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It was shown by A. Connes and J. Woods that every ITPFI factor of
type III o is characterized to be an AFD factor whose flow of weights
is conservative, aperiodic, and approximately transitive (AT). In this
paper, a measure theoretical proof of their result will be shown from
the side of ergodic theory, without using modular theory.

1. Introduction. ITPFI factors, introduced by Araki and Woods [1],
provide us concrete models of von Neumann algebras. Among ap-
proximately finite dimensional (AFD) factors of type III o, their exact
position was characterized by Connes and Woods [1], whose result
says the flow of weights associated with an ITPFI factor is conserva-
tive, aperiodic, and approximately transitive (AT), and conversely. As
every ITPFI factor is the Krieger factor arising from a product odome-
ter action with a product measure, and as the isomorphic classes of
AFD factors of type III o correspond bijectively with the orbit equiv-
alence classes of ergodic amenable actions of type III o by countable
groups of non-singular transformations, their result in effect says that
an ergodic amenable action of type III o by a countable group of non-
singular transformations is orbit equivalent with a product odometer
action if and only if its associated flow is conservative, aperiodic, and
AT (see Definition 17). In such a measure theoretical setting, the one
direction that product odometer action implies AT was proved directly
by Hawkins [6].

In this paper we would like to present a purely measure theoretical
proof of the other direction, which seems to be more difficult. The
proof is based on the following observations. Given a countable group
G of type III o, ergodic, non-singular transformations, a transforma-
tion group & is introduced (§3). & is orbit equivalent with G when
the action of G is amenable. & is equipped with all the information
available from the AT-property of the associated flow of G, and it
is easier to check that *§ is a product odometer action rather than
to check G. Our approach might be helpful for the reader not fami-
lar with modular theory of von Neumann algebras, and the notion of
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comparison of finite weights used in the Connes-Woods argument will
become clear through our measure theoretical presentation.

The content is the following. Functions fg e Lι(X)+ and measures
Ψg (S Ξ [&]£) a r e introduced (see Definition 10), which give a link
between the AT-property and product odometer action. We will pre-
pare Lemmas 11-16. Lemma 13 which corresponds to Lemma 5.9
and Lemma 6.4 in [2], is a critical point of the proof (§3). Also we
need a characterization of an ergodic amenable action of type III 0

by a countable group of non-singular transformations which is orbit
equivalent with a product odometer (§2). This says that any multi-
ple tower with constant Jacobian is refined by a tower with constant
Jacobian relative to a modified measure which is close to the original
measure (Proposition 7 and Corollary 19). In fact this notion is very
closely related to a characterization obtained by Katznelson (Theorem
6.6 in [7]), but is slightly different (see Remark 8 and Corollary 19).
Also we note that this corresponds with the product property (Def-
inition 7.1 [2]), which is a variation of StΘrmer's property of being
"asymptotically a product state [10]."

The author thanks T. Girodano and J. Woods for helpful discus-
sions of various points in this paper. He also thanks the referees for
suggesting several improvements.

2. Preliminaries. Let G be an ergodic countable group of non-
singular transformations on a Lebesgue space (Ω, 3§, m), where m
is a σ-finite measure.

For ω e Ω, we denote the orbit {gω; g e G} by Orb^(ω). The
group {φ; φ a non-singular transformation such that φω e Orbc(ω)
a.e. ω} is denoted by [G] and called the full group of G. By a par-
tial transformation φ we mean a pair of measurable subsets 3f{φ)
and <y(φ) and a measurable bijection from 3f{φ) to J^iΦ) satisfy-
ing that φω e OτbG{ω), a.e. ω e 9ί{φ) ([3]). The sets 3f{φ) and
<y(φ) are said to be G-Hopf equivalent. We denote the set of all
partial transformations by [G]* and the set {φ e [G]* m{£f{φ)) <
oo, m{Jr{φ)) < oo} by [G]f respectively. We note that [G]f plays
the same role as the predual of a von Neumann algebra.

DEFINITION 1. A tower of G is a finite collection ζ = {ea iβ e
[G]*, a, β e Λ} of partial transformations satisfying the following
conditions:

(a) Eβ=2f(eβj) are disjoint.
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Notice that for fixed β the sets 3f(eaiβ) and / ( ^ ) Q ) are all equal
to Eβ . We call Eβ a floor of ζ. We denote the set U^eΛ Eβ by s(0
and call it the support of ζ. We also denote the set {eayβω a G Λ}
for ωeEβ by Orbζ(ω) and call it the orbit of ζ. A finite union of
towers with disjoint supports is called a multiple tower.

DEFINITION 2. Let ζ = {eajβ a, β e Λ} be a tower. A measurable
subset £ c 5(0 is said to be ζ-adapted if

for a and β eA with m(£ α Π £ ) > 0 and m(Eβ nE)>0.

In particular, E is said to be C-invariant if

Oτbζ(ω) eE, a.e. ω e £ .

When we restrict each partial transformation eaj to a C-adapted set
E, we obtain the restriction of the tower ζ to E and denote it by

ζ\E

DEFINITION 3. We say that a tower ζ = {ea fβ α, β e Λ} has a con-
stant (2-Jacobian if each Radon-Nikodym derivative (dQeβ>a/dQ)(ω)
is constant on Ea where Q a finite measure on s(ζ) which is equiv-
alent with m. We call the vector ((dQeβiOί/dQ)(ω)\ β e Λ) a dis-
tribution of ζ relative to Q. As Q is determined by the restriction
v of Q on £ α and the distribution q = {{dQeβ^/dQ) β G Λ), we
sometimes denote β by ι/q.

DEFINITION 4. Let Σ " = 1 Θ & be a multiple tower with ζ, = {^ β

a, β e Λ/}, Γi, 1 < i < π, finite sets and ζ = (e ε j j ε, δ € Λ) a
tower with

Λ = {(/, a, r) 1 < / < n, a € Λ/, r e Γ J .

If

ϊ = l

Eiar = Eι

a, α e A , , (£ίafloorofC/), and

eiarJβrM = eL,βω a e ^ G % r . far, ^ G Λ?

then 2?=i Θ C/ is said to be refined by ζ.

DEFINITION 5. Let £ = {£ α J ? : α e Λ} be a tower, ε e Λ, and
77 = {er 5 r, 51 G Γ} a tower with the support Eε. Then ζ is refined
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by a tower
ζ = {ear,βS;ar, βseAxΓ}

satisfying the following condition that for all a, β e A and r, s eΓ,

Ea = \jEat,
ter

eεs,as = eεjaω, ωeEas,

eεr,εsco = e Γ ) S ω, co e Eεs and
ω ^ Eβs.

ξ is called a product to the towers ζ and */ and denoted by ξ =
By an amenable action of a group G, we will mean a countable

group of non-singular transformations admitting a non-singular trans-
formation T satisfying [G] = [T], where [T] = [{P J e Z}].

It is known ([8]) that the action of G is amenable if and only if there
exists a sequence of product towers £i <g> £2 <8> ® C« > /ι = 1, 2, ... ,
such that

(J OrbCΘ...^ς(ω) = Orb^(ω) < a.e. ω,

and that

Here «^(C) means the sub σ-algebra generated by all floors of a tower
ζ. Hence, we see that the action of G is amenable if and only if
for any ε > 0, and any finite collection of partial transformations
£1 > > £/ι Ξ [G]f there exists a tower f satisfying the following
conditions (a) and (b):

(a) &(gi),S(gi)e>»>*^(ζ).
Here e m ' δ means the set in its left-hand side is ε-approximated by a
set in £&(ζ) in the sense of m-measure symmetric difference.

(b) m(ω e &(&) giω e Orbc(ω)) > (1 - ε)m(3f(gi)), 1 < / < n.
Take an infinite product space Ω = Π^=i{0, 1, . . . , rw - 1}

(rn € N) and an infinite product measure m = Π^Li m « 9 m « a prob-
ability measure with mw(ε) > 0, 0 < ε < rn - 1. Let GΛ be the finite
group consisting of all bijective transformations acting on the product
space Π?=i{0> 1, . . . , rz — 1} ? n > 1. Each group Gn naturally can
act on Ω by fixing all coordinates after n. Putting G = (J^=i Gn , we
call G a product odometer action with a product measure. We will
show a characterization of such an action in the following proposition.
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PROPOSITION 6. An ergodic countable group G of non-singular trans-
formations on (Ω9£&, m) is orbit equivalent with a product odometer
action with a product measure if and only if for any e > 0, and for any
finite collection of partial transformations g\, . . . , gn £ [G]™, there
exist a finite measure P ~ m and a tower ζ with constant P-Jacobian
satisfying

m(ω e 3f{gi) n s(ζ) giω e Orbc(ω)) > (1 - ε)m{3f{gi)),

and

\\P - M\s{ζ)nE < ε,

where E = Uί^ίft) uS(gi)) and \\P - m\\A = JA\1 - f^

Proof, (If part.) If G = (J£Li Gn is a product of odometer ac-
tion with a product measure on (Ω, m) = (Π^ii {0, 1, . . . , rn - 1},
Π^Li win) then each gn G Gn has constant ra-Jacobian on each cylin-
der set determined by the first n coordinates.

For n > 1, consider a tower ζn = {ea^β α, β e Π?=i{0? 1, . . . ,
ri - 1}} with constant m-Jacobian defined by

Eβ = [βl9...9 βn]n

x (cylinder set), and

(αi, . . . , an, ωn+x, ω r t + 2 5 --.)» for ω = (ω/)/>i € ^ ,

where α = αi an . Each g € [(?]* moves only finitely many coordi-
nates depending on ω € Ω. So, given a finite number of # i , . . . , gk e
[G]*, each giω is in Orb^ (ω) except on a small subset of the do-
main 2{gi) if n is sufficiently large. The domains 3f{gi) and the
images J^{g{)9 1 < / < k, can be approximated by a finite union of
cylinder sets Eβ in the sense of measure symmetric difference if n is
sufficiently large.

(Only if part.) We may suppose m(Ω) < oo. Obviously, our con-
dition implies that the action of G is amenable. So, there exists a
non-singular transformation T such that [T] = [G]. Each of or-
bit equivalence classes of amenable and ergodic actions of type In,
1 < n < oo, II i , and II ̂  is unique and these are orbit equivalent
with product odometer actions with a product measure ([8]). So, we
may assume that the action of G is of type III. Take a sequence
{An)n>\ of measurable sets which are dense in 33 and each element
of which appears infinitely often in the sequence. Take εn > 0 such
that Σ^Li εn < m{Cΐ). We will show by an inductive argument the
existence of a decreasing sequence of sets {Hk)k>χ, where Ω = H\, a
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sequence of measures Qk ~ m on Hk and a sequence of towers ζk

satisfying the following conditions (a)-(e):

(a) ζk has a constant Q^-Jacobian and s(ζk) = Hk .

(b) //^ is Cfc-i-invariant, and ζk is a refinement of the restriction

ζk-ι\Hk in a product form, i.e., ζk = Cfc-il/f, ® Άk, and

a9βeζk^ι and eayJyeζk.

(c) m(Hk_x\Hk) < εk ,

and exρ(-e*) < j§f-{ω) < exp(e^), coeHk.

(d) Λ n i / E m ' £ ^ ( ζ j t ) J 1 < i <ik.

(e) m(ω e / ^ Ti^ω e OrbCfc(ω)) > (1 - ek)m(Hk),

where 7/̂  is the induced transformation of Γ on the set / ^ .
We may assume A\ = Ω and let Ci be the trivial tower and Qi =

m. Now suppose that we have measurable sets H\D fyD -•- D Hn,
measures Q\, Q2, . . . , Qn and towers Ci, ζ2, . . . , C« satisfying the
above conditions (a)-(e), where

ί, = i/i ® j/2 ® ® *//

e , , ^ - . ^ ; β i β / , J i ί i

C h o o s e a n d fix a n a = a\ α n e Π?=i Λ, . Let ωeHn, β = β\- βn

a n d y = yi yΛ G Π y = i Λ/ ^ ^ ω € Eγ a n d 7//nω G ̂  . T h e n w e
o b t a i n a j e Z satisfying

Let us choose arbitrary θ > 0 and N eN. Applying the sufficient
condition in the proposition for θ, N and the partial transformations
TJ

E , — JV < j < N, and id |^ (£^ Π ̂ 4^), we obtain a finite measure
Q ~ m and a tower τ/w+1 with ^ ( ^ + i ) c Ea having a constant Q-
Jacobian satisfying

m θ n

ea,β(EβnAk) έ ^{ηn+ι), \<k<n + \, βeY[Ai9

m(ω eEa;T^ωe Oτbη (ω)) > (1 - θ)m(Ea), -N < j < N.
a n + ι

exp(-fl) < ^ - ( ω ) < exp(0), ω €
a
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and

m(Ea\s{ηn+ι)) < θ.

Now we put i/Λ+i = Orbζ (s(ηn+\)), and get the product tower
Cw+i = CΠIH ® ηn+\ Define the finite measure Qn+\ by

Qn+\ = Qq On Hn+γ

where q = {{dQne^^ajdQn)\ β e Π"=iΛ/) τ h e n it i s e a s Y t 0 s e e

Hn+\, Qn+\ > ίn+i satisfy (a)-(e), if θ > 0 and N e N are chosen
small enough and large enough respectively. We see that the set H =
Πfcli Hk has positive measure. Then for a.e. ω e 77, and for all but
a finite number of k > 1, we obtain 7//ω = TH ω. Applying Borel
Cantelli's lemma for the condition (e), we have that for a.e. ω e H
and for all but a finite number of k > 1,

THω = THkωeOrbζk(ω).

By the condition (c) one can define a positive bounded measurable
function f(ω) on H by

Define the finite measure μ ~ m on H by

x f(co)dm(ω)

and the map Φ:H^ Π £ i Λ / bY

Φ(ω) = (β/)/>i, for ω G f| £βl...βfc.

Then it follows from (d) and (b) that Φ produces an invertible and
measure preserving orbit equivalence map between [TH] on (H,
38 Π H, μ) and the product odometer action with a product measure
on (nSLiA»,nS°=i^) defined by

Since μ ~ m on H and Γ is of type III, T is orbit equivalent
with TH. D
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PROPOSITION 7. Let G be an ergodic countable group of non-singular
transformations on (Ω,&, m) and suppose that G satisfies the fol-
lowing conditions (a) and (b):

(a) The action of G is amenable.
(b) There exist for any multiple tower Σ " = 1 0 ζt with constant P-

Jacobian (P a finite measure equivalent with m), a finite measure Q ~
m and a tower ζ with constant Q-Jacobian which refines 5^ = 1 0 £,
and satisfies \\P - Q\\yj s(ζ) < ε.

Then G is orbit equivalent with a product odometer action with a
product measure.

Proof. It is enough to check the necessary and sufficient condition in
Proposition 6. Choose and fix ε > 0 and ft,...,&e [G]™. Since
the action by G is amenable, there exists a tower ζ = {ea ^ a, β e
Λ} such that

and

m(ωe&(gi)ns(ζ); giωe Orbζ(ω)) > (1 -e)m(&(gi))9

1 <i<n.

Take an arbitrary floor Ea of ζ and decompose it into a finite number
of disjoint sets Aj 9 0 < j < N 9 such that

dmeβ a
ε) < , (ω) < C£

for /? € Λ, 1 < j < N, where c α j 7 = 1, and

Define the measure P by

P(eβiaE) = cβjm(E), £ c ^ , and

EcA0,

restrict C to Orbζ(^47) and denote the restriction by £,-, I <j < N.
Then ^ j ^ ! 0 C; has a constant P-Jacobian. The condition (b) im-
plies there exist a finite measure Q ~ P and a tower ξ
with constant Q-Jacobian such that ξ refines Σ/Li Θ Cj a n d that
|| Q - Plli XN frλ < ε. Thus ζ and Q satisfy the condition in Propo-

sition 6. α
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REMARK 8. The sufficient condition in Proposition 7 for an er-
godic countable group G of non-singular transformations to be orbit
equivalent with a product odometer action with a product measure is
in fact a necessary condition. This will be proved in the next section
(Corollary 19).

3. Transformation group &. Let G be a type III o countable er-
godic group of non-singular transformations on (Ω, 3S, m). On the
product space (ΩxR, 3§®3§φ)) with the product measure dv(ω, u)
= dm(ω) exp(w) du, each g e G produces a skew product transfor-
mation g defined by

g(ω, u) = (gω, u - log ^ £ ( ω ) ) ) , (ω,u)eΩx R,

which is v-preserving and commutes with the flow 7J(ω, u) =
(ω, u +1), ί e R . Here &(R) denotes the σ-algebra of all Lebesgue
measurable subsets of R. By &, wejdenote the sub σ-algebra con-
sisting of all G-invariant sets, where G — {g g e G} . By X ? we de-
note the quotient space Ω x R / ^ , that is, the space of all G-ergodic
components. Let π be the natural projection Ω X R H X. Take
an arbitrary σ-finite measure μ on X which is equivalent with the
projection measure v π~ι, and disintegrate v by μ as follows.

/ A:(ω, u)du(ω9 u) = I dμ(x) I k(ω, u)dv(ω, u\x)
JΩxR JX Jπ(ω,u)=x

for k e Lι (i/). dv(ω, M|Λ:) , x e X, are sigma-finite, non-atomic and
G-invariant measures and satisfy

v({(co, U ) E Ω X R ; π(ω, w) ^ x}|x) = 0 a.e. x e X.

We obtain a flow F* of Tt on (X, μ) defined by

Ft(π(ω, ιή) = Γ^ω, M)

and call it the associated flow of G [5]. It is known that the isomor-
phism class of this flow is a complete invariant for the orbit equiva-
lence of G when the action by G is amenable [9].

DEFINITION 9. Let Γ be a countable dense subgroup of R. De-
fine the countable non-singular transformation group & on ( Ω x R ,

ι/) by

We notice that the associated flow of S? is just that of G. Since
every g commutes with all Tγ, γ e Γ, the action by 3? is amenable if
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that of G is amenable. Krieger's theorem ([9]) says that if the action
by G is amenable and of type III o then G is orbit equivalent with
9 (see [4]).

DEFINITION 10. For each h e [&]ζ we define the non-negative,
integrable function fh el*ι(X, μ) and the finite measure ^ Λ on ΩxR
by

)9 xeX,
Ψh(E) = v{hE), for all measurable sets E c3f{h)9

and in particular we write for h = id \E G

Obviously we have | | / E | | L I
 = u(β)

LEMMA 11. (1) The map E \-+ fE induces a bijection from the
GΉopf equivalence classes of sets E e 3$ with v(E) < oo onto
Lι(X, μ)+, and this bijection is additive.

(2) \\fE-fE.\\<v(EAE').

Proof (1) It is obvious that for E and E' e 33 with v{E) < oo,
and v(E') < oo, the sets E and Er are G-Hopf equivalent if and
only if v{E\x) = v(E'\x) a.e. x. Since each I/( |JC) is an infinite
and sigma-finite measure, the map E \-+ fE eίι(X, μ)+ is onto. The
additivity, that is, fEuE = fE + fE for disjoint sets E and F, is
obvious.

(2) ||Λ-/^||L.

= / dμ(x) I {IE(ω,u)-IE>(ω,u)}dv(ω,u\x)
Jx Jπ(ω,u)=x

< ί v(EAE'\x)dμ(x)
Jx

= V(EAE').

Here IE means the indicator function of a set E.

LEMMA 12.
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Proof. For geL°°(X,μ),

g(x)fτ-i.h(x)dμ(x)

= / g(x)dμ(x) / Iτ-i(jr(h))(ω,u)dv(ω,u\x)
Jx Jπ{ω,u)=x y y y >}

= I dm{ω) I g(π(ω,u))Ijr{h)(ω,u + γ)exp(u)du
JΩ JR

= exρ(-y) / dm(ω) / g(π(ω, u-γ))Ijr{h){ω, u)exp(u)du
Jίi JR

= exp(-y) / g - F-γ(x) dμ(x) / i>(*)(ω, «) ̂ ( ω , «|Λ)
^X Jπ(ω,u)=x

= Jχg{x)txv{-y)^-{x)fh{Fyx)dμ{x). D

LEMMA 13. Lei ε > 0, Λ € [S^ α«<* / e L ' ( I , /*)+.
exists a partial transformation h\ € [3?]ζ satisfying

(3f[h{)=3f(h),

I
l

Proof. Decompose the space X into the disjoint subsets X-, XQ,
X+ defined by

- = {xeX;f(x)<fh(x)},

0 = {xeX;f(x) = fh(x)}>

+ = {xeX;f(x)>fh(x)}.

= μ(X-) — 0, set h\ — h. Otherwise, we may assume
μ(X-) > 0. (If μ(X+) > 0 then the proof is parallel.) Since u( \x)
is an infinite, non-atomic and sigma-finite measure, one can choose a
measurable subset £ c Ω x R such that

f(x) a.e. x,
EΠπ"1^-) C S{h) Π n~x(XJ),

Enπ-i(X0)=J^(h)nπ-ί(X0) and,

I E n π - 1 ^ ) 3 S(h) Π π~(X+).

For the same reason as above, one can also choose measurable subsets



78 TOSHIHIRO HAMACHI

Fc£andFcΩxR satisfying

v{E'\x) < f(x) a.e. xeX-,

\\f(x)-u(E'\x)\\V{χ)<^,

= 0 and
v(F\x) = u(E\x) - v(E'\x) a.e. x.

Since & is of type III, one can obtain a partial transformation u e
K such that

3f{u) = S{h)\E', J'iu) = F.

Noticing E'nF = 0, one can extend u from <f{h)\E' to ̂ {h) by

u(ω t) ={ ' } \u(ω,t), if (ω,t)eJr(h)\E'.

Then 3{μ) = S(h) and S(u) = FuE'.
Putting

we will check that h\ satisfies the condition of the lemma. Obviously,
9f{h{)=3f{h) and fhi(x) = f(x).

\\Ψh, ~ Ψh\\

= \\v{uh.)-v{h.)\\

ϊ) n π"1^-) n )

(because 9f(u) = {{^{h)\E') n π" 1 ^-)} U E> = S(h) and u = id
on E').

') Π n-\X_))) + u((S(h)\E') Π π" 1 ^-))

u(F\x)dμ(x)+ ί v{J?{h)\E'\x)dμ{x)
Jχ_

/ {f(x)-u(E'\x)}dμ(x)+ ί {f(x)-u(E'\x)}dμ(x)
χ_ Jx_

\\f(x) - v(E'\x)\\ + \\Mx) - u(E'\x)\\

^ \\f(x)-u(E'\x)\\
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LEMMA 14. If fh = Σίi fi (fi eV(X,μ)+> he [&]ζ) then there
exist partial transformations hi € [&]ζ satisfying

{ 3f{h) = UjLi 2(hi) (disjoint union),

f = fhf and

Ψh = Σίli Ψh

Proof. Decompose the set ^{h) into a finite number of disjoint
measurable sets {Eι 1 < / < N} such that

u(Ei\x) = fi(x) a.e. X,

and define the partial transformations A/ E [&]ζ by

hi(ω, u) = h(ω, u), (ω, u) eh~ιEi.

Then it is easy to check that they satisfy the condition in the
lemma. D

LEMMA 15. [G]* = {h e [&]*;v(h-) = i/(.) on 9f{h)}.

Proof. It is enough to show that if h e [&]* is ^-preserving then
h e [G]*. Since for a.e. (ω, u) e 3f{h),

A(ω, w) = ̂  Γ y(ω, w)

for some g EG and y G Γ, and since

dug Γ y / .
^ γ(ωu)

i/(A ) = i/( ) implies y = 0 and hence h{ω, ύ) = g(ω, w).

LEMMA 16. Let hf h! e [&]ζ. The following conditions are all
equivalent:

(a) &(v) = 3f{h!), S(v) = 3f(h) and ψh{v-) = ψh.(.) for some

(b) The sets ^(h) and J'ψ) are GΉopf equivalent

(c) Λ = Λ'.

Proof, (a) => (b). Putting g = hvh'~ι e [&% then

By Lemma 15, g e
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(b) =• (a). If g e [G]* satisfies 2(g) = J^(h') and
, then putting υ = hrxghl e [&]ζ, we have 2{υ) = 2{h'),

υ) = 2{h) and

ψh'{v~ιE) = v(h'v~xE) = v{g-χhE) = u(hE) = ψh{E).

The equivalence between (b) and (c) was proved in Lemma 11. D

4. Measure theoretical proof of the Connes-Woods theorem. Let us
recall the definition of an approximately transitive flow (which we
briefly call the AT-flow) [2].

DEFINITION 17. A non-singular flow (Ft)teR is said to be approx-
imately transitive (AT) if for any θ > 0, and for any finite num-
ber of functions f\, . . . , fn e JJ{X, μ)+ there exist a function / e

, μ)+ and a finite number of r{i, /) G R, 1 < / < Lt, such that

F dμFr{iJ)

(1)

As explained in the introduction, the A. Connes-J. Woods theorem
on a characterization of ITPFI-factors can be stated in our setting as
follows.

THEOREM 18. Let G be a type IIIo ergodic amenable action on
( Ω , ^ , m), with associated flow (Ft)teR. Then G is orbit equivalent
with a product odometer action with a product measure if and only if
(Ft)teR is conservative, aperiodic, and AT,

Now we will give a measure theoretical proof of the only if part of
their theorem. Since G is orbit equivalent with ^ , it is enough to
show that 9 is orbit equivalent with a product odometer action with
a product measure. In fact under the AT-condition, we will check the
sufficient condition in Proposition 7 for 9 to be orbit equivalent with
a product odometer action with a product measure.

Let Σ/Li Θ ί / (Cί = {ea,β\θL, β e A, }) be an arbitrary multiple
tower for S? with constant P-Jacobian, where P ~ m. Take an
arbitrary floor Ea^ from each £ z.

We may assume P = v on each Ea^ . To see this, for any δ > 0
we decompose the sets Ea^ into a finite number of disjoint sets Aij
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(0 < j < J) such that

, ** dP, xj ^j 9 J , for

P(Ai9U)<δ9

Taking ζ -invariant sets Oτbζ (Aij) and restricting towers £/ on these
sets we get towers ζjj. Let qz be the distribution of £, relative to
P. Then if the above δ is chosen sufficiently small, || Σt uq - P| | is
small. Therefore we may and do replace Σ i Θ C / ^y Σ/, ;Θί/,y a n ( i
P ^y Σ/^q, respectively.

We will show the existence of a tower ζ satisfying the following
conditions:

(a) ζ refines Σij
(b) ζ has constant Q-Jacobian, where Q is a finite measure equiv-

alent to v such that

(2) I I Q - ^ l l ( Σ . Θ g < ^

Here q is the distribution of $3?=1 0C/ relative to P and J7 > 0
satisfies

' <θ-2δ.

Construct the (uniquely determined) measure Q satisfying the fol-
lowing conditions:

(a) Q(E) = CijQ(E), for all measurable subsets E c Afj, j > 1,
(b) Q7(^) = Q(£), for all measurable subsets E c Ait0,
(c) both of Q and β'-distributions of ]ΓZ 0 C/ coincide.

Then we get

and by Proposition 7, the transformation group £? will be orbit equiv-
alent with a product odometer action with a product measure. There-
fore in order to complete the proof, it is enough to construct a tower
ξ and a measure Q satisfying (a), (b).

Since for any / e L1 (X, μ), the map
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is continuous and since Γ is dense, (Fγ)γer is AT, too. That is, there
exist / G L1 (X, μ)+ and a finite number of γ(i, I) e Γ, 1 < / < n,
1 < / < Li such that

(3)

ι=ι

Next applying Lemma 13 for the partial transformation id \E

and the function

we obtain a partial transformation hi e [&]l such that

and

Θ<2Θ,

\<i<n (use (3)).

Since fa is a finite sum of L ! (X, μ)+-functions

exp(-y(i,

it follows from Lemma 14 that there exist partial transformations
j ] ζ satisfying

\) (disjoint union),

fh,(x) = exp(-y(/, , and
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Then,

fh,(x) = exp(-y(/,

= exp(-y(i,

^ M

= exp(-y(z\ l) + y { \ h [ y {

= / , ,i (use Lemma 12).
r(i.l)-r(i,') i

Applying Lemma 16 for partial transformations A| and 3r

y(;,/)_y(i,i)
Λj1 € [^]^ we obtain partial transformations vj e [&]ζ satisfying

Since the flow (7}) feR scales down the G-invariant measure v, we
get

Therefore, we get

!/(*/*/.) = exp(-y(/, /) +

Finally we construct the measure Q by

lME)' f o r £ c

Here ^ is a floor of the tower ζj. Then one can see that

(4)

<2(9,
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and that

dQυj _ duhjυj

dQ ( z ) = dvh\ ( Z )

= exp(-y(ι,/) + y(l, 1)), ze3f{h\).

Defining the partial transformations eiarjβS for 1 < r < Li, 1 < s <
Lj, ae Λf , and β eAj, by

if zeEβ (a floor of ζj), and eα ( Λ /

w e o b t a i n a t o w e r ξ = {eiarjβS\ I < i,j < n , 1 < r < L t , 1 <
s < Lj, α e Λ, , and β e Aj} which refines the multiple tower
Σ i j Θ ί i , . / and has a constant Q-Jacobian. Of course, the estimate
(4)'is enough for that of \\Q- ^q | | s ( £ φ o i n (2)> s i n c e e a c h ^,«W
is non-singular and P = u on each 2sα(/). D

COROLLARY 19. The sufficient condition in Proposition 7 for an
ergodic countable group of non-singular transformations of type ΠIQ
to be orbit equivalent with a product odometer action with a product
measure is a necessary condition.

Proof. The associated flow of a product odometer action with a
product measure is AT. We have already checked in the proof of The-
orem 18 that the condition (b) of Proposition 7 holds under the as-
sumption that the associated flow is AT. D
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