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ON THE REPRESENTATION
OF THE DETERMINANT OF HARISH-CHANDRA'S

C-FUNCΠON OF SL(n, R)

S H O H E I T A N A K A

This paper gives the explicit representation of the determinant of
the Harish-Chandra C-function of SL(n ,1 ) (n > 3) and some
application.

1. Introduction. Let G be a semisimple Lie group with finite center,
K a maximal compact subgroup of G. Let θ be the Cartan involution
of G fixing K. Let P be a cuspidal parabolic^subgroup and P =
MAN its Langlands decomposition. For σ in Mj and γ in K, we
set τ = (γ, γ) and denote the space of the %M-spherical cusp forms
on M by °€M(M, τ M ) . The Harish-Chandra C-function Cp | p (l : i/)
has important information in the representation theory.

In the determinant of Cψ<p( 1 : v), L. Cohn has proved the following

results.

THEOREM (see [2], p. 129). Γ/zere exist functions μ\, . . . , μ r G α*
0«d constants pij, gij (/ = 1, . . . , r, 7 = 1, . . . , 7'/) depending on
τ such that

detC?,f(1 :,) = c o n s t - Π Π ΐ ; : ; '

i, . . . , ar are reduced a-roots.

He gives a conjecture that the constants Pij and qij are rational
numbers and depending linearly on the highest weight of the irre-
ducible components of τ.

Let G be SL(n, R) and P the minimal parameter subgroup of
G. In the case that n = 2, the Harish-Chandra C-function and
determinant of it are well known explicitly. If n is 3 or 4, in [4]
Eguchi and the author give the explicit formula of the determinant of
Harish-Chandra's C-function of G, which solves Cohn's conjecture
affirmatively. The purpose of this paper is to extend the result in [4]
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to G and apply it to the study of the reducibility of %p^,v. The
application does not give any new result but it gives another proof of
Speh-Vogan's reducibility condition ([12], [13]).

The author would like to thank Professor M. Eguchi and Professor
K. Okamoto for their helpful suggestions and encouragement.

2. Notation and preliminaries. Let G be a semisimple Lie group
with finite center and g its Lie algebra. Let I be a maximal com-
pact subalgebra of g, g = I + p the corresponding Cartan decompo-
sition and θ the Cartan involution defining the decomposition. We
introduce an inner product Bθ on g in the standard way such that
BΘ(X9 Y) = -B{X, ΘY), where B is the Killing form on g. Let ap

be a maximal abelian subgroup of p. We fix an order in the dual space
(αp)* of ap , and put np = Σa>oga > where ga denotes the root space
of the cip-root a, and we let dp = θnp. Then we have an Iwasawa
decomposition g = l + ap+np of g. Let nip = Z\{ap) the centralizer
of dp in I.

We now let K = NG(ί) be the normalizer of ί in G, Mp = Zκ(aP)
the centralizer of dp in K and Mp = Nχ(ap) the normalizer of dp in
K. Let Ap, Np and Vp be the analytic subgroups of G corresponding
to dp, tip and υp respectively.

Any conjugate of mp Θ dp Θ np is called a minimal parabolic sub-
algebra, and any Lie subalgebra s that contains a minimal parabolic
subalgebra is called parabolic. Then s has a Langlands decomposi-
tion (relative to θ) s = m θ d θ n . Here m θ o = Z f l(o), and we can
impose an ordering on the d-roots so that n is built from the positive
d-roots. Let d = θn. If α̂ f is a maximal abelian subspace of m Π p,
then d θ dM is a maximal abelian subspace of p and can be taken as
dp in our theory. When we introduce an ordering on the dp-roots so
that d comes before d^, then the positive d-roots are the nonzero
restriction to d of the positive dp-roots. The sum of the root spaces
for the positive dp-roots that vanish on a is denoted by ΠM .

Let Mo, A, AM , N, V, NM be analytic subgroups corresponding
torn, d, CLM 9 tι, t), ΠM respectively and put M = MQMP . The group
P = MAN is a parabolic subgroup. The subgroups in our discussion
have the following properties (see e.g. [8]).

(1.1) (1) MA = ZG(a),MAN = NG(m®a®n),MAN is closed,

and (m,a,n)eMxAxN-+ man e MAN is a dif-

feomorphism onto,

(2) 0|m is a Cartan involution of m, and KM = ^ Π M i s

the corresponding maximal compact subgroup of M,
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(3) M = KMAMNM is an Iwasawa decomposition of M,

(4) Ap = AM A and Np = NMN diffeomorphically,

(5) G = KM AN with the KM, A and N components

unique,

(6) K

(7) V

(8) the Mp group for M equals the Mp group for G.

Two parabolic subgroups with the same MA are associated. The
choices for N are in obvious one-to-one correspondence with the Weyl
chambers. Let M' = Nκ(a)M and W{a) = M'/M. If w is in Mf,
then w acts on characters of 4̂ and representations of M by

w . u(a) = v(w~ιaw), w σ(m) = σ(w~ιmw).

Then ίΓ(α) acts on characters of A and classes of representations
of M. An α-root is said to be reduced if ra is not a root for 0 <
r < 1 (r G R). Let β be a reduced α-root in the dual α*, Hβ the
corresponding member of α under the identification set up by Bβ,
and (Hβ)1 the orthogonal complement of R Hβ in α. We set n^) =
Σ o o ΰcβ > *{β) = θniβ) = Σc<o $cβ and let Q^ be the subalgebra of g
generated by n^) and t>W . Let N^ , F^) and G(^) be the analytic
subgroups corresponding to n^, t)^) and g(^) respectively.

Let K and M be the set of all equivalence classes of the irreducible
unitary representations of K and M respectively. For each σ e M
we fix a representation {σ, Hd) in σ and, abusing notation, we use
also σ for σ. For each y in # we fix an element (πγ, Hγ) in y.

We recall the generalized principal series representations. Let P =
MAN be a parabolic subgroup and pp = j ^ α > 0 ( d i m g Q ) α . Let σ
be in M and v in α£ (the complexification of α*). Let Cpj(T,„((?)
be the space of all continuous functions / from G to 7/σ such that

f{xmaή) = ̂

Let hp>σ>v be the completion of CpiGil/(G) by the norm

= ί \\f(k)\\2dk (f
JK
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The representation π p ? σ ? I / is given by

The compact picture is the restriction of the induced picture to K.
Here the dense subspace Cσ{K) is

{/: K -» Hσ\f is continuous and f(krn) = σ(m)-ιf(k)}

and is independent of v. According to the decomposition G =
KM AN of (1.1) each g e G is written as

g = κ(g)μ(g)(expH(g))n(g),

(κ(g) eK, μ(g) eM, H(g) e α, /i

Then representation is given by

If γ is in K, the projection operator Eγ defined by

*f (feCσ(K)),

where d(γ) and χγ denote the dimension and the character of γ

respectively. For γ in K, we put

3. Some lemmas for the intertwining operators. Let P = MAN'
and P' = MAN1 be associated parabolic subgroups and let σ be in
M and v in α£. For / in Cp^σ^v(G) we set

^(P 7 : P : σ : v)f{x) = f f(xυ)dv,
JVΠN'

where V = ΘN and dv is the normalized Haar measure on V C\N'
by

[ e-
2''Wυ» dυ = I.[

VΓiN'

The operator A(P' : P : σ : v) is called the intertwining operator.
In this section we shall describe the properties of the intertwining
operators, which are well known results (see e.g. [8]).

The inner product Bθ on g induces an inner product on the dual
α* of α, which we denote by ( , •).
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Let pM be half the sum of the positive α^-roots. Since the para-
bolic subgroup P = MAN contains the minimal parabolic subgroup
Pp = MpApNp such that op = α θ α ^ .

For each α-root β , set Cβ = max{pM(Ha)}, where the maximum
is taken over all ap-roots a satisfying a\a = β .

LEMMA 3.1. Let P = MAN and P' = MAN be associated parabolic
subgroups and suppose that (Re v, β) > Cβ for every a-root β such
that ββ cnΠt)'. Then the integral A(P': P : σ : u)f(x) (xeG, fe
CpyayI/(G)) is a convergent. Moreover, if f is a K-finite function
in the compact picture of πp j(T ̂  then the integral has an analytic
continuation to a global meromorphic function in v .

LEMMA 3.2. If σ is in M and v in α^, then we have

A(P' :P:σ: v)πP,σ^{g) = πP^σ^{g)A{Pl :P:σ:v)

for all g in G.
For w in M', let R(w)f(x) = f(xw). Then it follows from Lemma

3.2 that

(3.1) AP(w, σ, v) = R{w)A(w~ιPw : P : σ : v)

satisfies

πp,wσ,wv{ )AP(w , σ,v) = AP(w , σ , ^ )

LEMMA 3.3. L ^ P = MAN and Pf = MAN' be associated parabolic
subgroups. Then there exists a scalar-valued function γ(P' : P : σ : v)
meromorphic in v such that

(3.2) A(P : Pr: σ : v)A{P': P : a : i/) = j/(P ; : P : σ : u)I.

Let P = MAN and P1 = MAN' be as in Lemma 3.3. yl sequence
Pi = MANi (0 < i < r) is called a string from P to P' if there are
P-positive reduced a-roots β\ (1 < / < r) such that

Vt_x n Ni = VW or N(βJ (1 < i < r),

P 0 = P and Pr = Pf.

The string Pi from P to Pr is called minimal if we have

Vi_xnNi = VW (1 <i<r),

P0 = P and Pr = Pf.
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LEMMA 3.4. Suppose that P — MAN and P' = MAN' are associ-
ated parabolic subgroups and Pi = MAN[ (0 < / < f) is a minimal
string from P to Pf, with associated P-positive reduced a-roots {βi}.
Then

(1) the set {βi} is characterized as the set of reduced a-roots a that
are positive for P and negative for Pf.

(2) r is characterized as the number of a-roots described in (1).
(3) the intertwining operators satisfy

A(P' :P:σ:v) = A(Pr: Pr_x : σ : v) A{Pt :P0:σ:v).

LEMMA 3.5. Let P = MAN be a parabolic subgroup, let σ be in
M and v in α£ such that Re v is in the open positive Weyl cham-
ber. Then npi(Ty1y has a unique irreducible quotient J(p, σ, v) and
J(P, σ, v) is ίsomorphic with the image of the intertwining operator
A(P:P:σ:u) on Hp>σ>p, where P = MAV.

4. The By -functions. In this section we shall work only with min-
imal parabolic subgroups and omit the subscripts p. Let P, P1 be
associated minimal parabolic subgroups and let γ be in K, σ in
M and A in Hom^(V γ , Hσ), where Vγ denotes the representation
space of γ. For v in α^, υ in Vγ, let

LP(A,υ , i/)(kan) = e-^^logaU(πγ(k-ι)v)

for /c in .fiΓ, a in yl, n in TV. Then an easy computation shows that
Lp(A, v , v) is in Hy'°'y . Furthermore the map

given by v ® A —> Lp{A, v , v) is a bijective AΓ-intertwining operator.
Set

Ay{P' :P:σ:v) = A(P' :P:σ: i / ) ^ , , .

T h e n w e h a v e Aγ(P': P : σ : u) is i n Homκ(Hf'>σ>v , H ^ σ ^ ) .

LEMMA 4.1. (See [4], [15].) // v is in α^ αnJ (Re v, α) > 0 for
all P-positive roots a then we have

Aγ(Pf :P:σ : u)LP(A, υ , v) = LP(A o Bγ(P' :P:i/)9v9v),

where

By(Pf :P:u)= ί πγ(κ(v))-ιe-{^p^H^ dv .
JvnN'
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Furthermore By{Pf: P : v) satisfies the following conditions,
(1) Bγ(P': P :v) is absolutely convergent.
(2) By(P':P\v) is in End(K?) and satisfies

Bγ(Pf: P : v)πy(m)By(P' :P:v) (meM).

Now we define /^-functions. If a is in M, we denote the σ-
component of Vγ by Vj. Let

Then B°(P' : P : v) is in End(Fσ

7) and from Lemma 3.1 it has an
analytic continuation to a global meromorphic function in v . Partic-
ularly, Bγ(7:P:u) is called Harish-Chandra's C-function.

COROLLARY 4.2. Ifw is in Mf, v is in α£ such that (Re v, a) > 0
for all P-positive roots a, then we have

AP(w, σ, ι/)Lp(A, υ, v) = LP>{AoBy(P, iί;? i/) ©^(l ί ;)" 1 , v

J B ^ P ,W,V) = By(w~ιPw : P : i/).
6^ m Af;

(4.1) w~ιPw =

*>i (1 < * < f) w ίΛ^ reflection with respect to the P-simple
a-root Jι and r is the length of w. Then by the relation

(4.2) Ap(w, σ, v)

= Ap(wr 9 wr__ι - -W\G, wr_\ - -W\v) - - Ap(w\, σ, v)

and Corollary 4.2, we have

(4.3) B°(P:P:v)

= Bf(P, wx, ι/)π*(wi)£™lί7(/>, w 2 ,

In connection with Lemma 4.1 we have the following proposition.

PROPOSITION 4.3. Let w be as above. We set

Pi = (WiWi-ι ---Wι)~~ιP(WiWj-ι '"W\) (0 < / < r)
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and
βi = (wi-ι . wι)-ιγi ( l < / < r ) .

Then Pi (0 < / < r) is a minimal string P to P , with associated
reduced P-positive a-roots {/?/} and we have

A(P :P:σ:u)

= A(Pr: P r _ ! : σ : v)A(Pr_λ : Pr_2:σ :v) A(P{ :P0:σ:v).

Proof. By an easy computation, we have

(4.4) Vi-χ n Ni = VW (1 < i < r).

We shall prove reduced α-roots β\ (1 < / < r) are P-positive. For
an integer i such that 1 < / < r we set

[Ni] = {ot\a is a P-positive and P/ -positive reduced α-root}

and denote the cardinality of [Ni] by /ι, . Since r is no, we have

( 4 . 5 ) /i, - i - / i , - = 1 (1 < / < r ) .

From (4.4) and (4.5), βt (1 < / < r) are P-positive. Therefore P,
(1 < / < r) is the minimal string with associated P-positive reduced
α-roots {βi} . The other assertion follows from Lemma 3.4(3).

5. The Bγ-function in the SL(n, R) case. We shall specialize to
SL(n, R) the notation described in the previous sections. Our nota-
tion is as follows. Let G be in SL(n, R), the group of n-by-n real
matrices g of determinant one. Let

θ = - transpose,

K = SO(n),

α = the vector space of the diagonal matrices of trace 0,

M = {m e G\m = diag(mi, . . . , mn) and w/ = ±1 (1 < i < n)},

A = exp α,

N = {n eG\n is the sum of the identity and strictly upper

triangular matrices},

P = MAN.

Then P is a minimal parabolic subgroup of G. Let e, (1 < j < ή)
be the linear functional on αc that picks out the j th diagonal entry
and set α,• = e}•- ej+ϊ (1 < j < n - 1). Then simple α-roots are α7

( l < 7 < ? t — 1). We denote the simple reflection with respect to α7

by sa{.
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LEMMA 5.1. If v is in α£ such that (Re v, a) > 0 for all P-positive
a-roots a, then for each integer j such that \ <i <n-\ we have

B.,(/>, saj, v) = Const Γ f(xΓ{μJ+ι)πγ(f(x)-ιkj(x))-1 dx,
J—oo

where

and

f{χ) = (1 + i/, = 2<ι/, α , )

7 - 1

(fix)
fix)

/(*)
I

I

I 1 - X I
l c 1 I

__ _i_ *— +

I I f(x)
I I
I I

i ' f{χ))

Since the results are obtained by an easy computation, we omit the
proof.

Let Eij (1 < /, j < ή) be the matrix that is 1 in the / - j th entry
and 0 elsewhere. Set

[/

where Hi = £2/-i,2/ - ^2/,2/-i (1 < / < [n/2]) and [t] (ί e R) is
the integer satisfying [t] < t < [t] + 1. Then exp t) is a maximal torus
of i£.

LEMMA 5.2. Let γ be in K, μ a weight of Vγ and v in α£.
jy υμ is a μ-weight vector of Vy, then for each integer j such that
0 < j < n - 1 and j = 1 (mod 2), w have

Bγ(P, saj, i / ) ^ = Const α(i/y, >/ : :
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and

Bγ(P, sQj, u)υμ = Const -a(-i/j,

Proof. From Lemma 5.1, we have

(5.1) B7{P,sa.,u)vμ

J
/•OO

—- ^"^/Λfϊcί" • T ΐ ~v\ V i / IT ( Ύ ( Ύ 1 ir l V I I 11 /Tr \~

J—oo

We note that

πy(exp tH[U+x)/1])vμ = e

tμ{H^wJvμ (teR).

Putting cos t = /(x)" 1 , sin t = x/f(x), we obtain that

πy(f(x)-ιkjix))-ιvμ =

Thus (5.1) is equal to

Therefore, the assertion of the lemma follows from the next proposi-
tion.

PROPOSITION 5.3 (c/. A.3 in [3]). Suppose that s is a complex num-
ber and n an integer. Then we have
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Let Q (1 < / < [(« + l)/2] -I) be the n-by-n matrix defined by

21-2

21-2

/ I
1

1

I

I _ _ _ I

1 I
- 1 I

1 I
h +

I I
I 1

Then Cf is equal to identity and we have

(5.2) Crk2l{x).C-χ=k2l_x{x),

whenever 1 < / < [(n + l)/2] - 1 and xeR.

LEMMA 5.4. Suppose that γ is in K, μ a weight of Vγ and v in
α£. If vμ is a μ-weight vector of Vγ, then for each integer j such that
0 < j < n - 1 and j = 0 (mod 2), we have

πγ(Cj/2)Bγ(P, sa., u)π7(Cj,2) = Bγ(P,

/̂2 ^ w m α£ defined by

Cj/2. i/(iϊ) = u(C-ι

2HCj/2)

Proof. By Lemma 5.1 and (5.2), we have

(5.3) πγ(CJ/2)B7(P, saj, i/)πy

i OO

= Const / f{x

-(CJ/2 u)),

dx.

Since the bilinear form ( , •) is invariant under the action of
we have

= - < ^ , C//2 α, _i) (α ; , α^)"1 = (u , α7) <α; , α^)" 1 .
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Therefore (5.3) is equal to

/ΌO

= Const / f{x)H{-(cmv^j-^x\{f{x)-lkj.x{x))-xdx
J—oo

= Bγ(P,saj_ι,-(Cj/2 is)).

This proves the lemma.

6. Λf-isotypic components of γ. In this section we shall describe
the Λ/-isotypic components of γ in K. We fix γ in K. Let a be in
M and denote the σ-isotypic component by Vj . Then we have

Vy = Σ vσ (direct sum).

σeM

Let Pσ be the projection map Vγ -+ Vj. From Lemma 4.1(2), for
P9P' in &>(A) and i/ in α^ we have

(6.1) By(P': P : i/)/>σ = P ^ y ( ^ :P:u).

Let // be a weight of Vγ and let [//] denote the equivalence class
of μ, which is defined as follows; μ! is in [μ] if and only if μ(Hj) is
equal to ±μ'{H{) for any integer / such that 1 < / < [n/2]. Let γ be
the set of the equivalence classes [μ] and Vγ>μ the //-weight space
of vy. Set

LEMMA 6.1. /« /Λ̂  αfove situation we have

VJ = Σ VjΛμ] (direct sum).

Proof. Let m be a positive integer and μ^ (1 < k < m) a weight
of F 7 such that μ^ is not equivalent to μ^ , if A: Φ k!. Suppose ^[^j

(1 < A: < m) are in Vl k which satisfy the following relation,

To prove the lemma, it is enough to show that
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We shall prove by induction on m. If m = 1 it is clear. Suppose
the assertion is true for 1 < m < t. We check the case that m = t.
Suppose that

(6-2)

Then for an integer / such that 1 < / < / we have

0 = (Bγ(P, W2i_x, i/) /^ (

by Lemma 5.2 and (6.1)

Applying the inductive hypothesis, we have

(α(i/2ϊ - i , \ί^

(2 < k < t).

Since [μ^] φ[μ\] (2 < A: < t), we obtain

t ^ j = 0 (2 < fc < ί)

From (6.2) we have

V[μk] = 0 (l<k<t).

This proves the lemma.

LEMMA 6.2. Suppose v is in α£ and j an integer such that 1 <
j <n — 1. Then B°(P, sa.9 v) are diagonalizable and

(1) if j = 1 (mod2), w

= Const-

(2) if j ΞΞ 0 (mod 2), we

(i?*(P,a;,i/))

= Const- Π α(^ ? λ/^//(if [ ( y + 1 ) / 2 ] ) ) ^ ' C ί ( ^
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where d(γ, σ, [μ]) is the dimension of the space Vjyίμ^ and Cj/2 * σ
(1 < 7 < n — l ? 7 = 0 ( m o d 2)) are defined by

Cj/2 σ[m) = σ(C-\ . m Cy / 2) (m e M).

Proof. The relation (1) follows immediately from Lemma 5.2, Lem-
ma 6.1 and (6.2). The relation (2) follows from Lemma 5.4 and (1).
The first assertion is obvious.

7. The determinant of the C-function. Let w be in W and satisfy
that

w~ιPw = P and w = wrwr_\ Wχ,

where each Wj (1 < / < r) is the reflection with respect to the simple
α-root α7 and r is the length of w . Then we have

A(P :P:σ:v) = R(w)AP(w , σ , v).

By the relation

(7.1) Λp(tι/, σ5 i/) =Ap(wr, wr_γ-wxσ, wr-ι--wιv)

••-Ap(w2, wλσ, wλv)

Άp(wι9 σ, v)

and by Corollary 4.2, we have for γ in K

(7.2) Bγ(P :P:u) = Bγ{P, t ^ , i/)πy(t/;i)J8y(P, ̂ 2 , ^ i ^ )

"By{P, Wr, Wr_γ-

-πγ(wr)πγ(w).

For each integer j such that 1 < j; < n — 1, we define C σ (
as follows:

if j = 0 (mod2),

if j= 1 (mod2),

THEOREM 7.1. Suppose v is in α^, y in K and σ in M. Then
we have

r

= Const Hl[a(2 (u, βt) • (βt, β^ , V
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where β[ (1 < / < r) are as in Corollary 3.3 and

diΛμ] = d(γ, Cj. σ, [μ]).

Proof. From (7.2), we have

Bf(P :P:v) = B°{P, w{, v)π°{wx)B^° {P, w2,wιu)

where p%{w') {wf e W) is πγ(w')\vy.

Let / be an integer such that 0 < / < n - 1 and σ' in M such that
Vj φ {0}. We extend B°'(Wi, •) to an operator ^'(ti;,-, •) of V? by

_(B°'(wi9.) onVj,
7 I identity on VΎ,, (σ" Φ σ')

and define

(7.4) B^(P:P:u) = B^(P, wlf v)π^{wι)B^ι°'(P,w2, wxv)

Then we have

(7.5) BΪ(P : P : v)\vr = B^P : P : i/)

and

(7.6) det(5^(P : P : Ϊ/)) = </,. det(β^(P : P'.v)),

where d\ is a nonzero constant which is independent of v. On the
other hand, from (7.3) and (7.4) we have

(7.7) dct(B^(P :P:v)) = d2- det(B^(P, wx, v))

• ••del(Bγ"'"'Wiσ(P, wr, wr-x • • wλv)),

where d2 is a constant such that \d2\ = 1. Therefore, from (7.6) and
(7.7) we have

άQ\{Ba

y(P:P:v))

= Const d e t ( ^ ( P , wx, v))
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by Lemma 6.2

r

= Const . Yl Yl α((ty/_i -wϊv)jι, \ί^
i=l[μ]eγ

by Proposition 4.3

= Const Π Π α(2 (i/, A) (A, A)"1, V

This proves the theorem.

8. The reducibility of π/>?σ?z/ in the nonsingular case. Let v be in
α£ such that (Re ̂ , α) Φ 0 for all P-positive roots. In this section
we shall describe a necessary and sufficient condition for that πp j ί T j i /

is reducible.
Let β be a reduced P-positive α-root and G^ as in §1. In this

case GW is isomorphic to SL(2, R) and we can put

where e is the identity matrix. Let σ be in M. Since M is abelian
and any element of M is of order two, σ(m) ( m e M) is a scalar
operator and the scalar is ± 1 . We define integers σβ such that 0 <
Oβ <\ by

σ(m^) = ( - l ) σ ^ / ?

where / is the identity operator.

LEMMA 8.1. Let σ be in M, γ in K and μ a weight of Vγ. Let
j be an integer such that 0 < j < n - 1 and j = 1 (mod 2). Suppose
that

(8.1) V=ϊμ(H[U+ι)/2]) -σQj = l (mod2).

Then we have

Proof. Let v be in F^' ̂ ' . By an easy computation, we have

πγ(maj)v = V^ϊμ(H[U+{)/2])v -

On the other hand, we have

πγ(maj)v = σaυ.
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Therefore, from (8.1) the element υ must be zero. This proves the
lemma.

LEMMA 8.2. Let γ be in K, σ in M and let j be an integer
such that 1 < j < n - 1 and j = 1 (mod 2). If v is in α£ such
that (Re v, aj) > 0, then the operator B°(P, sa.9v) has a nontrivial
kernel if and only if

(cl) Uj is an integer and ι/j• + 1 = σa (mod 2).

(c2) there exists a weight μ of Vγ such that

(c3) there exists a weight μ! of Vγ such that

1 ) / 2 ] ) | ^- + l and Vσ

γΛμ]

where Vj are as in §5.

Proof. Suppose that B°(P, sa., v) has the nontrivial kernel. By
Lemma 5.4, the conditions (c2), (c3) are obvious and Vj is an integral.
Moreover, we have

(8.2) ^ + 1 + ^ ( % + I ) / 2 ] ) Ξ 0 (mod 2).

Therefore, by Lemma 8.1, we have

Vjf + 1 = σα (mod 2).

Conversely, suppose that (cl), (c2) and (c3) are satisfied. Then from
Lemma 8.1 and (cl), it follows that any weight μ of Vγ such that
VjΛμ] φ {0} satisfies (8.2). Therefore, from Lemma 5.1, (c2) and
(c3) it follows that B°(P, sa ,v) has the nontrivial kernel.

COROLLARY 8.3. Let γ be in K, σ in M and let j be an integer
such that 1 < j < n - 1. If v is in α£, such that (Re v, aj) > 0 then
the operator B$(P, sa , v) has the nontrivial kernel if and only if

(cl) Vj is an integer and v}• + 1 = σa (mod2),

(c2) there exists a weight μ of Vγ such that

\>Uj+l and Vj

(c3) there exists a weight μ! of Vγ such that

\V=ϊμ'(Hυ+ι/2))\<Vj+l and Vσ

γ

where Vj (1 < j < n - 1) are as in §5.
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Proof. If the integer j is odd, then the assertion is that of Lemma
6.2. Thus we may assume that j is even. By Lemma 5.4, the operator
B%°(PP, sa ,v) has the nontrivial kernel if and only if the operator

Bγ

j/2'σ(P, sa , -(C//2 v)) does also. Since

< R e ( - ( C , / 2 i/)), aj) = (Re i/, a^χ) > 0 ,

we can apply Lemma 8.2 to the operator Bγ

 Jβ (P, sa_χ, —
We note that

(8.3) (Cj/2 σ)aj = σQjι and (-(C ; / 2 i/))y = I/J-I .

Combining Lemma 8.2 and the relations (8.3) we have the assertion
of the corollary.

LEMMA 8.4. Let v be in α£ such that (Re v, a) > 0 ybr α// P-
positive roots a and σ in M. Then A(P : P : σ : v) has the non-
trivial kernel if and only if there exists a reduced P-positive a-root β
satisfying the following conditions:

(*) 2(i/ ,β) (β, β)~ι is an integer and 2{v, β) (β, β ) - 1 + 1 =
σ^, (mod 2).

Proof. Let iί; be in M' such that

w~ιPw = P and w = wrwr_\ --Wι,

where each ty,- (1 < / < r) is the reflection with respect to the P-
simple α-root ak (\ < ki Φ n - \) and r is the length of w. Let
Pi (1 < * < f) be the minimal string ? to ? , which is described in
Proposition 4.3. From Lemma 4.1 it follows that A(P : P : σ : i/) has
the nontrivial kernel if and only if

(cl) there exists γ in K such that B°{P \P w) has the nontrivial
kernel.

Moreover, the condition (cl) is equivalent to

(c2) there exist γ in K and an integer j (1 < j < r) such that

By j~ι ι (P, Wj, Wj-ι - -W\v) has the nontrivial kernel.

Since we have

from Corollary 6.3 the condition (c2) is equivalent to

(c3) there exist γ in K, weights of Vγμ, μ1 and an integer j
(1 < J < r) satisfying the following relations:
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(8.4) 2.(v9βj).(βJ9βj)-ιeZ9

j).(βj9βj)-ι + l = σakj (mod 2),

ϊμ(Hkj)\>l+2.(v9βj) (βj,βj)-ι

9

From Proposition 8.5, the condition (c3) is equivalent to

(c3;) there exists an integer j (1 < j < r) such that 2 (i/, βj)

(βj, βj)~ι is an integer and satisfies the relation (8.4).

Since βj = ak , the assertion of the lemma follows from the condition

(c3').

PROPOSITION 8.5. Let σ be in M and k an integer such that 1 <
k < n - 1 and k = 1 (mod 2). Then for any positive integer I which
satisfies (6.1), there exists γ in K such that

and

where ~β is the highest weight of Vγ.

Proof. Let γ be an element in K such that the highest weight of
Vy isμ. W e put

πj = y/=ϊμ(H[U+ι)/2]) (l<j<n-l9j=l ( m o d 2 ) ) .

Then each π7 is an integer. By the representation theory of compact

groups, we can choose γ in K satisfying the following conditions;

rtj ^0 and nj- GJ• = 0 ( l < j < n - l , J Ξ I (mod 2)).

Let Vμ be a /I-weight vector. We shall prove that Pσ(Vμ) φ 0 . We
can easily see that

i=0 (mod 2)

where / is the identity operator on Vγ. On the other hand, for
integers /, j such that 1 < /, j < n - 1, I Ξ O (mod 2) and j =\
(mod 2) we have

otherwise.



362 SHOHEITANAKA

Therefore, Pσ{vj) Φ 0. This proves the assertion of the lemma.

THEOREM 8.7. Let v be an element in α£ such that (Re v, a) ψ 0
for all P-positive roots a and σ in M. Then np^iV is reducible if
and only if there exists a reduced P-positive a-root β satisfying the
following conditions:

(*) 2(i/, β) (β, β)-χ isanintegerand2(v,β)-(β,β)-ι + l = σβ

(mod 2).

Proof. Suppose that (Re v, a) > 0 for all P-positive α-roots
a. Then by Lemma 3.5 πp j ( J j I / is reducible if and only if
A(P : P : σ : v) has the nontrivial kernel. Thus in this case, the
assertion of the theorem follows from Lemma 8.4. In general, there
exists w in W(ά) such that (Rewv, a) > 0 for all P-positive α-
roots. Since πp > σ > ι / and πpyW(TίWI/ have equivalent composition
series, πp,OyV is reducible if and only if there exists a reduced P-
positive α-root β such that wβ satisfies the condition (*). Since the
inner product ( , •) is W(α)-invariant and σwβ = Gβ , Theorem 8.6 is
proved.

9. The reductibility of π p j ( J j I / in the singular cases. Let VQ be in α£

such that (Re u0, a) > 0 for all P-positive α-roots. Set

Δ+(P) = {/ e N11 < i < n - 1 and (Re i/0, αf > ^ 0}.

Then we have

Re i/0 =

where δ7 (j e Δ+(P)) are positive real numbers and ω 7 (1 < j <
n - 1) in α£ are defined by

( α , , ω j ) = δ i j ( 1 < Ϊ , 7 < n - 1 ) .

We take

= Σ f l ^ >
^lα/o /?|α=o

2θn 2 θt)2 ) Mx =Zκ{a){Mι)0,

Pγ = MiΛiΛf! , P 2 =
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where Σ + is the set of P-positive α-roots. Then P\ is a parabolic

subgroup of G and PΪ is a minimal parabolic subgroup of M\. Let

us write vo = ^o+^o correspondingly, with UQ = i/o|αi and I/Q = z/o|α2 -

From the double induction formula (see [8], p. 170), indp σ ® u0 ® 1

and indp (indp

 ι σ <g> v§ ® 1) <g> Ϊ/Q1 ® 1 are infinitesimally equivalent.

indp ! σ Θ Z/Q ® 1 is a tempered unitary representation of M\ and we

denote it by ξ.
Set P7 = MAN2Nχ and let tt;7, w" be elements in W(a) such that

respectively. Suppose that w' = w's w's_x- -w[ and w" = w"
wtl_l"'Wf( are the minimal expressions, respectively. Let w =
w" w'. Then we have

w'ιPw =7.

By Lemma 3.4, the length of w is equal to r + 5 and

w = w't wf! i W'Λ wl wί i w[
t ΐ — 1 1 S S—ί 1

is the minimal expression. Let Pf (1 < / < s+t) be the minimal string
P to P with associated reduced P-positive α-roots {/?/}, which are
described in Proposition 4.3.

LEMMA 9.1. Let βt (1 <i <s + t) be defined as above. We have

c>0

Therefore, we have

(9.3) (Rez/o, βj) = 0 ( J + 1 < j < J + ί)

Since the proof is easy, it is left to the reader.

For σ in M and y in K, we set

FσyγjUo = {i e N| 1 < / < s and B^i-r'Wχ(7(P, tί , ^ _

has a singularity at

LEMMA 9.2. Set Fσ v = Fσ
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Proof. The assertion of the lemma follows from Lemma 6.2 and
Lemma 8.1.

LEMMA 9.3. Let v be in α£, o in M and γ in K. Then the
function

-{v,βi)2B°{P:P:v)B°{{P):P:v)

has no singularity at UQ.

Proof. For any u in W, we define πσ

y{u) by πγ(u)\v< . By the

relation (4.3), we have

Bf(P :P:v)

= B°{P,w[,v)p™>(w[)

. . . J ^ ^ V , w>, w's_x ...w[v)πf°{w's)

.Bfσ(P,w'{,w'u)πfw'σ(w'{)

fw>
,wf, u)πfσ{w')Bfσ(P, w'{, w'u)πfwσ(w'{)f{w)B

Thus we have

B°(P :P:v)

= Bf(P, w, u)πfσ(w')Bf\P, w'l, w'v)π?"w"{w'D

• • • B™'~x'"Wχ w (P, w'l, ιυ"_j w"w'v)π™σ(w't')πγ(w)

From Lemma 6.2 and Lemma 9.1, the functions

Bfiw"(P, w'{, w'u)

• • • Bγ'Lι'"w"w'σ(P, w'l, < _ , w'{w'v)πyσ(w't')πγ(w)

and

Π (u, β^iP, w', u)
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have no singularity at VQ . On the other hand, we have

, w[, v)tf

by Lemma 5.2,

/ iσ

(9.6) = By(P, w[, — u)ny(w[) By

 s~ι ι (P, w's, — w's_ι

π™'°{w>s)κ°{w')

Then the function HieF {v, βi)B°((P') : P : v) also has no singu-

larity at VQ . Therefore, from the relation (9.5), the function

-{v,βiγBσ

y{P:P:v)Bσ

γ{{Ύί):P:v)

has no singularity at UQ .

COROLLARY 9.4. Let v be in α£ and σ in M. Then the operator

J | -{v, βi)2A((F) :P:σ: u)A(P : P : σ : i/)

/zα^ no singularity at i/0.

LEMMA 9.5. L ^ ẑ  Z?̂  m α^ αnβ? σ in M. Then the kernel of the
operator

Jim [J <i/,A.μ((F):?:σ:i/)

w ^wα/ ^o {0} .

Proof. It is enough to show that for any γ in K, the kernel of the
operator

lim Π (i/, ^/)2£

is equal to {0} . The assertion of the lemma follows from Lemma 6.2
and (9.6).
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THEOREM 9.6. Let u be in α£, σ in M. Then we have

Imίlim Π (-v,βi)A(F'.P'.σ:v)\~lm{A(Px:Pλ'.ξ:vti),

{infinitesimally equivalent).

Proof. We have

lim J J -{v, βi)A((F) :P:σ:v)\im J J -(u1, βt)

= Jim J J -{v, βi)2A((P') :P:σ: v)A{P :P:σ:v)

= l im J J -lu, βi)2η(P : (F): σ : u)A((F): P : σ : u0).

Thus, from Lemma 9.5 we have

(9.7) Im ί lim JJ -(u, βi)2A(P :P:σ:v)\

^Jim JJ -(v,βi)2η(P:(F) .σ:v)A((F)'.P:σ'.vo).

Since we have for any γ in K

η(P :(F):σ:u) = B°(P : (F): v)B°{(F) :P:v)

a n d

we obtain

η(P : (F):σ:v) = Bf(P, w', v)B°{T' ,w',

Thus by Lemma 5.2, we have

Jim JJ -(u,βi)2η(P:(F):σ:u)ϊ0t

and (9.7) is infinitesimally equivalent to lm(A(P'): P : σ : Z/Q) From
the double induction formula we have

Im(A{(F): P : σ : i/)) -
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Therefore, we have

Imflim J] - > , βt)A(P: P : σ : v) ] - lm(A(P : P : £ : vλ)).

T H E O R E M 9.7. 77ze representation npiffyi/ is reducible if and only if

the tempered unitary representation ξ of M is reducible or there exists

a P-positive reduced a-root β satisfying the following conditions:

(*) 2(v, β) - (β, β)~ι is an integer and 2(v, β)-{β, β)-χ + l=σβ

(mod 2),

(**) fi\a^0.

Proof. According to Lemma 3.4, npi(TyUo is reducible if and only
if A(P : P : ξ : i/J) has the nontrivial kernel or ξ is reducible. By
Theorem 9.6 or the double induction formula, A(P : P : ζ : i/̂ ) has
the nontrivial kernel if and only if A{(PJ) : P : I/Q) does so. Thus
by similar argument to that in §8, we can prove the assertion of the
theorem.
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