there exists a weight u' of V7 such that
W=1¢ (Hyjrry)l <vj+1 and VW14 {0},

where v; are as in §5.
Proof. Suppose that Bj(P, Sa, » v) has the nontrivial kernel. By

Lemma 5.4, the conditions (c2), (c3) are obvious and v; is an integral.
Moreover, we have

Therefore, by Lemma 8.1, we have
vi+1l=0, (mod2).

Conversely, suppose that (cl), (c2) and (c3) are satisfied. Then from
Lemma 8.1 and (cl), it follows that any weight u of V7 such that
v 2 £0} satisfies (8.2). Therefore, from Lemma 5.1, (c2) and
(c3) it follows that B (P, Sa, » v) has the nontrivial kernel.

COROLLARY 8.3. Let y bein K, 7 in M and let j be an integer
suchthat 1< j<n-1.1If v isin af, such that (Rev, a;) >0 then
the operator Bj (P, Sa, > v) has the nontrivial kernel if and only if

(c1) v; is an integer and vj+1=0, (mod2),

(c2) there exists a weight u of V'V such that

|V—1,U(I{[(j+1)/2])l > Vj +1 and Vo-y’[”] 7& {O} s
(c3) there exists a weight 1’ of V7 such that
V=TE (Hyyp) <vi+1 and VW1 {0},

where v; (1<j<n-—1) areasin§s.
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Proof. If the integer j is odd, then the assertion is that of Lemma
6.2. Thus we may assume that j is even. By Lemma 5.4, the operator
BX(Pp, Sa, v) has the nontrivial kernel if and only if the operator

Bycf/z“’(p’ Sa,_,» —(Cjj2+v)) does also. Since

(Re(—(Cj/2 V), aj) = (Re v, Clj_l) >0,

C .-
we can apply Lemma 8.2 to the operator B, U(P s Sa, —(Cjj2-v)).
We note that

(8.3) (Cjj2-0)a, =0a,_, and (=(Cj2-v))j=vj_1.

Combining Lemma 8.2 and the relations (8.3) we have the assertion
of the corollary.

LEMMA 8.4. Let v be in af such that (Rev,a) > 0 for all P-
positive roots o and o in M. Then A(P: P : o :v) has the non-
trivial kernel if and only if there exists a reduced P-positive a-root 8
satisfying the following conditions:

(*) 2{v, B)-(B, B)~! is an integer and 2(v, B)-(B, )" +1 =
op, (mod2).

Proof. Let w be in M’ such that
w'Pw=P and w=waw,_, - -w,
where each w; (1 < i < r) is the reflection with respect to the P-
simple a-root ap (1< ki # n—1) and r is the length of w. Let
P; (1 <i<r) be the minimal string P to P, which is described in

Proposition 4.3. From Lemma 4.1 it follows that 4(P: P: ¢ :v) has
the nontrivial kernel if and only if

(c1) there exists  in K such that BJ(P : P :v) has the nontrivial
kernel.

Moreover, the condition (cl) is equivalent to
(c2) there exist y in K and an integer j (1 < j < r) such that
B;ﬂf“mw‘a(P, wj, wj_1---wiv) has the nontrivial kernel.
Since we have
(Wj—r---wyv, aj) ={v, ;) >0,
from Corollary 6.3 the condition (c2) is equivalent to

(c3) there exist y in K, weights of V?u, p’ and an integer j
(1 < j <r) satisfying the following relations:
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(8.4) 2-(v, Bj)-(B), Bj) ' €2,
28 SUNEERZE s S (U
2'<V> ﬁj)'(ﬂj» ﬂj>_1+lzaakj (mOdz):
WV=Tu(H ) 2 1+2-(v, B)- (B, B~
V=TW (Hi ) < 1+2-(v, Bi)- By, Bj) "
From Proposition 8.5, the condition (c3) is equivalent to
(c3’) there exists an integer j (1 < j < r) such that 2-(v, B;)-
(B;, B;)~! is an integer and satisfies the relation (8.4).

Since f; = oy , the assertion of the lemma follows from the condition
(c3).

PROPOSITION 8.5. Let o be in M and k an integer such that 1 <
k<n-1and k=1 (mod2). Then for any positive integer | which
satisfies (6.1), there exists y in K such that

v W £ {0} and W(Hginm) =1,

where T is the highest weight of V7.

Proof. Let y be an element in K such that the highest weight of
V7 is . We put
Then each n; is an integer. By the representation theory of compact
groups, we can choose y in K satisfying the following conditions;

ny =Hn,
nj#0 and n;-g;=0 (1<j<n-1, j=1(mod2)).

Let vz be a zi-weight vector. We shall prove that Py(vgz) # 0. We
can easily see that

P(vp) = ]

1<i<n—1
i=0 (mod 2)

(I + Ga, ’ ny(mal))('uﬁ) s

B =

where I is the identity operator on V7. On the other hand, for
integers i, j suchthat 1<i,j<n-1,1=0 (mod2) and j =1
(mod 2) we have

-n; (I<1<j<i+1),

n;j  otherwise.

V=1m, - w(Hy 1)) = {
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Therefore, Py(vg) # 0. This proves the assertion of the lemma.

THEOREM 8.7. Let v be an element in af such that (Rev, a) #0
for all P-positive roots o and g in M. Then Tp,q,v IS reducible if
and only if there exists a reduced P-positive a-root B satisfying the
following conditions:

(*) 2(v, B)Y-(B, B)~! isanintegerand 2(v, B)-(B, B)~'+1 =0y
(mod 2).

Proof. Suppose that (Rev,a) > 0 for all P-positive a-roots
a. Then by Lemma 3.5 np, , is reducible if and only if
AP : P : o : v) has the nontrivial kernel. Thus in this case, the
assertion of the theorem follows from Lemma 8.4. In general, there
exists w in W(a) such that (Re wr, a) > 0 for all P-positive a-
roots. Since 7p ,, and 7p ye, .y have equivalent composition
series, mp 5 , is reducible if and only if there exists a reduced P-
positive a-root B such that wp satisfies the condition (*). Since the
inner product (-, -) is W/(a)-invariant and o,,3 = g, Theorem 8.6 is
proved.

9. The reducibility of np , , in the singular cases. Let vy be in ag
such that (Re vy, a) > 0 for all P-positive a-roots. Set

Af(P)={ieN|1<i<n—1and (Revp, a;) # 0}.

Then we have
Re V= z bja) j s
jeas (P)
where b; (j € A,’;o (P)) are positive real numbers and w; (1 < j <
n—1) in ag are defined by

(i, wj)=0;; (1<i,j<n-1).

We take
a = Z R'Ha)i: ay) = Z R-Haj,
JEAS (P) JEAT (P)
nlzzgﬂa n2=zgﬂa
pext pez’
Bl,#0 B1,=0

m=mdadn o, M, = Zk(a)(M)o,
Py =M ANy, P, =MA;N,,
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where Xt is the set of P-positive a-roots. Then P, is a parabolic
subgroup of G and P, is a minimal parabolic subgroup of M;. Let
us write vy = v{+1¢ correspondingly, with 1} = v, and 1§ = vgla, .
From the double induction formula (see [8], p. 170), ind,G> oy 1
and indg (indf,f‘ c®vi®1)®yl ®1 are infinitesimally equivalent.

ind%l o® z/(% ® 1 is a tempered unitary representation of A, and we

denote itby §.
Set P = MAN;,N, and let w’, w” be elements in W (a) such that

(,w/)—lp,w/ — P', (,w//)—IP/,w// — 75’
respectively. Suppose that w’ = w;-w!_;---w] and w" = wy -

s—1°
w;_,---w{ are the minimal expressions, respectively. Let w =

w” -w’. Then we have
wlPw="P.
By Lemma 3.4, the length of w is equal to r+s and

o Iz " / ! /
W =W, ~Wy_p Wy WgWy_q - W

is the minimal expression. Let P; (1 < i < s+¢) be the minimal string
P to P with associated reduced P-positive a-roots {f;}, which are
described in Proposition 4.3.

LeEMMA 9.1. Let B; (1 <i<s+1t) be defined as above. We have

ny = Z Yep, -

1<i<s

c>0
Therefore, we have
(9.2) (Revg, i) =0 (1<i<ys),
(9.3) (Revp, Bj)=0 (s+1<j<s+1).

Since the proof is easy, it is left to the reader.
For ¢ in M and y in K, we set

w'e
"

Foyu,={i €N|1<i<sand B~ (P, w}, wj_, - wiv)

has a singularity at v} .

LEMMA 9.2. Set F;,, = Fg 4,y . Then we have

FO',I/O = Lo,y,y,-
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Proof. The assertion of the lemma follows from Lemma 6.2 and
Lemma 8.1.

LEMMA 9.3. Let v be in af, 0 in M and y in K. Then the
function
II -@w.B)*B{(P:P:v)BJ((P):P:v)
i€F,
ﬂ,Vo

has no singularity at vy .

Proof. For any u in W, we define nJ(u) by ny(u)lyyo. By the
relation (4.3), we have

BJ(P:P:v)
= BJ (P, wi, v)py"’ (w})

1 7
. Bws—l“.wla
Y

(P, wh, wl_; - wiy)n?? (w}])
' " !
-BY (P, wy, w'v)my, " 7 (wl)

1 n I
w,_ W, WO

" n 1/
"Byt (P,wt,wt_l"'wlwy)

7 (w2 (w),

) "o
= BZ(P, w', v)n? o (w")BY (P, wi, w'v)m," " (w))

” n !

BTNl il ww'v) i (w] )y (w) -

Thus we have
BJ(P:P:v)
=BJ(P, w, u)n’y”"’(w’)B;”'(P, w!, w’u)n;”‘”ww(w{’
...B;":I—I"'w;IwIU(P, wy', wy_y - wiw'v)ny? (wy)my(w)
-BJ((P"):P:v).
From Lemma 6.2 and Lemma 9.1, the functions

" 1o

B;U‘w (P, w], w'v)

'LU”
-
.-+ B,

" !
P g i ) ) )

and

I w.B)B(P, w',v)

i€F,

o,y
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have no singularity at vy. On the other hand, we have
BI((P"): P :v)=B,(P,w,v)

! !
= BJ (P, wy, v)nj(wy)-- -B;US“‘ w‘U(P, Wy, We_y - w)

Then the function [[,.r (v, B:;)BY ((P") : P : v) also has no singu-

D
larity at . Therefore, from the relation (9.5), the function

Il -, B)*BI(P:P:v)BI((P):P:v)

i€F,

has no singularity at vg.

COROLLARY 9.4. Let v be in ap and o in M . Then the operator

IT -, B)A(P):P:o:v)A(P:P:0:v)

ieF

a,vgy

has no singularity at vy .

LEMMA 9.5. Let v be in o and ¢ in M. Then the kernel of the
operator

lim [[ @, g)A(P):P:o:v)

lEF
i)

is equal to {0}.

Proof. It is enough to show that for any y in K, the kernel of the
operator

is equal to {0} . The assertion of the lemma follows from Lemma 6.2
and (9.6).
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THEOREM 9.6. Let v be in af, g in M . Then we have

Im(hm H (-v, BYA(P:P:q: u)) ~Im(A(P,: P : E: 1)),

V—Y,
I€EF

ag, l/o
(infinitesimally equivalent).
Proof. We have
lim JI -0, B)A®P):P:o:v) lim J] -

0 leFo’ IIO 0 leFo’ IIO
“A(P: P'd'V’)
= lim [[ -, B8)*4(P):P:0:v)A(P:P:0:v)
I/—>V 1€Fa .
23313 I -, 8*n(P:(F):0:0)A(P): P:0:w).
YjeF

g,

Thus, from Lemma 9.5 we have

9.7) Im(yh_r)rl} 11 (u,ﬂ,-)zA(?:P:a:V))

I€F,

7.

~lim ] ~v, B)n(P: (F):0:0)A(P): Pro:w).
zeF

Since we have for any 7 in K

NP :(P):o:v)=BJ(P:(P):v)BJ((P):P:v)
and

BJ(P:(P"):v)=BJ(P':P:v),

we obtain

nP:(P):o:v)=BS(P,w',v)BI(P, v, v).
Thus by Lemma 5.2, we have

B (P -
”lgg,eg nP:(P):0:v)#0,

g,Y

and (9.7) is infinitesimally equivalent to Im(A(P"): P : o : vp). From
the double induction formula we have

Im(A(P"):P:0:v)) ~ImAP:P:&:vh)).
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Therefore, we have

voy,
IEF

Im(lim I1 -w.B)A®P:P:0: 1/)) ~Im(AP:P:&:vl)).

THEOREM 9.7. The representation © P,a,v, is reducible if and only if
the tempered unitary representation & of M is reducible or there exists
a P-positive reduced a-root B satisfying the following conditions:

(*) 2{v, B)-(B, B)~! isanintegerand 2(v, B)-(B, B)"'+1 =0y
(mod2),

(x%) Bla, # 0.

Proof. According to Lemma 3.4, mp,s,y, is reducible if and only
if AP:P:¢: VOI) has the nontrivial kernel or £ is reducible. By
Theorem 9.6 or the double induction formula, A(P: P : ¢ : vg) has
the nontrivial kernel if and only if A((P’) : P : vy) does so. Thus
by similar argument to that in §8, we can prove the assertion of the
theorem.
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