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ALMOST s-TANGENT MANIFOLDS
OF HIGHER ORDER

M. DE LEON, J. A. OUBINA, P. R. RODRIGUES, AND M. SALGADO

We introduce the notion of almost s-tangent structures of higher
order by abstracting the geometric structure of the space of k-jets
J¥(R, M). These structures are a natural extension of almost tan-
gent structures of higher order.

1. Introduction. Almost tangent structures on even-dimensional
manifolds were introduced by Clark and Bruckheimer [1] and Eliopou-
los [6] around 1960 and have been investigated by many authors (see
[15] and references therein). As it is well known the tangent bundle
TM of a manifold M carries a canonical almost tangent structure
(hence the name). This almost tangent structure plays an important
role in the Lagrangian formulation of particle dynamics [15]. Crampin
[2] showed that integrable almost tangent structures are relevant to
study the inverse problem of Lagrangian dynamics and Cantrijn,
Carifiena, Crampin and Ibort [3] proposed a geometric method of
reduction of degenerate Lagrangian systems in this framework.

The notion of almost tangent structure of higher order is due to
Eliopoulos [7]. An almost tangent structure of order k ona ((k+1)n)-
dimensional manifold is defined by abstracting the geometric structure
of the tangent bundle of order k of an n-dimensional manifold. Tan-
gent bundles of higher order are the natural framework to develop the
Lagrangian dynamics of higher order (see [14, 4]). Recently, de Leén,
Giraldo and Rodrigues [12, 17] have obtained results similar to those
of Cantrijn et al. in order to reduce degenerate Lagrangian systems
of higher order in the framework of higher order integrable almost
tangent structures.

In [20] Oubifia extended the notion of almost tangent structures to
odd-dimensional manifolds and introduced a new type of geometric
structures, the so called almost s-tangent structures, their model being
the stable tangent bundle J!(R, M) =R x TM . These structures are
involved in the study of the non-autonomous Lagrangian systems, and
the inverse problem of non-autonomous Lagrangian dynamics can be
reformulated in terms of almost s-tangent structures [13].
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In the present paper we extend the notion of almost s-tangent struc-
ture to higher orders. The geometrical model is now the space of k-jets
JKR, M ), which can be identified to R x T*M . In §2, we introduce
the notion of almost s-tangent structure (J, @, &) of order k on a
manifold V' of dimension (k+1)n+1. In§3, (J, w, &) is interpreted
as a G-structure, for a certain Lie subgroup G of Gl((k+1)n+1, R),
and it is proved that (J, w, &) is integrable if and only if the Nijen-
huis tensor of J vanishes and w 1is closed. Moreover, we prove that
the existence of an almost s-tangent structure of order £k on a mani-
fold V' is equivalent to a reduction of the structure group of TV to
O(n) = --- = O(n) x 1. Section 4 is devoted to showing that some
special submanifolds of an almost tangent manifold of higher order
inherit an almost s-tangent structure of the same order.

Since J2k~1(R, M) is the evolution space of a non-autonomous La-
grangian system of order k , we feel that almost s-tangent structures of
higher order might be relevant to give a geometric procedure in order
to reduce degenerate non-autonomous Lagrangian systems of higher
order. They could also be useful in discussing the inverse problem for
higher order autonomous systems (see [10, 12, 16]).

2. Almost s-tangent structures of higher order. Throughout this pa-
per it is assumed that all differential structures are of C>-class.

Let M be a manifold of dimension #» and TXM be the tangent
bundle of order k of M. Then T*M carries a canonical integrable
almost tangent structure F of order k (see [14]), which is actually
the (k — 1)-lift of the identity tensor field of M to TXM in the
sense of Morimoto [19]. Let (z’) be local coordinates for M and
(zh, 2z, ..., zl) the induced coordinates of TXM . Then the com-
ponents of F in every such coordinate system are

0 O
(Ikn 0) .

This notion can be extended to the space of jets of order k, i.e.
JX(R, M). In fact, the ((k+1)n+1)-dimensional manifold J*(R, M)
can be identified with R x 7XM in a very natural way. Then we can
define a canonical tensor field on JK(R, M) givenby J = F+(8/01)®
dt, where ¢t is the global coordinate function for R. Hence J has
rank kn+ 1 and satisfies J¥+! = (8/01) ® dt.

This suggests the following

DEeFINITION. Let V' be a differentiable manifold of dimension
(k+1)n+1. Atriple (J, w, &), where J is a tensor field of type
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(1,1), o is a 1-form and & is a vector field on ¥ such that

(1) w@) =1,
(2) I =wed,
(3) rankJ = kn+1,

will be called an almost s-tangent structure of order k and the mani-
fold V' an almost s-tangent manifold of order k .

The following proposition follows from (1) and (2).
PROPOSITION 2.1. We have JE=AE and wJ=Aw, where A¥t1=1.

Proof. Clearly J& = J(Jk+1E) = JA+1(J¢&) = w(JE)E and so J¢E =
A€, being A*+l = 1. Also w(JX)E = JAHU(JX) = J(JF*1X) =
w(X)JE =Aw(X)E, thatis wJ = lw. O

Let Q be the ((k + 1)n)-dimensional distribution defined by the
condition w =0, i.e. Q = kerw. By Proposition 2.1 we have JQ C
Q and hence JK!' = 0. Since rank(Jjp) = kn, J actson Q as an

|2
almost tangent structure operator of order k. Also we have

kerJ c kerJ2 C --- c kerJ¥ c ker JKt1 = Q

and
dimkerJ" =rn, 1<r<k+1.

REMARK. It is to be noted that, by virtue of well known properties
of nilpotent operators on vector spaces, conditions (1) and (2) in the
definition imply that rank J < kn+1. Thus the condition (3) requires
rank J to be maximal.

EXAMPLE 2.1. The space J*X(R, M) of jets of order k on a differ-
entiable manifold M is an almost s-tangent manifold of order k.

EXAMPLE 2.2. (A4 principal 1-bundle over an almost tangent manifold
of order k.) Let V(M , G) be a principal bundle over a manifold
M , G being a connected Lie group of dimension 1 with Lie algebra g.
Let F be an almost tangent structure of order Kk on M. If ae g=R,
we denote by a* the fundamental vector field on V' corresponding
to a. In particular, if e is the unit vector of g = R, we shall denote
¢ =e*. Let w be a connection form on V' and, for every vector field
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X on M, denote by XH the horizontal lift of X with respect to w.
We define a tensor field J of type (1, 1) on V' by putting

JXH = (FX)H, Ja* = a¢

for all vector fields X on M andforall ae g=R. Then (J, w, &) is
an almost s-tangent structure of order X on V and the distribution
Q on V, defined by w = 0, is the horizontal distribution of the
connection.

3. The structure group. Next we shall describe an almost s-tangent
structure of order k as a G-structure.

Let (J, w, &) be an almost s-tangent structure of order k on a
manifold V' of dimension (k+1)n+1. Let P be the one-dimensional
distribution determined by &. We have T,V = Q, @ Py, for each
x € V. If Sy is a complementary subspace of kerJ¥ in Q, then
we have TV = Sy @ ker J¥ @ P,. Thus, if {X|, ..., X,} is a basis
for Sy then {X;, JX;, ..., JkX;, &} is a basis for T,V called an
adapted frame. if S/, is another complementary subspace of ker J¥
in Oy and {X],JX],..., Jlef, ¢x} another adapted frame, then
we have

Xj = 41X+ (ADJIX; + o+ (AT,
JX] = ALJX; + (41X + - + (A )1 T*X;
JEX] = AlT*X;,
&x = ¢x.

Therefore two adapted frames are related by a matrix A €
Gl((k+ 1)n+ 1, R) of the form

/ A 0 0 0 0 O
4, A4 0 0 0 0
A Ay A 0 0O
A= : : : A
Axr Apy A3 - 4 0 0
A, Ay A, - A A O
0 0 0 - 0 0 1)

Let G be the set of such matrices. Then G is a closed subgroup of
Gl((k+1)n+1, R) and therefore a Lie subgroup of Gl((k+1)n+1, R).
Let Bg be the set of adapted frames at all points of V. It can be
easily proved that Bg defines a G-structure on V.
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Notice that, with respect to an adapted frame, J is represented by

the matrix
0O 0O
Jo=|ILi, 00
0 0 A

where Akl = 1, J¢& = A¢. In fact, the group G can be described
as the invariance group of the matrix Jy, i.e. A € G if and only if
AJ()A_I =Jy.

Suppose now given a G-structure B on V. Then we may define a
tensor field J of type (1, 1) on V as follows:

Jx(X)=polJyop'(X),

where X € T,V , x € V and peB isalinear frame at x, p: Rk+Dn+l
— T,V . From the definition of G, Jx(X) is independent of the
choice of p. In other words, J, is defined as the linear endomor-
phism of T,V which has at x the matrix representation Jy with
respect to one of the linear frames determined at x by B, and hence
with respect to any other. Also, we define a vector field £ and a 1-
form w on V as follows. If {e;,..., €xi1)ns1} 1S the canonical
basis for R&+Dn+1 then &, = p(egi1ynsr1) = P(0, ..., 0, 1), and
wx(p(es)) =0, for 1 <a < (k+1)n and wx(pP(€ki1yn+1)) = 1. One
can easily check that (J, w, &) defines an almost s-tangent structure
of order kK on V.

Summing up, we have proved the following

ProPOSITION 3.1. 4 ((k+ 1)n + 1)-dimensional manifold admits an
almost s-tangent structure of order k if and only if the structure group
of its tangent bundle is reducible to G.

COROLLARY 3.1. Every almost s-tangent manifold of odd order is
orientable.

The integrability of (J, w, &) as a G-structure means that around
each point of V' there exists a coordinate system in which J is rep-
resented by the constant matrix Jy, being A¥t! = 1, J&E = A¢. In
other words, around each point of V' there is a coordinate system
(z§, 2%, ..., z}, t) such that

0 0 0
4 - | = - <r<gK- — ] =
(4) J(ad) ——. 0<r<k-l, 1(34) 0,

r+l1

0 0 0
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Let us remark that the canonical almost s-tangent structure of order
k on JX(R, M) is integrable.

PROPOSITION 3.2. An almost s-tangent structure (J , w, &) of order
k is integrable if and only if Ny =0 and dw = 0, where N; denotes
the Nijenhuis tensor of J .

Proof. Clearly, if (J, w, &) is integrable then N; =0 and dw =0.
Conversely, suppose that dw = 0 and N; = 0. Hence, Q and
of course P are integrable distributions. Then, around each point
of V, there exists a cubic coordinate neighbourhood U, with local
coordinates (Z, %), —& < < &, such that

o-(z)e 7= (a)-

Then ¢ = f(8/0f) and w = gdf, with g = 1/f. Since dw =0,
we deduce that 9g/9Z. =0 and so g = g(f). Now, we introduce a
new coordinate system (z./, ') where z.! =Z., ' = h(7), with A(7)
a primitive function of g(7). With respect to (z.?, ¢'), we have

0 9 ,

Since N; =0 and Q is integrable, we know that Jip is an integrable
almost tangent structure of order £ on the integral manifolds of Q
([11]). Consider the submanifold W of U defined by ¢ = 0. Then,
there exists a coordinate open U’ in W, with local coordinates (Z!)
such that

J(‘?.): 9 o<r<k-1, J(2)-o.
0zt 0z} 0Z;

r+1

Consider the open coordinate U’ x (—¢, ¢) in V', with local coordi-
nates (z.=2.,t=1). We set

0 ;0
J ) = =
(8Z£> Ogék( ’)’a ! B 5
1<i<n

Since Ny =0 and dw =0 we deduce that L;J = 0. Then

(ALY 9B

ar ~ 0 5: =0
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and, consequently,
(ADP(z, )= (ADP(z, 00 =6l0",  0<i<k-1,
(A7, 1) = (4} (=, 0) =0,
(B)(zi, 1) = (B))(z{,0)=0, 0<r<k.
Hence J, w and ¢ are locally expressed by (4). O

Now, let ~ be an arbitrary Riemannian metric on ¥ and let S be
the subbundle of Q orthogonal to ker J*¥ with respect to 4. Then
Jlg:S — Q is injective and J?SNJIS = 0, for 0 < p, q <k,

p # q, where JO is the identity tensor field. Also we have a direct
sum decomposition

J'S, @ J S & @IS, = (ker J&~+), 0<r<k,
at each point x of V' and, therefore,
keJer
(5) TV=SeJS® -&JS oP.
o
Let p": TV — J'S be the canonical projection. We define a Riemann-
ian metric on V by

k
8x(X, Y) =) h(J*"p"(X), J*7p"(Y)) + o(X)a(Y),
r=0

forall X,Y € Tx(V), x € V. Itis clear that g(X, ¢) = w(X), so
that Q and P are orthogonal with respect to g ; moreover, g«(X, Y)
=0if Xe JPS, Y eJiS, 0<p<g<k,and g(X,Y) =
gx(JTXJ'Y) for X,Y € Sy, 1 <r < k. Hence the decomposition
(5) is orthogonal with respect to g and we have

ProPOSITION 3.3. Let V(J, w, &) be an almost s-tangent manifold
of order k, P the one-dimensional distribution determined by ¢ and
Q = kerw. Then there exists a subbundle S of Q and a Riemann-
ian metric g on V such that S, JS, ..., J*S and P are mutually
orthogonal and

(1) g(X, &) = w(X) forall vector fields X on V,
(1) g(X,Y)=g(J'X,J'Y) forall X,Y € Sx, xeV, 1<
r<k.
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We shall say that a metric g with the properties stated in this propo-
sition is a compatible metric.

Now we can obtain a reduction of the structural group G in Propo-
sition 3.1.

PROPOSITION 3.4. A ((k + 1)n + 1)-dimensional differentiable man-
ifold V' admits an almost s-tangent structure of order k if and only if
the structure group of its tangent bundle is reducible to O(n) = Khx
O(n) x 1, where O(n) = O(n) denotes the group of diagonal products
of O(n). )

Proof. Suppose (J, w, &) is an almost s-tangent structure of order
k on V and let g be a compatible metric. We can choose a local
orthonormal basis {X,},-;, ., for S in a coordinate neighbourhood
U;then {J"Xy}a=1,.. » is an orthonormal basis for J’.S on U, 1 <
r < k. We call the local orthonormal basis

{Xas JXa> ey Jan3 é}a=1,...,n

a J-basis. With respect to this frame, the matrix representing J is

0 00
Jo= I, 00
0 0 4

where AK+1 = 1, J& = A¢. With respect to another J-basis it is easily
verified that the transformation matrix will be of the form

A 0 0
k

0 A 0

0 01

where the n x n matrix A is orthogonal. The converse is trivial. 0O

EXAMPLE 3.1. (The Riemannian Heisenberg manifold T\H.,.)
The real Heisenberg group H; is the Lie subgroup of Gl(k + 2, R)
consisting of all matrices of the form

1 X z
a= 0 Ik+1 tY
0 O 1
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where X = (x0,..., %), Y = (J0,...,Vx) € Rkl and z € R.
Hp,, 1s a connected simply connected Lie group of dimension
2(k+ 1)+ 1 (see [9]).

A global system of coordinates (x!, y', z), 1 <i<k+1,o0n Hy,,
is defined by

x(a@)=x;, yi(a)=yi, z(a)=z, 0<i<k.
A basis for the left invariant 1-forms on Hj,; is given by
. . k . .
dx', dy', y=dz—2x’dy’, 0<i<k,
i=0
and its dual basis of left invariant vector fields is

8 & ;8 9 .
.2 = = .0<i< .
{8x”6y’+xaz’8z’0‘l‘k}
If we put
= ) 9 ) 8
7T i i i+1
J—?:O{dx ®——axi+l+a’y ®(ayi+l+x -——62)}+y®8z

then (f ,7,0/0z) is an almost s-tangent structure of order k on
Hj,, and the left invariant metric defined by

k
(, )= {dx'®dx'+dy'®@dy'}+7®7
i=0
is a compatible metric.

Let I' be the subgroup of matrices of Hj,; with integer entries
and consider the space of right cosets I'\H;,;. If g is the unique
Riemannian metric on I'\H;; for which the canonical projection =
from (Hp,1,( , )) to I'\Hi,; is a Riemannian covering, the pair
(I'\Hj,1, &) is called a Riemannian Heisenberg manifold (see [8]).
Since the tensor fields that we have considered on Hj,; are left in-
variant they descend to I'\H),;. So we obtain an almost s-tangent
structure (J, w, &) of order k on I'\H,,,, with

~ . B )
Jom,=m,oJ, ww=y, &=mn, (a_z) .
Moreover g is a compatible metric. Consider the subbundle S of
Q= kerw that is orthogonal to kerJ* with respect to the metric
g. Then each distribution J'S is generated by the vector fields
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X, =n.(8/0x") and Y, = n,.(8/0y" +x"0/dz). Since [X,, Y] =¢
for 0 < r < k and the other bracket products are all zero, then
Nj(X,, Y,) # 0 and the structure (J, w, &) is not integrable. No-
- tice that the distribution Q is not integrable either.

4. Submanifolds of almost tangent manifolds of order k. Let W be
a differentiable manifold of dimension (k + 1)(n + 1) with an almost
tangent structure F of order k, thatis Fk*! =0, rank F = k(n+1).
Let V' be a submanifold of W of codimension k and 1: V — W
the imbedding map. Suppose that there exists a vector field ¢ on
V such that the vector fields C = Fi.¢, FC, ..., FK-1C along V
are linearly independent at each point and nowhere tangent to V.
Then the vector field C — .& along V' is also nowhere tangent to V'
and C—1,&, FC, ..., F¥~1C are linearly independent at each point
of V.

Now, we define a tensor field J of type (1, 1) and k differential
l-forms a;,...,ar on V by

(6) FL,X = 1,J X + a1 (X)(C = 1,6) + an(X)FC + - - -+ o (X)F*~1C.
Applying F to both sides of (6) k times we have
0= t(J (X)) — oy (J¥X)E) + (a1 (¥ X) = oy (T X)C
+ (a2(J*X) + a1 (JF1X) = ay (J*2X) FC
+oF (g (JX) + o (71X 4+ g (JX) —ay (X)) FEIC
In particular, we have
JUX) = a (JFIX)E,  a (JFX) = oy (JF1X).

Putting w = o o J¥~1, we get J¥*! = w @ ¢. Now, setting X =¢ in
(6) we obtain

C = 1(JE - a1(&)8) + a1(E)C + a(O)FC + - + (&) FFIC.

Thus o(&) =1, JE=¢ and w(é) = a;(Jkt1E) = 1. Since rank F =
k(n+1), then rank J = kn+ 1. Hence, we have proved the following

PROPOSITION 4.1. Let W be a (k + 1)(n + 1)-dimensional differen-
tiable manifold with an almost tangent structure F of order k and let
(V,1) a submanifold of W of codimension k. If there exists a vec-
tor field ¢ on V such that C = F1,&, FC, ..., F*-1C are linearly
independent at each point and nowhere tangent to V', then V admits
an almost s-tangent structure of order k.
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ExAMPLE 4.1 ([20]). The tangent sphere bundle of a Riemannian
manifold M inherits an almost s-tangent structure of order 1 from
the canonical almost tangent structure of the tangent bundle 7M.

EXAMPLE 4.2. (4 submanifold of T*M.) Let M be an (n + 1)-
dimensional Riemannian manifold with metric g, T2M its tangent
bundle of order 2 and TM & TM the Whitney sum of the tangent bun-
dle of M with itself. Let {U, x;} be a coordinate neighbourhood of
M and (x!, v’, w') the corresponding coordinates of TM & TM ,
where (vi, w’) are the fibre coordinates. On the other hand, let
(xt, y¥, z!) be the induced coordinates in T2U, that is, if j2g is :
the 2-jet at 0 € R of a differentiable curve o: R — M then

x(%0) = x(0(0), V(o) = 22D ),

1d%(x!o0)

Z'(j%0) = 5—2}2——'(0)-

If V is the Riemannian connection of g, there exists a diffeomor-
phism ([5], [18]) ¢: T?M — TM @& TM given by
9(j%0) = (6(0), (V4(0)6)(0))
where ¢ is the tangent vector field to ¢ . In coordinates
T°U % TU © TU
(xt, yl, 2 e (x, i, 220 +yjyk1“j.k),
Fj. . are the local components of the Riemannian connection.

Let F be the standard almost tangent structure of order 2 on T2M ,
given by

0 o o 0o o
F(W)‘W’ F(a—y,.)_@, F(:ﬁ)“’-

By means of the diffeomorphism ¢, the tensor field F defines an
almost tangent structure F of order 2 on TM @& TM , which is given

by
—(08\_ 8 ki O
F(5) = 1+ 2 Tz

—( 0 0 ={ 0
F(éﬁ)‘ZW’ F(aw')_o'

Let us consider the tangent sphere bundle Vi M of M, andlet VoM
be the subbundle of the fibre product V; M @& VM , whose fibre at each
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point x € M is
(M), ={(u,v) € (IM)x & (V1M)x | g(u, v) =0}.

We consider V = VM & V{M — V,M , which is the submanifold of
codimension 2 of TM & TM defined by the conditions

gijv'v) = giw'w! =1, gijv'w! #0.

Let 1: V — TM & TM be the imbedding map. We define a vector
field & on V by
N
—_— 1
he = (Bxi )

where (0/0x')H is the horizontal lift of 8/6x! to TM & TM with
respect to the Riemannian connection of Af ; that is

(_a_)”__a__ kO ik O
dx! j

T 9x! iV g7 i i
The vector fields

— - 8 — .0
—_ —_ 1 — 1
C=Fuit=v 507 and FC =2 Ey

are nowhere tangent to ¥V and they are linearly independent at each
point of V. By Proposition 4.1, ¥ inherits an almost tangent struc-
ture (J, @, &) of order 2, which is given by

Fi.X =1,JX + a;(X)(C —1.8) + ax(X)FC,  ®(X) = (JX).

Hence (J = ¢;'Jp., o = ¢*®@, & = ¢;'&) is an almost s-tangent
structure of order 2 on the submanifold V = ¢~ (V) of T2M.
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