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BORSUK-ULAM THEOREM, FIXED POINT INDEX
AND CHAIN APPROXIMATIONS FOR MAPS

WITH MULTIPLICITY

FRITZ VON HAESELER AND GENCHO SKORDEV

In this article we consider m-acyclic maps with respect to a field F
and prove the existence of chain approximation for such maps. Fur-
thermore we provide a unified approach to the Borsuk-Ulam theorem
and the Bourgin-Yang generalization. Finally we prove the existence
of ^-systems for certain m-acyclic maps and define a fixed point
index.

There are essentially two ways to handle multivalued fixed point
or coincidence problems. The first one is based on homological ar-
guments (homological method) and the second on the homotopical
method where the multivalued map is approximated with single val-
ued maps. For a survey of both methods we recommend [3], for single
valued maps we refer to [4, 8].

The homological method also splits in two directions—the consid-
erations on the level of homology groups and chain approximation
techniques. For the first one see [3], the second one—chain approx-
imations of multivalued maps—has roots in the early work of L.
Vietoris (see [1] where the Vietoris-Begle mapping theorem is proved).
The chain approximation technique is used by S. Eilenberg and D.
Montgomery [10] to prove a Lefschetz fixed point theorem for acyclic
maps on compact ANR's. B. O'Neil constructed chain approxima-
tions for a more general mapping class, i.e. (1, ?z)-mappings, and also
proved a Lefschetz fixed point theorem for such mappings on polyhe-
dra [22]. The same technique was the main tool for developing the
fixed point index with all properties (including commutativity and
mod-/7-ρroperty multiplicity is proved in [26]) for multivalued maps
of ANR's ([9, 11, 25]). The main result in [25] may be stated as
follows: If a class of multivalued maps has arbitrarily close chain ap-
proximations, then there is a fixed point index with all properties for
this class.

In this paper we consider so called m-acyclic maps with respect
to a given field F and prove that for such mappings there exist chain
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approximations, ra-maps are also called acyclic carriers and are inves-
tigated in [5, 6]. Therefore from [25], for m-acyclic maps there is also
a fixed point index with all properties. The class of m-acyclic maps
includes F-acyclic maps, (1, «)-maps [22], single valued maps with
values in symmetric products of a space [20], m-maps [16], weighted
maps [7], and others.

We also provide a unified approach to Borsuk-Ulam theorems for
single valued mappings as well as for m-acyclic maps with respect to
ΊJ2 via chain approximations. The Borsuk-Ulam theorem or antipodal
theorem can be stated in several ways; we prefer the following formu-
lation: If / : Sn -±W is a continuous map, then there exists a point
x G Sn such that f{x) = f(-x), see [30]. We prove that this theorem
holds for every multivalued map F: Sn —• Rn which has arbitrarily
close chain approximations with odd Kronecker index. Therefore the
Borsuk-Ulam theorem is true for m-acyclic maps w.r.t. Z2, especially
for (1 ,2/ :+ l)-maps. This is a partial answer to a question of H.
Schirmer in [23]; see also [15] for acyclic maps.

There are various generalizations and applications of Borsuk-Ulam
theorems (cf. [30] for a good review). We shall consider also the
Bourgin-Yang generalization of the Borusk-Ulam theorem, see [12,
30]. If / : Sn+k -* Rπ, k > 0, is a continuous map and B(f) =
{x G Sn+k\f(x) = f(-x)} then dimB(f) > k, or, more generally
g(B(f)) > k, where g(B{f)) is the genus of the space B(f) with
the antipodal involution x ι-» - J C , cf. [17, 30]. The Bourgin-Yang
theorem is proved for acyclic (or admissible maps) in [12].

We shall show that the Bourgin-Yang theorem holds for all multi-
valued maps F: Sn+k —• Rn , k > 0, having arbitrarily closed chain
approximations with odd Kronecker index. Therefore the Bourgin-
Yang theorem is true for m-acyclic maps w.r.t. Z2.

Acknowledgment. We would like to thank Professor H.-O. Peitgen
for valuable discussions and for helpful suggestions.

I. Preliminaries.

1. Multivalued maps with multiplicity. We consider multivalued
maps F: K —• L [2] for which F(x) is a nonempty compact subset
of L for each x G K. Two points (x, , y{) G Γ(JF) = {(JC, y)\x eK,
y G F(x)} c K x L, i = 1, 2, are equivalent {{x\, y{) ~ (x2, 3̂ 2)) if
and only if xx = x2 and y\, y2 are in the same connected component
of F(x). This defines a new set Γ(F) = T(F)/ ~ , with elements
denoted by (x, C(x))\ C(x) denotes also a connected component of
F(x) as a subset of L.
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By A we denote a ring without zero divisors, and by F we denote
a field.

DEFINITION 1. Let F: K -> L beji multivalued map and A a ring
without zero divisors. A map m: Γ(F) —• A is called a multiplicity
function.

DEFINITION 2 ([5, 6]). Let F: K —> L be a multivalued map with
multiplicity-function m: T(F) —• A. F is an m-map (w.r.t. A) if
the following two conditions are satisfied:

1. F(x) consists of finitely many connected components for each
xeK.

2. For all x0 e K with F(x0) = CI(JCO)U uC 5 (z 0 ), s = s(x0), and
disjoint neighbourhoods C// of G( co) there exists a neighbourhood
U of x such that (a) F(C/) c (J/=i fi> and (b) m(jc0, Q(x0)) =

REMARK 1. If AT is connected and x\9 X2GK then

C{xχ) C(x2)

where the summation is taken over the connected components of
F(xi), i — 1, 2 (cf. Lemma 2.3 in [16]). Therefore, for K con-
nected it makes sense to speak of the multiplicity of the m-map F,
m(F) = ΣC(;0 m ( ; c > C(x)), which is well defined.

In all that follows we suppose K to be connected.

DEFINITION 3. Let F: K —• L be an m-map with multiplicity
m(F) = α Φ 0. Then i 7 is called an m-αcyclic map (w.r.t. A) if for
each x e AT the connected components C(x) of F(x) are acyclic
compact sets with respect to Cech homology with coefficients in A,
i.e., Hi(C(x)9A) = 0, / > 0 .

If for each x e K the connected components of F(x) are points
we call F an m-point map (w.r.t. A).

REMARK 2. If F is an m-acyclic map with multiplicity m{F) Φ 0
w.r.t. the field F, then we may consider F as an m-acyclic map with
multiplicity 1 and multiplicity-function

mi(jc, C(x)) = m(x, C{x))m{F)-χ.

We assume that m-acyclic maps (w.r.t. a field F) have multiplicity 1.
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EXAMPLES. 1. Acyclic [10] or single valued maps are m-acyclic
maps, m-point maps resp. with multiplicity-function m(x, C(x)) =
1.

2. (1, «)-maps F [9, 22], with n = 1 (mod 2) are m-acyclic jnaps

w.r.t. Z2 and multiplicity-function m{x, y) = 1 for all x, y e T(F).
3. Let R: C -• C, C = C U (ex)}, be a rational map; then the

map R~~ι{z) = {w e C\R(w) = z} is an m-point map w.r.t. Z and
multiplicity-function m(z, w) = local degree of i? at w. Further-
more, m(R~1) = rf, the degree of R. For polynomials cf. [14].

4. Let X, X be finite polyhedra and π: X —> X a ramified covering
with multiplicity map μ: X —• N, see [28]. The map π " 1 : X —> X is
an m-point map (w.r.t. Z) with multiplicity-function //: Π π " 1 ) ->Z,
μ(x, x) = μ(x).

5. Let X be a G-space and |G| < 00, Gx denotes the stability
subgroup of x , Gx = {g e G\gx = x}. Then the inverse map,
π " 1 , of the projection π: X -+ X/G is an m-point map w.r.t. Z. If
π~ι(y) = {x\, ... , xs}, s = j(y) the multiplicity-function is defined
by

m(y>χi) = \Gχt\

6. Let f: K -+ SPnL, n e N, be a single valued map; S7™L
denotes the n-th symmetric product of L [20]. Then / induces an
m-point map F w.r.t. Z which is defined by

with 7r: SP"L -* L, π(^f! •••jcί') = {^1,... , xs}, E^/ = *• τ h e

multiplicity-function is given by m(x, x{) = k\ and JF has multiplic-
ity n.

On the other hand, if F: K —• L is an m-point map w.r.t. Z with
multiplicity m(F) = n > 0 and m(x, C(x)) > 0 for all x e K, then
this induces a single valued map F: K -»^SP^L defined by F(x) =

X ^ JC/, j = 5(x), and F(x) = {xi, . . . , xs}, ki = m(x,xϊ).
More examples may be found in [5], [21], [28],

2. Block complexes. We shall use a special kind of CW-complexes,
namely block-complexes, cf. [19, p. 134] (it is possible to work with
regular CW-complexes [29, p. 60]).

DEFINITION 4. Let K be a finite simplicial complex with fixed
triangulation τ . Ann-block {w.r.t A) in K is a pair of subcomplexes
(e, e) in τ such that έ c e, dime = n, dime = n-1 and i/y(e, έ) =
Hs(Bn, 2?w) for every s > 0 (1?" denotes the n-dimensional ball and
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Bn its boundary, homology with coefficients in A). The subcomplex
e is called boundary of the block e, and Int(e) = e\e is called interior
of e.

DEFINITION 5. A block dissection (b.d.) τ of the triangulation τ is
a set of blocks (w.r.t. A) of τ such that

(a) every simplex of the triangulation τ is in the interior of just one
block of τ , and

(b) the boundary e of each block e of τ is a union of (dime - 1)-
blocks.

If in the simplicial complex K with given triangulation τ a b.d. τ
is fixed, we call K a block complex with block structure τ , and write
(K,τ).

REMARK 3. The block complex K is a regular CW-complex, [29, p.
60]. The mesh of the block complex (K, τ) is defined as mesh(^, τ)
= max{diam(e)|£ e τ} (we consider the metric in K defined by
barycentric coordinates of the triangulation τ of K).

We shall consider block complexes w.r.t. a ring A or a field F .

DEFINITION 6. Let (K, τ) be a block complex of the simplicial
complex with triangulation τ and let x\ be a block structure of a
subdivision X\ of the triangulation τ . The block structure X\ is
called a subdivision of the block structure τ if every block of τ\ is in
the interior of just one block of τ . In this case we write %\ > τ.

DEFINITION 7. Let τ\ be a b.d. of the triangulation 1\. The se-
quence τ = {ϊi} of block subdivisions of x\ is called a fundamental
sequence of block dissections (f.s.b.d.) with respect to x\ if:

(a) T +i is a subdivision of τz , / > 0, and
(b) lim/^oo mesh(A:, xt) = 0.
Let τ be a b.d. (w.r.t. A) of the triangulation τ . We denote by

C*(K, τ) or C*(τ) the chain complex of the block complex τ with co-
efficients in a given ring A (the chain complex of the block-complexes

For M c K we define *SY(Λf, τ) = [j{e e x\e Π M Φ 0} and
Stk+ι{M, τ) = St(Stk(M, τ), τ) for fceN.

For a given b.d. X\ and its block subdivision xι there is a chain
map (chain subdivision)

* ( τ i , τ 2 ) : G(τ i )-> C*(τ2)

such that (a) δ(τi, X2)(e) = e for every 0-block, and (b) \b(x\, τ2)(e)|
C e for every block e ex, [26]. Here |c| denotes the support of the
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chain c e C*(τ), i.e., the smallest block subcomplex K1 c K of the
block structure τ such that c e C*(K', τ ) .

There exists a chain map (chain approximation of the identity)

such that (a) χ(τ2, τi)(e) is a 0-block in τi for every 0-block e G T2,
and (b) |/(τ2, ti)(e)| c |e| for all blocks e e t2, where |e| is the
support of the block e in τ i , i.e., \e\ is the unique block in τ\ such
that e c Int |e | .

The chain map χ(τ29t\) is not unique but every two such maps
are chain homotopic with a chain homotopy D such that \D{e)\ c |e | ,
[26].

If τ = {I,} is a f.s.b.d. of Γ̂ we shall consider

C,(f) = {0,(1,0, fc(τ/,τI + i ) , ^ ( τ / + 1 , τ I ), z = 0, 1,...}

with fixed chain maps f ( τ/+i, τ/). If the f.s.b.d. is clear from the
context we use the notation b{i, / + 1) and χ{i + 1, /), and for k <
I we denote the chain subdivision map from C*(τ^) in C*(τ/) by

j) = b(l-lj)b(l-2j-l). b(k,k+l) and by
- 1, k) χ(l, / — 1) the chain map from C(τ/) in

3. Chain approximation of upper semicontinuous maps.

DEFINITION 8. Let K and L be finite simplicial complexes with
given block structures τ\, τ2, T2 > τi o n l , and μ on L (w.r.t. A).
Let F : ^ —> L be an upper semicontinuous (u.s.c.) map. The chain
map

φ: C*(τ2) -> C*{μ)

is called a (τi, μ)-chain approximation (or chain approximation) of
the map i 7 (with coefficients in a ring A) if for every block e e %2
there is a point s(e) e K such that (a) e c St(s(e), τ\), and (b)

REMARK 4. 1. For upper semicontinuous maps see [2].
2. In [25], [26] it is proved that every F-acyclic map F has arbitrar-

ily close chain approximations (with coefficients in F, i.e., for every
block structure τ\ and μ there is a block structure T2, τ^ > τ\, and
a chain map φ: C*(τ2) —• C*(μ) which is a (τi, μ)-chain approxima-
tion of F. If τi G τ and μ e μ (τ and /i are f.s.b.d. of AT and L
respectively) then T2 G τ. We say F has a chain approximation with
respect to f and /}.
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3. If F: K —* L is an u.s.c. map which has chain approximations
with respect to a given f.s.b.d. τ and μ of K and L, respectively,
then F has chain approximation with respect to any f.s.b.d. τ\ and
jl\ of K and L, respectively (follows from [26]).

4. In [9, 22] the existence of arbitrary close chain approximations
(with coefficients in F) for (1, n)-maps F: K —• L, n > 2, is proved.

DEFINITION 9. Let 1 , 1 be finite simplicial complexes with tri-
angulations τ , μ, resp., and let τ = {τ/}, μ = {μ/} be f.s.b.d. with
respect to τ and μ, resp. Let i 7 : Â  —• L be an u.s.c. map. The graded
set

where A(F)i is a nonempty set of chain maps from C*(τz ) to C*(μ, )
with coefficients in a ring A is called an approximation system (A-
system) of F with respect to τ and μ if

(a) for every φ e ^(i 7)/ there is fc > /, fc e N, such that 9? =
ψb(i, k) and ^: C*(τ^) —• C*(μ/) is a (τ/, μz)-chain approximation
of F, where b(i, k): C*(τz) —> C*(τ^) is a barycentric subdivision,
and

(b) for every / e N there is iγ > i, *Ί e N, such that for m >
I > h, ψ = φb(l, h) e A{F)l9 ψ = ψb(m, m^e A(F)m with
m\ > l\, the chain maps ~φχ(m\, l\) and χ(m, l)ψ are homotopic
with a chain homotopy D satisfying the following condition: for every
block e e τm there is a point b(e) e K such that e c St(b(e), τ, )
and

REMARK 5. 1. In [26] it is proved that every F-acyclic map has an
A-system (coefficients in the field F) with respect to a given f.s.b.d. τ
and μ with Kronecker index, KIA(F) = 1, i.e., for every φ e A(F),
Klφ = 1. The Kronecker index Klφ of a chain map φ: C*(τ, ) —>
C*(μz) is defined as AΓ/9? = e(p(e)), where ε: Co(μz) —> ̂ 4 is the
augmentation of the chain complex C*(μ/) and ^ is a O-dimensional
block, see [27, p. 167]. Since we consider connected polyhedra the
Kronecker index Klφ of the chain map φ is well defined.

2. In [9] the existence of an A-system A(F) for every (1, w)-map
with KIA(F) — n with coefficients in a fixed field F is proved. In
particular, if one chooses F to be Z 2 and n odd there exists an A-
system of JF with Kronecker index different from zero. We consider
only A-systems with nonzero Kronecker index.

4. Equivariant maps, block complexes and A-systems. Let X be a
compact space. The single valued continuous map γ: X —• X is called
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an involution if γ2(x) = x for all x e X . The involution is called
free if γ(x) φx for all x e X. If y(x) = x for all x eX then y is
called the trivial involution. By a we denote the antipodal involution
on W1, α(x) = - x , x G Rw , or some α-invariant subset of Rn .

Let X/, / = 1, 2, be spaces with involution y, : X7 -» X;, resp.
and F: Xi —• X2 an m-acyclic map (w.r.t. A) and multiplicity func-
tion m: Γ(F) —• A. Suppose that i 7 is (γ\, y2)-equivariant, i.e.,
-FQΊC*)) = yi(F{x)) Then there is an involution y on the graph
Γ(F) = {(x, y) € Xι x X2 |y € F(x)} defined by y(χ,y) = ( y i (x) ,
?2(y)) with (*, y) £ Xi xX 2 . The involution y induces an involution
on Γ(F) which we also denote by y.

DEFINITION 10. Let Xi9 i = 1, 2, be spaces with involution y, ,
respectively. The m-acyclic map i 7 : Xi —• X2 w.r.t. A with multi-
plicity function m: Γ(F) —• A is called (γ\, y^equivariant if

(a) F(yi W ) = y2(F(x)) for all x e Xi, and
(b) m(γ(x, C(x))) = m(x, C(x)) for all (x, C(x)) € Γ ( ^ ) .
Let K be a simplicial complex with a block structure τ\ and invo-

lution y: K-+K. The block structure τ\ is γ-equivariant if y(e) is
a block in τi for every block e e τ\.

REMARK 6. 1. The map F : X\ —• X2 is called (y!, y2)-equivariant
if the condition (a) of Definition 10 is fullfilled. If f is a f.s.b.d. on
K, f is called y-equivariant if each τ, is y-equivariant.

2. Let E w = {(xi, . . . , xm)\Xi ^ κ ) be the m-dimensional Eu-
clidean space. If n > m we consider Rm as a linear subspace of Rn

consisting of the points (xi, . . . , xm, 0, . . . , 0).
Let a e R, α > 0, then D™ denotes the cube

D? = {(xΪ9 ... , xm)\\Xi\<a}.

The inclusion 1: Rm -^ Rn (n> m) induces the inclusion D™ c D% .
The boundary of D%+1 is denoted by S^, or simply Sn , again Sm c
Sn for n > m. The antipodal involution α acts on both spaces D^
and S2.

We consider the following block structure μ(a) (cubic block sub-
division of Rn) which consists of all translations of D% with vectors
Σί=i 2akjei, where e/ denotes the j-th unit vector and fcf € Z. If
α G N then //̂  = μ(\/k), k e N, is a block structure on Z>£, and
S^ is a block subcomplex. *S^ is a block subcomplex in S% , n > m,
also. The block structure on S% induced by μk is denoted by τ^.
Then μ = {μk} and τ = {τ^} are α-equivariant f.s.b.d. of D% and
S%, respectively.
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3. Let K be a block complex with a given f.s.b.d. τ = {τz}. The
simplicial complex KxK has a natural block structure τ/xτz induced
by %i for every / e N:

T | X %i = { * i X ^ 2 k i € T * , 1 = 1 , 2 } .

Then TXT is a f.s.b.d. for KxK. We call f x f the product block
structure. E.g., the block structure μ = {μk} of Z>2 is a product of
block structures on the interval D\ .

4. On the space KxK acts the involution Γ: KxK -+ KxK,
T(x ,y) = {y 9x). The f.s.b.d. τ x τ is Γ-equivariant.

Let J£ 5, 51 = 1, 2, be finite simplicial complexes with involutions
γs and yy-equivariant f.s.b.d. τs = {r?}. Since the block structures
τ\ are yy-equivariant each γs induces a chain map which we denote
also by ys:

γs: C*(τ?) - C*(τf).

A chain map (or homomorphism) φ: C*(τ|) -• C*(τ?) is (yi, 72)-
equivariant if ^7i = 72^ If -KΊ = UΓ2, yj = y2 = 7 we simply say
y-equivariant.

Since the f.s.b.d. τs are y^-equivariant the chain subdivision maps
b(k + 1, k) = ft(τj., τ^+ 1) are y5-equivariant too. In this situation we
choose chain approximations of the identity χ(k+l, k) = χ(τs

k+ι, τs

k)
to be y.y-equivariant also, and we consider C*(τ5) with these chain
maps.

Let F: K\ —• Kι be a (yi, y2)-equivariant u.s.c. map. The A-
system, A{F), with respect to a y^-equivariant f.s.b.d. τs, s = 1,2,
is called (γ\, y2)-equivariant if every chain map φ G A{F) is (yi, γι)-
equivariant. Again, if K\ = K2, yi = y2 = 7 the A-system -4(F) is
called y-equivariant.

DEFINITION 11 ([29, p. 60]). Let (KΪ9 τx) and (K2, τ2) be block
complexes. A carrier from (JCΊ, τi) to (K2, %i) is a function ^
which assigns to each block e e τi a block subcomplex ^(e) in τ2
such that for β\ e e, ^{e{) c ff(e). An ^-acyclic (resp. acyclic)
carrier & satisfies H^{e)) = 0 for 0 < / < n (resp. for all /) and
every block e eτ\ (coefficients in A).

If ji is an involution on Kt such that the block structure τ; is
y/-equivariant, / = 1,2. Then the carrier Ψ is called (γ\, 72)-
equivariant (or equivariant) if W(γ\(e)) = yi&ie)) for all blocks
e G τ\. A chain map φ: C*(τi) -> C*(τ2) is carried by the carrier
W if p(e) is a chain in the complex &(e) for every block e £ %\.
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A map / : K\ —• K2 is carried by the carrier W if f{e) c &{?) for
every block e G τ\.

REMARK 7. 1. The block structure τ = {τ^} on S% is α-equivariant
and the block complex S% is α-free cell complex, i.e., a(e) Π e = 0
for every e G τ^

2. For later use we note the following. The covering W\ = {A\, . . . ,
4̂AT} of a given space is finer than the covering w2 = {Bγ, . . . , BM}

of the same space if every At is contained in some Bj. If the covering
W\ is finer than the covering w2 we denote this by W\ > wι.

II. Borsuk, Borsuk-Ulam and Bourgin-Yang theorems for chain map-
pings. In this section we state some lemmata which will be important
for the following. In this section we consider chains, A-systems, and
homology with Z 2 coefficients.

For a block complex (AT, τ) we denote by ΛΓW the /-dimensional
skeleton of K w.r.t. τ .

LEMMA 1. Let Sn, n > 1, be the n-dimensional sphere with the

a-equivariant block structure τk. Then there exists an a-equivariant

chain map

β:

with Kronecker index Klβ = 1 (mod 2) and such that
(a) the chain map β with values in C*{Sn, τ^) is chain homotopic

to the identity inclusion (Sn)n~ι c Sn with an a-equivariant chain
homotopy D, and

(b)for each block e in Sn~ι one has β(e) = e and D(e) = 0.

Proof. Consider the carrier g7: ((S 7 1)^" 1), τk) -> (Sn~ι, τk), de-
fined by W(e) = Sn-χ for every block e G (S 7 1 )^" 1 ), cf. Definition
1.11. Ψ isan α-equivariant («-2)-acycliccarrier. Since ((5 Λ ) Π " 1 , τk)
is a free α-complex, Lemma 2.2 in [29] implies the existence of an
α-equivariant extension β of the identity chain map on Sn~ι over
(£«)(«-!). Furthermore, β considered as a chain map with values
in C*(Sn, τk) and the chain map induced by the identity inclusion of
(£«)(«-1) c Sn are chain homotopic with equivariant chain homotopy
D satisfying (b). D

REMARK 1. Lemma 2.2 in [29] is proved for an acyclic carrier, but
for our purposes it suffices to assume that ^ is an (n - 2)-acyclic
carrier.
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The following lemma shows that each α-equivariant chain map
K: C*(Sn , Tfc) —• C*(Sn , τk) is homotopic to an α-equivariant map
K , which is a chain map on (Sn~ι, τk).

LEMMA 2. Let K: C*(Sn, τ^) -> C*{Sn

 9 τk) be an a-equivarianί
chain map. Then there exists an a-equivariant chain map K:
C*(Sn, τ*) -> C*(S r t , Tit) swc/z ίδαί

(a) /c α«d JC are chain homotopic, and
(b) for all blocks e e Sn~x, κ(e) is a chain in Sn~ι.

Proof. Let β = {/?/}, D = {/)/}, / = 1, 2, be as in Lemma 1 and
let e be an /-dimensional block in Sn with de = Σj eU) Define

βi(κ(e)) foreeS"-1,

κ(e) + Di^(κ(eU))) ifenS»~ι = e(j),

κ(e) otherwise.

Then κ = {Ki\i = 09...9n} is an α-equivariant chain map satisfying
(b) and KIκ=KIκ= 1 (mod 2). Consider the carrier g7: (S w , τk) -^
(5" , Tfc), ^(^) = iS71 for every block e eτ^. It is an (n - l)-acyclic
carrier. The chain maps K and K are carried by ^ (cf. Definition
1.11). Since τk is an α-free complex and the Kronecker indices of
these chain maps are equal, KIκ = KIκ = 1 (mod 2), using Remark
1 following Lemma 2.2 in [29], we conclude that the chain maps K
and K are homotopic. α

LEMMA 3. Let κ\ C*(Sn, τk) —• C*(5Λ

? τk) be an a-equivariant
chain map with Kronecker index KIκ = 1 (mod 2). Then degjc = 1
(mod 2), where deg denotes the degree of K .

Proof. Due to Lemma 2 we may assume that κ\ C*(Sn~ι, τk) —>
^ ( A S " " 1 , Tfc). Because chain homotopy does not change either the
Kronecker index or the degree this is no restriction. The proof pro-
ceeds by induction on n. We start with n = 1.

Due to our assumption K: C*(S°, τk) -+ C*(S°, τk) and since KIκ
= 1 (mod 2) we obtain JC(1) = 1 or κr(l) = ϊ , 5° = {1,T}. Let
D+ = {(xux2) e Sι\x2 > 0}, D- = {(xΪ9x2) e Sι\x2 < 0} be
subcomplexes of Sι which we consider as 1-dimensional chains in τk ,
such that dD+ = T+ 1 = dD- (coefficients in Z 2 ) . The chain κ(D+)
maybe written as κ(D+) = uD++vD- and since ιc( 1) = 1 or 1, then
dκ(D+) = (u + υ ) ( l + Ί ) = 1 + T ( m o d 2 ) . N o w , (u + v)=l ( m o d 2)
yields
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degκ(Z)+ + Z)_) = κ(D+ + J9_) = D+ + Z>_ (mod 2),

therefore deg/c = 1 (mod 2).
Now let us assume that the assumption is true up to n - 1. Then

κ\Sn-\\ C*{Sn~ι, tfc) —• C*(Sn~ι, Tfc) is α-equivariant and deg(κ;|5π-i)
= 1 (mod 2). Let

D+ = {(*!, . . . , * n + 1 ) | * n + 1 > 0}, Z>_ = { fo, . . . , xn+ι)\xn+ι < 0}

be considered as chains in Sn. If we consider Sn~ι as an (n - 1)-
dimensional chain in τ^ we obtain the relation dD+ = dD- = Sn~ι

(w.r.t. Z2 coefficients).
Now we calculate κ(D+ + Z>_) using κ(D+) = uD+ + vD-,

deg/cl^-1^- 1) = κ(0Z)+) = (M + VXIS11-1) = 5"- 1 and w + υ =
deg(κ:|^-i) = (mod 2). Then

degκ(£>+ + D_) = κ(Z)+ + Z)_) = (u + v){D+ + /)-) = D+ + D-.

Therefore deg/c = 1 (mod 2). D

An immediate consequence is

COROLLARY 4 (Borsuk theorem for chain maps). Let κ\ C^{SnT]c)
—• C*(iSm

? Tjt) έe an a-equivariant chain map with Kronecker index
KIK = 1 (mod 2). Then m>n.

LEMMA 5 (Borsuk-Ulam theorem for chain maps). Let K: C*(Sn, τ)
—> C*(JD^ , //̂ ) (c/ Remark 1.6.2) ύe α c/zαm map w/ίΛ Kronecker in-
dex KIK = 1 (mod 2). 77ze/? ίΛ r̂̂  βx/j'ϋ a block e € τ swc/z ί/zaί
|/c(^)|Π|/c(a(^))| ^ 0 .

Proof. Assume that

(1) \κ{e)\ Π \κ(a(e))\ = 0 for all blocks e e τ.

Consider the map Δ: S" -> 571 x *Srt defined by Δ(x) = (x, -x) and
the block structure on Sn x 5 Π given by τ x τ . The map Δ is (α, T)
equivariant (cf. 1.4, and Remark 1.6.2). The carrier ^ : (Sn, τ) —•
{Sn x 5 ^ τ x τ), with W(e) = e x α(e) is (α, Γ)-invariant and
acyclic (Δ is carried by ^ ) . Since (Sn, τ) is an α-free block com-
plex, Lemma 2.2 in [29] implies the existence of an (a, Γ)-equivariant
chain map Δ#: C*(S^, τ) -• C*(Sn x Sn, τ x τ) which is carried by
the carrier <£?, i.e., Δ#(e) is a chain in e x a(e) for all blocks in τ
and # / Δ # = 1 (mod 2).
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Consider the chain map (K ® κ)Δ#: C*(τ) —• C*(τ x τ) . Since
| c e x α(e) for every block e e τ then

\(κ®κ)A#(e)\c\κ(e)\x\κ(a(e))\

and from (1) we obtain

(2) \(κ ® /c)Δ#(e)| Π |(κ ® ιc)Δ#(α(β))| = 0

for every block e e τ.
The chain map (JC (8) κ;)Δ# is (α, Γ)-equivariant and from (2) it

follows that

\(κΘκ)A#(e)\πM = 0

for every block £ e τ and M = {(x, y) e D£ x D"|JC = y}. Then
there exists a block subdivision μ/ (/ > fc) of the block structure
μk (cf. Definition 1.6) such that \(κ ® κ:)Δ#(^)| n Af' = 0 for every
block e in T, and Af; = St(M, μ\ x ///). Let N be the closure of
D% xD^\Mr. Then TV is a subcomplex in Z>f xD% with respect to the
block structure μixμi and iV is Γ-equivariant. Since \(κ ® κ)Δ#(e)\
is in iV then b{μjc x/ i^/ i/x μi){κ ® κ:)Δ#(^) is a chain in iV and
therefore b{μ^ x //̂  , /// x μι)(κ<g)κ)A# is a chain map from C*(5" , τ)
to C*(N, μι x ///) which is (α, Γ)-equivariant (cf. 1.2 for the chain
subdivision b).

Let d: N-+Sn~ι be defined by d(u,υ) = (u-v)/\\u-υ\\. Obvi-

ously d is (α, Γ)-equivariant. Let ί/#: C*(iV, μixμi) —• C * ^ " " 1 , τ)
be the (α, Γ)-equivariant chain map induced by d with Kronecker
index KId# = 1 (mod 2) for / sufficiently large.

Finally, consider the chain map

Ξ = d#b(μk xμk,μιx μi){κ ® κ)Ά: C*(Sn , τ) - C*(Sn~l, τ ) ,

which is α-equivariant with Kronecker index KIΞ = 1 (mod 2). This
contradicts Corollary 4. α

Let (AT, i/) be a block complex with y-equivariant block structure
v and y a free involution on K.

DEFINITION 6. The chain genus of a y-free block complex (K, v)
is defined by

there exists a (γ, α)-equivariant

( κ v i , chain map η: C*(K, v) -»• C*{Sι, τk)
Sc{ ' γ) ^ with Klη = 1 (mod 2) and |//(e)| n

7(α(e))| = 0 for all e e v.
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REMARK 2. The genus g(K9 y) of a free involution y on K is defined
as

t τ . N . (, there is a (y, α)-equivariant, continuous, Ί
g(K, γ) = mm < I . t t

 v ' ' r ^ o/ r
6 v n \ single valued map f:K-+Sι\ J

it is easy to see that #(^> y) > gc(K, y). Furthermore, recall that
dim A: > # ( # , y), cf. [30]. Therefore dimA: > gc(K, y).

COROLLARY 7. Let K: C*(Sn+k, τ/) -> C*(Z>W, ///), k > 0, be a
chain map with Kronecker index KIκ = 1 (mod 2). Γ/Ẑ AZ gc(B(κ), y)
> fc, with B{κ) = \J{e G τk\ \κ{e)\ n |ιc(α(^))| ^ 0 } .

Proof. The case fc = 0 is an immediate consequence of Lemma
5. We assume k > 1 and use the idea in [12, 2.6]. Assume that
gc(B(κ), a) = m < k. Then we consider the chain map η:
C*(B(κ), T/) —> C*(*Sm, τ/) (cf. Definition 6) as a chain map in
C*(Z>m+1, /i/) (S m is a boundary of Z ) m + 1 ) . Let g7 be the carrier
from £(κ;) in D w + 1 defined by &(e) = Dm+X for all blocks. This is
an α-equivariant acyclic carrier. Since Klη = 1 (mod 2) there is an
(α-equivariant) chain map

ή: C*(Sn+k, τ / ) -+ C*(D W + 1 , ///)

with Kronecker index AT/// = 1 (mod 2) and which is an extension of
the chain map η (Lemma 2.2, [29]).

Consider the carrier g? from (Sn+k, τt) in (S"+* x Sn+k, τz x τ7)
defined by ^Ί (e) = e x ^. This is an (a, α)-equivariant acyclic carrier,
with a(x, y) = (α(jc), α(y)) for all (JC , y) G ί 7 1^ xS" 1 ^ . Lemma 2.2
in [29] guarantees the existence of an (α, α)-equivariant chain map
Δ#: C(τ/) -> C*(τ/ x T/) with KIA# = 1 (mod 2) and |Δ#(*)| c &ι(e)
for all blocks e G τ/.

Since C*(Z>rt, ///) ® C*(2)m + 1, ///) » C*(DW x D m + 1 , ^ x μ{) =
C*(Z)m + w + 1, /i/) we consider the chain map Ξ = (K ® ή)A# as a chain
map

with Kronecker index KIΞ = 1 (mod 2). Since m < k, then
, ///) C (Z)w + / :, ///) and we consider Ξ as a chain map in

Then from Lemma 5 there is a block e G τ/ such that

| n |(κ ® ̂ )Δ#(α(^))| ^ 0
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and therefore also

(\κ(e)\ x \ή(e)\)Π(\κ(a(e))\ x \ή(a(e))\) φ 0 ,

i.e., \κ(e)\Π\κ(a(e))\ Φ 0 and \ή(e)\n\ή(a(e))\ Φ 0 . The first implies
that e G B(κ), therefore ή(e) = η(e) and ή(a(e)) = η(oc(e)). This is
impossible since \η(e)\ Π |*/(α(e))| = 0 , cf. Definition 6. D

COROLLARY 8 (Bourgin-Yang theorem for chain maps). Let K:

C*(Sn+k, τ/) -• C*(Dn ,/i/), k > 0, be a chain map with Kronecker

index KIκ = 1 (mod 2), then dim 2?(κ;) > k.

The proof is a direct consequence from Corollary 7 and Remark 2.

III. Borsuk, Borsuk-Ulam, and Bourgin-Yang theorems for maps with
A-systems with coefficients in Z 2 .

1. Borsuk theorem.

PROPOSITION 1. Let F: (Sn, a)-+(Sm, a) beanu.s.c. a-equivaήant
map. If F has an a-equίvariant A-system A(F) with coefficients in
ΊLi then m>n.

Proof. Let ψ e A(F)k. Then φ is α-equivariant and Klφ =
1 (mod 2). From Corollary II.4 follows m> n. α

2. Existence of A-systems for products of two maps with A-system.
To prove the Borsuk-Ulam theorem for u.s.c. maps F: Sn —> W1 with
A-systems (with coefficients in Z2) we have to establish the existence
of a nontrivial A-system for a product of two maps with A-systems
with coefficients in a field F (cf. Definition 1.9).

This will be done first. Let (Ki9 τ*) and (L f, μ})9 i = 1, 2, be
finite block complexes with fixed f.s.b.d. τι, μι, respectively (cf. Def-
inition 1.7). We consider the product f.s.b.d.

θ = f1 x τ 2 = {θk = τ\ x τ\\k = 0, 1, ...}

on ί i x ί 2 ) and

θ = μ ι x μ 2 = (θk = μι

kx μ2

k\k = 0, I, ...}

on L\ x Z,2, respectively (cf. Remark 1.6.3).

The tensor product C* = C*(#i, T £ ) ® C ( £ 2 » τ I ) ( o v e r t n e field F )
is a chain complex with differential d(e\ ®e2) = de\ ®e2+(-1 )dime>ex <g>
de2, βj € τ{, cf. [8, 9.1, p. 161]. Using [8, 9.21(4), p. 166] we may
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identify the chain complexes C*(K\ x K2, θ^) and C* via the chain
isomorphism defined on the generators by e\ x e2 \-+ β\ ® e2.

Following [26], we consider the chain subdivision maps

i(j) * ( ^ , | ) ^ , ; )

and a chain approximation of the identity (see 1.2) for I > k

For the chain complex C*{K\ x K2, θ) we consider analogously the
chain maps b(k, I) and χ(l, k) defined by

which gives the chain subdivision and a chain approximation of the
identity map for a f.s.b.d. θ on K\ x K2. We call it the tensor product
subdivision and a tensor product approximation of the identity.

For the block complexes (L, , μι = {μ^}) > / = 1, 2, we consider
C*(Li x L2, θ) with the tensor product subdivision b(k, I) and a
tensor product approximation of the identity ~χ(l 9 k).

LEMMA 2. Let (Ki, τk), {Li, μ') be block complexes with f.s.b.d.
and let Ff. Ki —• Lz be u.s.c. maps with A-systems A{F{) with coeffi-
cients in F, i = 1, 2. Then there exists an A-system with coefficients
in F for the u.s.c. map F\ x F2: K\ x K2 -> L\ x L2 w/YΛ respect to the
product f.s.b.d. θ = τ 1 x τ 2 , θ = μι x μ2 and with Kronecker index
{KIA{FX)){KIA{F2)).

Proof. The map î i xF 2 is defined by (F{ xF2)(x, y) = F{ (x)xF2(y)
for (x, j/) G K\ x K2. Define

The tensor product of ψ\ and ^2

φι Θ ̂ 2: C,(4) ® C*(τ̂ ) -^ 4 ^

is a chain map, cf. [8, p. 162]. We shall show that A(Fχ)
{A(F\)k ® A(F2)jc\k € N} is an A-system for the u.s.c. map Fγ x F2

with respect to the f.s.b.d. θ and θ.
Let k e N and φx®φ2e A(Fχ)k ®A(F2)k. Since p/ e A{Fi)k,

i = 1, 2, there exists an integer / > A: (it is no restriction to assume
that / is the same for ψ\ and φ2) such that ψι = Ψibi(k, I) and the
chain maps ψt are (τι

k, μ[)-chain approximations of F;, respectively,
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cf. Definition 1.9. Writing φx ® φ2 = (ψx ®Ίp2)b(k, I) we obtain a
(0£, 0^)-chain approximation of the map F\ x F2 . This proves part
(a) of Definition 1.9.

Let n e N there is an integer k > n (again we assume k to be
independent of /) such that for integers πi\ > l\ > m > I > k,
and ψi = Ψibk(l9lι) e A(Fi)l9 ψt = 'ψibi{m,mλ) e A(Fi)m the
chain maps ~cpiXi(m\, l{) and χz (ra, Z ) ^ are chain homotopic with
homotopies Z>/, / = 1, 2, satisifying the condition (b) of Definition
1.9 for the A-system A(Ff), respectively. According to [8, p. 163] the
chain maps

ιJ\) and χ(m, l)(ψ

are homotopic via the chain homotopy

D = Dχ ® (φ2χ2(mι, /i)) + (/i(m

This homotopy satisfies the condition (b) of Definition 1.9. Thus
A(F\) ® ̂ ( i^) is an A-system for the map F\ x F2, with coefficients
in the field F, and with respect to the f.s.b.d. θ and θ. We call
it the tensor product of the A-systems A{F\) and A(F2). Finally,
let ψ\ ® φ2 G ̂ (Fi)/^ ® A(F2)k then A T ^ ® φ2 = (KIφ\){KIφ2) =
{KIA{FX)){KIA{F2)). D

COROLLARY 3. L ^ /<}: ^ —• L/ beu.s.c. maps with A-systems A(Fi)
(coefficients in the field F) w/ίA respect to f.s.b.d. τ on K and μι on
Li, i = 1, 2.

Φ = (F{ x

has an A-system (with coefficients in F) with respect to f.s.b.d. τ and
μι x μ2 with Kronecker index (KIA(FX))(KIA(F2)). Here Δ: K ->
K x K denotes the diagonal map A(x) = (x, x).

Proof. Lemma 2 shows that the tensor product A(F\)®A(F2) is an
A-system for the map Fγ x F2 with respect to f.s.b.d. τ x τ , μι x μ2 .

Since the diagonal map Δ is single valued there exists an A-system
^4(Δ) with coefficients in F for Δ with respect to τ and τ x τ ,
and Kronecker index ^7^4(Δ) = 1, see [25, 26]. The composition
(A(F\) ® A(F2))A(A) of A-systems provides an A-system for the map
Φ with Kronecker index (KIA(FX))(KIA(F2)), cf. [25, Lemma 2.16].
The chain maps in the A-system (A(F\) ® A(F2))A(A) are composi-
tions of chain maps of A(A)k and (A(F\) ®A(F2))k , cf. [25, 1.2] for
the definition of the composition of A-systems. D
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Let K be a block complex with f.s.b.d. τ = {τk}. Then the product
f.s.b.d. τ x τ on K x K is Γ-equivariant (Remark 1.6.4). Therefore
T induces a chain map

T: C*(τk) ®

defined by T(ex ® e2) = (-

COROLLARY 4. L ^ i 7 : K -^ L be an u.s.c. map and A(F) an A-
system {with coefficients in F) for F with respect to given f.s.b.d. τ,
μ on K and L, respectively. Then there exists an A-system with
coefficients in Ψ for FxF w.r.t. τ x τ , μxμ which is T-equivariant,
with Kronecker index (KIA(F))(KIA(F)).

Proof. Let AT(F x F)k = {φ ® φ\φ e A(F)k} and AT{F x F) =
{AT(F x F)k\k e N}. Obviously AT(F x F) c A(F) ® ̂ ( i 7 ) . Since
^ ( F ) ® ^ ^ ) is an A-system for F x i 7 then Aτ(FxF) is an A-system
and it is Γ-equivariant; and KIAT(F x F) = (KIA(F))(KIA(F)). D

3. Borsuk-Ulam theorem. In this subsection we prove the Borsuk-
Ulam theorem for u.s.c. maps having A-systems with coefficients in

PROPOSITION 5. Let F: Sn -> D% be an u.s.c. map with A-system
(coefficients in Z 2 ), then the set

B(F) = {xe Sn\F(x) Π F(-x) φ 0}

is not empty.

Proof. Let τ be a f.s.b.d. induced by an α-equivariant block struc-
ture on Sn and μ be the f.s.b.d. induced by the cubic subdivision
of Z>2 (see Remark 1.6.2). Without loss of generality we consider the
A-system for F with respect to the f.s.b.d. τ and μ.

On the space D% x D% we consider the map

d: Dn

axDn

a^Dn

la, with φ ; , y ) = * - ; ; ,

and on Sn the map

Δ: Sn - Sn x Sn, with A{x) = (JC , -JC).

On the spaces Sn x Sn and D% x D% acts the involution T defined by
T(x 9 y) = (y, x). The map Δ is (α, Γ)-equivariant, the map d is
(T, α)-equivariant. Since the map Δ is single valued there exists an
(a, Γ)-equivariant A-system (coefficients in Z2) A(A) with respect to
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f.s.b.d. τ and f x ί , KIA(A) = 1, this follows form Lemma IV. 3 or
from appropriate simplicial approximations of Δ.

For the map d there exists a (Γ, α)-equivariant A-system A(d)
(coefficients in Z2) with respect to f.s.b.d. μxμ and μ and KIA(d) =
j _ ; again, this follows from appropriate simplicial approximations of
d. Corollary 4 guarantees the existence of a Γ-equivariant A-system
(Z2 coefficients) Aγ{F x F) with respect to f.s.b.d. τ x t and μ x μ
with Kronecker index (KIA(F))(KIA(F)).

Assume that the set B(F) is empty and consider the map

Ψ = d(FxF)A: Sn -+ £>«,.

The assumption B(F) = 0 leads to

n {(*, y) eD^xD^x Dn

a\x = y} = 0

and the compactness of (F x F)A(Sn) ensures the existence of k$ e N
such that the sets

and
D = St2({(x, x) € 2)2 x £>*}

are disjoint. Since D is a Γ-equivariant block complex with block
structure μ^ x μ^ then NQ = D% x D%\D is a Γ-equivariant block
complex with block structure μ^ x μ^ and N c NQ.

Due to the assumption B(F) = 0 it follows that 0 £ d(JVo) and
there exists /0 € N such that St2(0, μιo)nd(No) = 0, here 0 denotes

the point (0, ... , 0) e Ώ\a. Let Z>0 = D^a\St2(0, μψ . Then D o is
an α-equivariant block complex with block structure μ\ . The map
p: DQ -* AS""1 defined by p(x) = -X/||JC|| is α-equivariant. Since it
is single valued there exists an α-equivariant A-system (coefficients in
Z2) A(p) for p with respect to μ! = {μ\\l > /o} and τ .

It follows from [25, Lemma 2.16] that the composition

A(p)A(d)Aτ(F x F)A(A)

is an A-system for the map pΨ: Sn —• ^S""1 with respect to V —
{Xi\i > mo}? yn§ — max(/o, k§). This A-system with coefficients in
Z2 is α-equivariant. This contradicts Proposition 1. D

4. Bourgin-Yang theorem. Let F: Sn+k ~> Rn , k > 0, be an u.s.c.
map. The set B(F) = {x e Sn+k\F{x)Γ)F(-x) φ 0} is compact and
α-equivariant. If B(F) Φ 0 we consider the genus, g(B(F), α), of
the space (B(F), α), where α is the antipodal map, see Remark Π.2.
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PROPOSITION 6. Let F: Sn+k —• W1, k > 0, be an u.s.c. map with
an A-system {coefficients in ZQ) . Then g(B(F), a) > k.

Proof. From Corollary 4 we have that B(F) Φ 0 . Following [12,
Theorem 8.7], we assume g(B(F), α) = m < k. Then there exists
an α-equivariant single valued map / : B(F) —• S™ . Let / : 571"1"* —•
R m + 1 be a continuous single valued extension of / , and consider the
multivalued map

ψ=(Fx /)Δ: Sn+k -+ Rw x R m + 1 =

defined by Ψ(x) = F(x) x / ( x ) , where A(x) = (x, x) is the diagonal
map. The map Ψ is u.s.c. and Corollary 3 implies the existence of an
A-system with coefficients in Z2 for Ψ . Since m < k then n+m+\ <
n + k. From Proposition 5 one concludes the existence of a point
JCO Ξ Sn+k such that Ψ(JCO) n Ψ(-Xo) φ 0, which is equivalent to
F(XQ) ΠF(-XO) φ 0 and f(x0) = f{-x0). But, then x0 e B(F)
and f(x0) = f(x0) = f(-xo) = f(-xo). Since /: B(F) ^ 5 W is
α-equivariant we derive a contradiction. D

COROLLARY 7. Lei F: Sn+k -> Rw, k >0, be an u.s.c. map with
an A-system with coefficients in Z 2 . 7 7 ^ d i m ^ i 7 ) > /:.

Proof. This is a consequence of dimX > g(X, γ) [30], for any
space with a free involution γ and of Proposition 6. D

IV. Existence of A-systems, fixed point index.

1. A-systems. In this section we prove the existence of A-systems
with coefficients in F for (γγ, y2)-eQuivariant m-acyclic maps (w.r.t.
a field F), and γ\ a free involution, see 1.3 for the notation.

LEMMA 1. Let (K, τ) and (L, μ) be compact polyhedra with a
given f.s.b.d.y furthermore, let F: K —• L be a (γ\, yύ-equivariant
m-acyclic map (w.r.t. afield F), γ\ a free involution, and multiplicity
m(F) = a G F. Let n, /c0 > h Ξ N. There are numbers 0 < ko < <
kn+\ 0 < /o < < /Λ+i G N swc/2 that for any block e e τ^ there
exists an integer h-\{e) and a point a(e) e K such that

(a) //_! < U_λ{e) <lifori=l,...9n + l.
(b) The covering {St2(y, h(e))\y e L} is finer than the covering

{St{y, h)\y e L} and e c St(a(e), k^) (cf. Remark 1.7.2).
(c) n(a(e)) = a(n(e)) and l^e) = h-x^e)).
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(d) F(St\e, ki)) c St(F(a(e))9li^(e))9andifF(a(e)) = Cx{a{e))
U •••U Cs(a(e)), s = s(a(e)), then for all uφv, u9υ = l9 ... 9s9

and

m{a{e),Cu(a(e)))= £ m(x9C(x)).

(e) The inclusion St2(Cu(a(e)), //_i(e)) c St(Cu(a(e))9 /, _i) in-
duces the zero homomorphism in the reduced homology with coefficients
in F.

The proof is immediate from [25, Lemma B], [26, Lemma 2] and
[9, Lemma 4.1].

LEMMA 2. Let the assumptions of Lemma 1 be satisfied. For any
τk Ξ T , /// € μ there exists a k> k, and a chain map

<p: C*(K9k)->C(L9l)

such that
(a) φ is (γ\, yiYequivariant,
(b) KIφ = m(F),
(c) ybr αnj; Woc/c e e τ^ ίA r̂̂  exϋϋ α po/nί ί(^) G ̂  such that

eeSt{t{e)9k)9

\φ(e)\cSt(F(t(e))J),

t(Vι(e)) = n(t(e)).

Proof. Applying Lemma 1 for ko = k 9 IQ = 19 n = dim^Γ we set
k = kn+\. We shall construct successively chain maps

where (K, k)W denotes the 7-skeleton of (K, k), such that φj is
(?i > ?2)-equivariant, and for any block e &τ-^ with dime < j there
exists a point t(e) € K such that e e Sί(t(e), kn_j), t(yx(e)) =

= C, (t(e)) U U C s(ί(e)), 5 = s(t(e)),

then ^ ' ( e ) = φj{e)ι + ••• + φj{e)s with \φj{e)u\ c 5 i ( C M ( i ( ^ ) ) , /„_;)
and KIφJ(e)u = m{t{e), Cu(t(e))) for all w = 1, . . . , 5.
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Step 1. We start with j = 0. Let e e τ^ and dime = 0 Lemma 1
for i = n + 1 guarantees the existence of a point a(e) e K such that
(a)-(e) of Lemma 1 hold. We set t(e) = a{e) and t(γ\(e)) = γ\(t(e)).
Let an be a zero-dimensional block in St(Cu(t(e)), ln(e)), where
Cu{t(e))9 u = 1, ... , s = 5 (ί(e)), denotes a connected component
of ^ ( ί ^ ) ) . Therefore

with
φ\e)u = χ(ln(e),

is well defined and satisfies the above conditions.
Step 2. Let j = 1 and e e τ^ with dime = 1 and e = \e9 kn\

(support of the block e in τ^ ) . Due to Lemma 1 there exits an
a(e) e K and ln-ι(e) such that (a)-(e) of Lemma 1 hold; define
t(e) = a(e) and t{yx(e)) = γλ{t{e)).

Let de = ex - e0 and φ°(eu) = Σ k i 9°(eu)u9 s = s(t(eu)), for
i/ = 0, 1. φ°{ev)u is a chain in St{Cu{t{ev)), /„). Furthermore,

St(F(t(eu))Jn) c

and

Now

r=\

and we consider φ°(eι/) = Y?r=l φQ{eu)r with

where / r = {u\Cu{t{ev)) c 5ί 2(C r(α(?)), /B_i(e))}, which gives

«€/,

Then χ(ln, ln-ι)(φ°(eo)r - φ°{e\)r) is a chain in the block complex
St(F(a(e)), /n_i) with Kronecker index zero. Therefore there exists
a chain cr = φx{e)r € St(F(a(e)), /w_i) such that

dcr = χ(ln,ln-ι)(φo(eoγ-φo(eιγ),
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and define φι{e) = Yfr=ι φι(e)r and φι{y\{e)) = yi(φι{e)). For a
zero-dimensional block e we define φι(e) = χ(ln, ln-i)<P°(e) - The
homomoφhism φι is a chain map which satisfies the above condi-
tions.

Now it is clear how to proceed for j > 1, see [25, Lemma 3.5], [26,
Lemma 3], [9, Theorem 4.3]. D

REMARK 1. If F is an m-point map (or m-acyclic map, such that
all connected components of F(x) are iί^-sets, cf. [13]), then the
above construction holds even for rings A, i.e. in Lemmata 1 and 2
the field F may be replaced by the ring A.

LEMMA 3. Let the map F be as in Lemma 1, with f.s.b.d. τ and
μ. Then there exists a (γ\, γ2)-equivariant A-system with coefficients
in F for F such that KIA(F) = m(F).

The proof follows directly from the above lemmata and the proofs
in [25, Lemma 3.8], [9, Proposition 5.3].

REMARK 2. 1. For m-point maps i 7 , Lemma 3 implies the exis-
tence of A-systems with coefficients in a ring A.

2. Let Φ: K —• L such that there exists an m-acyclic map (w.r.t.
F) F: K-+L with F(x) c Φ(x), for all x e K, i.e., F is a selector
of the map Φ. Then Φ possesses an A-system with coefficients in F,
and Lemma 3 holds for Φ.

3. Let F: K —• L be an m-acyclic map (w.r.t. Z) and multiplicity
function m > 0 and multiplicity n > 0. Then F may be decomposed
into an u.s.c. acyclic map 7: K -> SPnL (w.r.t. Z) and an m-point
map π: SPnL —• L with multiplicity n , where (cf. Definition 1.2)

7(x) = {x{

1 - xs

s\xieCi(x), ki = m(x, Q(x))}9 s = s(x)9

and

Then F = πF and F has an A-system with coefficients in F, because
7 has one [25] and π has one induced by a simplicial approximation
of π in [20].

4. For the maps in [5], [7], [16], the A-system can be constructed
using simplicial approximation developed in [5], [7], [16], resp.

5. Let p: K -> L be a continuous single valued map, K, L finite
polyhedra. We say that p is a map with multiplicity (w.r.t. A) if
the map p~ι: L -+ K is an m-acyclic map (w.r.t. A). If p~ι is
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an ra-point map it is sufficient to work with coefficients in a ring A,
otherwise the coefficients should be in a field F. Let A{p~ι) be the
A-system for p~x constructed in Lemma 3. Every chain map φ e
A(p~ι) induces a homomorphism φ*\ H*(L, A) —> H*(K, A) which
is a transfer homomorphism for the map p, i.e. p*φ* = m(p~~ι)id,
cf. [28]. Therefore, the homomorphism /?*: H*(K, A) —> H*(L, A) is
an epimorphism (A is the quotient field of the ring A.) We will not
go into more details.

PROPOSITION 4. Let F: (Sn, a) -> (Smα) fo an a-equivariant m-
acyclic map w.r.t. Z 2 /Ae/i m>n.

Proof. Lemma 3 implies the existence of an A-system for F with
coefficients in Z 2 and Proposition III. 1 yields m>n. D

PROPOSITION 5. Let F: Sn+k —> Rn, k > 0, be an m-acyclic map
w.r.t. Z 2 . then dim{x e ^ r t + / : |F(jc) Π F ( - J Γ ) ^ 0} > fc.

Proof. The existence of an A-system for F with Z2-coefficients and
Corollary III. 7 prove the assertion. D

2. Fixed point index. For every map Φ: K -* K which has an A-
system A(Φ) with coefficients in the field F there exists a fixed point
index defined in [25, Definition Π.2.6]. Let U be an open subset in
K such that 17 is a subcomplex in some τ> e τ . Suppose x & Φ(x)
for all x e dU, i.e., the triple (K9 Φ, U) is admissible.

DEFINITION 6. The fixed point index KA(K, Φ, £/) is defined as

where 9? G ̂ t(Φ)/, π: C*(A:? τ/) —• C*(U, τ/) is a homomorphism
(projections) such that π{e) = 0 for e g U and π(e) = e for e eU,
e is a block in τ/ (I > k), and A(π(^|^)) is the Lefschetz number
of the homomorphism π ( ^ | ^ ) .

This definition does not depend on /, π and τ for sufficiently large
/ G N [25, Lemmata 1.1.5 and Π.2.5].

The fixed point index IA(K,Φ, U) has all properties, i.e., addi-
tivity, homotopy invariance, normalization, commutativity, mod p-
property, see [25]. Let Λf (F) be the set of m-acyclic maps of polyhe-
dra w.r.t. the field F. Let F e Jt(V), F: K -> K, and U an open
subset in k such that the triple (K, F, U) is admissible. Applying
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Lemma 3 to the map F, γ\ and y2 being the identity, we obtain an
A-system A(F) with KIA(F) = m(F) = 1.

DEFINITION 7. The fixed point index i(K, F, U) is defined as

w.r.t. A-system A(F) for every F e,
For m-acyclic maps the index i(K, F, U) is independent from the

choice of A-system A(F), since KIA(F) — 1, see [25, 26].

PROPOSITION 8. Lei F G ^ # ( F ) , z.e, F w an m-acyclic map w.r.t
the field F. Then the fixed point index i(K, i% £/) Λα̂  the following
properties:

(a) Homotopy invariance. Let H e ΛC(F), /ί: V x I -> K, be
a homotopy joining the maps Φ\\jj, ΦI\JJ € ^ ( F ) 5wc/z that for all
t el and Ht: U -> K, Ht(x) = H(x, t), the triple (K, Ht, U) is
admissible. Then

(b) Additivity. Let Φ e JT(W), Φ: K -+ K, and U\, U2 be open
disjoint subsets of U. If Fix(Φ\u) cUιUU2 then

i(K, Φ, U) = i(K, Φ, Ux) + i(K, Φ, U2).

(c) Normalization.

here A(A(Φ)) denotes the Lefschetz number A(φ) of a chain map
φ G A{Φ)k.

(d) Commutativity. Let Φχ\ K-*L,Φ2\ L-+K be in ^f(F), and
let (K, Φ 2 Φ i , U) and (L, ΦiΦ2 ? Φ^iU)) be admissible. Assume
that for all y e Έ i \

Π Fix(Φ2Φi| I 7) = 0.

/^(Λ:, Φ 2 Φ 1 ? U) = IA(L9 Φ1Φ2, Φ J

wΛere the fixed point index is defined with the A-systems A{Φ2)A{Φχ),
^(Φi)^4(Φ2), respectively.

(e) Λfoύί p-property. Let p e N be prime and let Φ e ^{Ίjp)f

(K,Φ,U), (K^φP, U) be admissible. Assume that for all y e
Fix(φP)\U :

Φ^(j ) n Fix(Φ^(F)) = 0 , 1 < k < p.
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Then

i{K,Φ,U) = IA(K,ΦP,U) inZp.

Here the fixed point index for Φ*7 is defined with the A-system
A(Φ) "A{Φ) {p'times).

(f) Multiplicity. Let Φ/: Kt -• Lif Φf € Jtφ), and (Ki9Φi9 Ut)
be admissible. Then

i{Kx xK2,ΦιxΦ2,Uιx U2) = i{Kx, Φx, C/i)i(^2, Φ2, t/2).

Here the index for Φ1XΦ2 is defined with the A-system A{Φ\)®A(Φ2),
see III.2, am/ w independent from the choice of A-systems.

Proof. The properties (a)-(e) follow from [25]: Homotopy invari-
ance from 11.15, additivity from Π.2.8, normalization from Definition
5, commutativity from II.2.17, mod-^-property from II.2.19.(f), and
multiplicity from [26, III.9]. D

REMARK 3. 1. For maps / : K —• SPnK the fixed point index is
defined in [18].

2. In [9] the fixed point index for (1, n)-valued maps F, i.e., F(x)
consists of 1 or n acyclic components, is defined; for n-valued maps
see [24].

3. For the composition of m-maps see [5], [16].
4. The m-point maps F (w.r.t. Z), or more generally m-acyclic

maps for which the connected components of F(x) are i?^-sets, [13],
have A-systems w.r.t. Z (Remark 2.1). Therefore the fixed point index
i(K, F, U) is integer valued.

The fixed point index for this kind of map with nonnegative multi-
plicity is constructed in [13].
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multiplicative and additive free convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 217

L. J. Bunce and Cho-Ho Chu, Compact operations, multipliers and
Radon-Nikodým property in J B∗-triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Marius Dadarlat, Gabriel Nagy, András Némethi and Cornel Pasnicu,
Reduction of topological stable rank in inductive limits of
C∗-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

François Dumas and Robert Vidal, Dérivations, et hautes dérivations, dans
certains corps gauches de series de Laurent . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Mourad Ismail and Xin Li, On sieved orthogonal polynomials. IX:
Orthogonality on the unit circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

X. T. Liang and Y. W. Lu, A Phragmén-Lindelöf theorem . . . . . . . . . . . . . . . . . 299
Mark Stephen Reeder, On certain Iwahori invariants in the unramified

principal series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Shohei Tanaka, On the representation of the determinant of

Harish-Chandra’s C-function of SL(n, R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Fritz von Haeseler and Guentcho Svetoslavov Skordev, Borsuk-Ulam

theorem, fixed point index and chain approximations for maps with
multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Pacific
JournalofM

athem
atics

1992
Vol.153,N

o.2

http://dx.doi.org/10.2140/pjm.1992.153.201
http://dx.doi.org/10.2140/pjm.1992.153.201
http://dx.doi.org/10.2140/pjm.1992.153.217
http://dx.doi.org/10.2140/pjm.1992.153.217
http://dx.doi.org/10.2140/pjm.1992.153.249
http://dx.doi.org/10.2140/pjm.1992.153.249
http://dx.doi.org/10.2140/pjm.1992.153.267
http://dx.doi.org/10.2140/pjm.1992.153.267
http://dx.doi.org/10.2140/pjm.1992.153.277
http://dx.doi.org/10.2140/pjm.1992.153.277
http://dx.doi.org/10.2140/pjm.1992.153.289
http://dx.doi.org/10.2140/pjm.1992.153.289
http://dx.doi.org/10.2140/pjm.1992.153.299
http://dx.doi.org/10.2140/pjm.1992.153.313
http://dx.doi.org/10.2140/pjm.1992.153.313
http://dx.doi.org/10.2140/pjm.1992.153.343
http://dx.doi.org/10.2140/pjm.1992.153.343

	
	
	

