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Two theorems are proved: (1) Among surfaces of revolution which
are diffeomorphic to .52, the constant curvature metric is completely
characterized by the multiplicities of its eigenvalues and, (2) If the
square of an eigenfunction is, again, an eigenfunction then the metric
is the standard metric on S2.

0. Introduction. The Laplacian on a surface of revolution (M, g)
“splits” into a sequence of ordinary differential operators {L;}, k €
Z, whose sequence of Green’s operators is denoted by {I';}. A nice
feature of these Green’s operators is that we can compute their traces
exactly. We prove in §4 that for every surface of revolution diffeo-
morphic to S?:

% , fork#0.

This formula is used in §5 to prove the following, rather surpris-
ing, fact: If the multiplicities of the eigenvalues on (M, g) are the
same as those of the standard sphere, then the numerical values of
the eigenvalues are the same as those of the standard sphere. One can
then use a well-known result of Berger [1] to prove Theorem 5.4. It is
paraphrased here as follows.

trace(I'y) =

THEOREM 0.1. Among surfaces of revolution which are diffeomorphic
to S?, the constant curvature metric is completely characterized by the
multiplicities of its eigenvalues.

Other “spectral characterization” theorems of this sort can be found
in the literature (see Berger [1], Briining and Heintze [4], Cheng [5],
Goldberg and Gauchman [10], Obata [14], and Patodi [15]).

The result of Cheng is interesting in that it characterizes the stan-
dard sphere with a property of eigenfunctions rather than eigenvalues.
He proves: The spheres in 3-dim Euclidean space are characterized
by the fact that they have three first eigenfunctions with square sum
equal to a constant.
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In the setting of surfaces of revolution, we found a slightly simpler
eigenfunction characterization theorem, namely:

THEOREM 0.2. Let (M, g) be a surface of revolution. If h and h?
are both eigenfunctions of —A, then the metric is the standard (i.e.
constant curvature) metric on S2.

This is proved as Theorem 6.1.

I would like to thank Howard Fegan for his helpful comments dur—
ing the preparation of this paper.

1. Preliminaries. Let M be a surface of revolution which is dif-
feomorphic to S% and let U be the chart M\{np, sp} where np
and sp are the poles of the axis of revolution. The usual form of
the embedded metric on U is ds ® ds + r?(s)d6 ® d§ where s is
the arclength along a generator. In this paper we make a change of
variables transforming the metric on the chart U into the form

(1.1) g= Lic: )a’x®dx+f(x)d0®d6

where (x, ) € (-1, 1)x [0, 2x). In order that M be diffeomorphic
to S2, the function f € C®(—1, 1) N C%—1, 1] must satisfy the
following conditions:

(1) £(x)>0 on (-1, 1),

(2) f(-1)=0=f(1),

(3) fi(-1)=2=—f"(1).

This metric has 2-volume equal to 47 and its Gauss curvature is
given by k(x) = —1f”(x). The standard (i.e. constant curvature)
sphere is obtained by taking f(x) = 1 —x2 and the metric in this case
is denoted g .

The Laplace-Beltrami operator on U is given by

0 0 1 92

and the volume two-form is w = dx A d@, because /detg = 1. As
a result, the L? inner product for the metric (1.1) is given by:

(1.3) () w) / /qsq/dx/\de

for all functions ¢ and .
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2. The spectrum of (M, g). The spectrum of (M, g) is the set of
eigenvalues of —A. We denote this set of positive real numbers by the
symbol Spec(—A). We will reduce the problem of finding Spec(—A) to
that of finding the spectrum of certain ordinary differential operators.

From formula (1.2) we see that an eigenfunction 2 € C®(M) of
—A with eigenvalue A € Spec(—A) satisfies the partial differential
equation:

2
0 Bh) 1 9%h Ih.

(2-1) g_x"(f(X)—a-}- +7®6—02-=—

The S! action on M induces irreducible representations of com-
plex dimension 1 on each eigenspace E;. These representations act
via multiplication by exp(ik6f) for k € Z; hence every eigenfunction
h € E; has an expansion

n
(2.2) h(x,0) =" aju;(x)exp(ik;6).
j=1
Each of the real-valued functions u; above is a solution of the ordi-
nary differential equation
d du k?
for k = k;. Each term in the expansion (2.2) is itself an eigenfunction
and falls into one of two categories as follows: If k = 0 then we call
the eigenfunction S! invariant because it is independent of 6; if
k # 0 then it is called k equivariant, or simply of type k. For a
type k # 0 eigenfunction it is necessary that u(—1) = u(1) = 0, for
otherwise it is not well defined at the poles (—1, #) and (1, 6). The
S! invariant eigenfunctions require only bounded conditions at the
endpoints. It is easy to prove that the solutions of (2.3), with either
bounded (k = 0) or zero (k # 0) boundary conditions, are unique
up to multiplication by constants.
We will use the differential equation (2.3) in our investigation of
the spectrum of —A. For each k € Z define the ordinary differential
operator L, by the formula:

d . d k?
he= =gz (193) * 75
Then the boundary value problem (2.3), u(—1) = 0 = u(1), can be
formulated as:

(2.4) Liu=Au, u(—-1)=0=u(1)
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and the S! invariant problem as:
(2.5) Lou = Au, u(=1)+u(l)=24,

where A is a constant depending on 4. We can now define Spec(L;)
to be the eigenvalues of the problem (2.4) or (2.5) depending on
whether £ # 0 or k = 0. From formula (2.2) we see that 4 €
Spec(—A) implies that for some kK € Z A € Spec(L;). Conversely,
A € Spec(Ly) implies there exists a function u satisfying (2.4) or
(2.5); hence, the function u(x)exp(ikf) € C>*(M) is an eigenfunc-
tion of the Laplacian with eigenvalue A. We summarize the above
discussion in

PROPOSITION 2.1. As sets of numbers,

Spec(—A) = U {Spec(L;)}. ]
keZ

The reader should be aware that the set union in Proposition 2.1 is
not, in general, disjoint as it fails to take into account multiplicities of
eigenvalues. In fact, the extent to which this union fails to be disjoint
occupies much of the upcoming discussion.

Of course, the multiplicity of A is simply the dimension of E; (de-
noted dim E;). The next two results produce an estimate for dim E; .

PRrROPOSITION 2.2. Assume k # 0. A necessary condition for the
existence of a non-trivial solution of (2.4) is that k*> < Asup f .

Proof. Assume a solution u € C?(—1, 1)NC%—1, 1] exists for the
boundary value problem (2.4). We may multiply equation (2.4) by
u(x), rearrange the terms, and integrate by parts to obtain:

! du(x)\? L Af(x) — k2
X dx = / 2 T (x)dx,
IRCIC = LT e )
and because the integrand on the left is non-negative there must exist

a point ¢ € (=1, 1) such that Af(¢) — k2 > 0. Consequently we have
k?* < Asup f. O

PROPOSITION 2.3. Let A be an eigenvalue of —A, E;, its eigenspace,
and dim E; , the dimension of E;. Then

dim E; < 2[v/Asup f]+ 1,

where [ ]| denotes the greatest integer function.
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Proof. By Proposition 2.1 there exists a £ such that A € Spec(Ly)
and, since the solutions to (2.4) or (2.5) are unique, we need only count
the number of integers satisfying the conclusion of Proposition 2.2.
Let ky be the largest integer satisfying the inequality k% < Asup f.
Clearly, kp > 0 and kg < y/Asup f so that kg < [+/Asup f]. Every
integer k satisfying |k| < ko also satisfies k> < Asup f, and there are
2ky + 1 of them, including k = 0. As a result, dim E; < 2[/Asup f]
+1. O

According to Proposition 2.1, we need only study Spec(L;) for all
k € Z. To facilitate this process, fix k € Z and let /1{; denote the
Jjth eigenvalue of L; . The eigenfunction associated with li will be
denoted by u] . Hence, Spec(Ly) = {AL, A2, ..., A}, ...} forall k.
(Note that this is a positive, increasing sequence in j.)

3. Green’s operators on (A, g). The inhomogeneous differential
equation, L, v = h, is a singular Sturm-Liouville equation and it is
equivalent to a Fredholm integral equation whose integral operator
has eigenvalues {1/AL; 1/42;... ;1/A4J,---}. We will find it useful
to formulate the equivalent integral equation, and this requires a dis-
cussion of Green’s functions. In this paper, we restrict ourselves to
the case k #0.

The eigenfunctions for the case k # 0 vanish at the endpoints, so
it is appropriate to restrict ourselves to the space 7 defined by:

T=L3[-1,1]InC>®(~1, 1),

where L3[-1, 1] = {h € L?[-1, 1]: h(—1) = 0 = h(1)}, and then
solve the inhomogeneous problem L;v = A for A € T. To this end,
define

hi(x) = exp (k /Ox —f(lt—) dt) and h_;(x)=exp (—k /Ox T(I_t)— dt) .

We can now define the Green’s function by the formula:

l{hk(y)h_k(x) if —1<y<x,

(3.1) Gr(x, ¥) = 57 he(xX)h_p(v) ifx<y<l.

The Green’s operator I';: T — L3[—1, 1] is defined as the integral
operator with (3.1) as its kernel. Explicitly,

1
(3.2) Ty (h)(x) = / Gulx. »h(y)dy.
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The operator defined in equation (3.2) inverts the differential oper-
ator L; in the following sense:

ProPOSITION 3.1. Let h € T. A function v € T is a solution of
Liv =nh ifand only if

v(x) = Ti(A)(x).

The proof is, mostly, a routine exercise in the theory of Green’s
functions. The standard proof can be found in Weinberger [16] and
the details for this case, which involves improper integrals, can be
found in Engman [7].

And now it is easy to see that:

COROLLARY 3.2. A € Spec(Ly) if and only if % € Spec(I'y). Fur-
thermore, L, and T have the same eigenfunctions.

Proof. By Proposition 3.1 Lyu = Au if and only if I'y(Au) = u, i.e.
I'i(u) = %u . 0

4. The trace of the Green’s operator. In this section we obtain a
double eigenfunction expansion for the Green’s function of §3. This
leads to a formula for the trace of the Green’s operators.

PROPOSITION 4.1. Let Gy(x,y) be given by (3.1). Gi(x,y) is
bounded, continuous, and positive on the open square (—1, 1)x(—1, 1).
Furthermore, for each fixed x € (-1, 1), lim, , + G(x,y) =0 and
lim,_ - G(x,y)=0.

Proof. Observe that from equation (3.1) and the definitions of A,
and A_; that:

1 exp(—kfyxj—,%T)dt) if —1l<y<ux,
(4.1) Gi(x,y) = 2% x 1 .
exp(kfy mdl) fx<y<l.

This formula displays the continuity of G,(x, y) on the open rectan-
gle, Now, because 7(_1{) >0 on (-1, 1), we have

X
0< —k/ —dt)gl fory <x,
e"p( N0 ysx

and

X
0<exp(k/ —l——dt)<1 for x < y.
y ()
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Therefore, it has been shown that:

0<Gk(x,y)<§]; forall (x,y)e(-1,1)x(-1,1).

For the second part of the proposition, observe that for a fixed
xe(-1,1), lim,_,_,. fy ¥i0} dt = co because the order of the pole is
1. Now:

* o1
lim Gi(x, exp | —k lim / —dt>=0
y—o— 1" k( y) 2k p< y—»—lJr y f(t)
The argument that lim, ;- Gx(x, y) =0 is similar. a

COROLLARY 4.2. For each x € (—1, 1), Gi(x, x) = 5.

Proof. This comes from setting y = x in equation (4.1). O

The goal at this point is to obtain a double eigenfunction expansion
for Gi(x, y). This can be accomplished after proving the following
lemma. A similar proof can be found in Weinberger [16]. In the proof
of the lemma we use the inner product on L?[—1, 1]. It is defined
by the equation (¢, y), = f_ll ¢wdx for ¢ and y € L?[-1, 1] and
the corresponding norm is denoted by || - ||».

LEMMA 4.3. Let v and w be continuous functions in Lg[——l, 1]
which satisfy the following:
(i) /fv' and \/fo' are in L*[-1, 1), and they are piecewise
continuous on the interval [—-1, 1] ;
(i) v/\/f and w/\/f arein L*-1,1]; and
(iil) v ~ 372 cup(x) and o ~ 372 djug(x).

Then
1 k2 e
/_ (fu’w’+71/w) Z cid;

1

Proof. First of all, conditions (i) and (ii) and the Cauchy-Schwarz
inequality insure that f1’w’ and vw/f are integrable; hence

1 K2
/ (fu’a)’+—ua)) dx < .
-1 f

Now let y be a twice continuously differentiable function. Then if
W ~ Y%, cjup(x) we also have that Ly ~ 352, A c]u’( ). So by
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Parseval’s equation,
w .
(Lyw, w) =Y At
j=1

and after one integration by parts,

! n2 k? 2 = J A2
/_1 (f(w) +71// ) dx=ZAkcj.
j=1
By approximating with twice continuously differentiable functions
we can show that this formula holds for the functions » and w, also.
Finally, this equation is applied to the functions v — w and v + w,
and the results are subtracted to obtain:

1 2 x
[ (fu’w’+—]ffuw) dx =Y M.c;jd;. O

1 =
We are now prepared to prove a version of Mercer’s Theorem.

THEOREM 4.4. Let Gy(x, y) be defined by equation (3.1), and let
{u;(x)} and {4} be the eigenfunctions and eigenvalues for L; . Then:

Gr(x,y) =) 71 )
j=1 %k
Jorall (x,y)e(—=1,1)x(=1, 1). In other words, the series converges
pointwise to Gi(x, y) on the open set (—1,1) x (-1, 1).

Proof. The proof is another routine exercise in the theory of Green’s
functions and is accomplished by applying Lemma 4.3 to the functions
v(€) = Gr(x, &) and w(é) = Gi(y, &) where we define v(x£1) =0=
w(£1). It suffices to show that f(v')?, f(w')?, v?/f, and w?/f
have, at worst, integrable singularities at —1 and 1 so that conditions
(i) and (ii) of the lemma hold. The proof of this can be found in
Engman [7]. The Fourier coefficients c¢; for v, and d; for w are
given by

¢ = (v uf) = D) () = Sl ()
k
and,
d: = I = ol V() = Ly
= (@, uk) =i (u)(¥) = A—juk(y)'
k
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So that by Lemma 4.3:

1 k2 x® 1 . .
(4.2) /_1 (fu’a)’ + 7-1/60) dé = Z Euf{(x)u{c(y).
A calculation shows that:

/_11 (fu’w’ + kTZVw) dé = Gu(x, 7).

And when we put this equation together with equation (4.2) the the-
orem is proved. |

COROLLARY 4.5. Forall xe (-1, 1)
> 1
=2 !
P

Proof. This formula is obtained by putting y = x in the formula
of Theorem 4.4 and then using Corollary 4.2. O

The reader should observe that Corollary 4.5 fails to hold at the
endpoints because at these points the series sums to zero.

COROLLARY 4.6. Let Ai be the jth eigenvalue of the operator L, .
Then

1 1
(4.3) - = Z —_r .
ko idk

Proof. From Corollary 4.5, it is easy to see that for each n € N,
the finite series Z;Ll(1//1{().[u’k(x)]2 is bounded above by 5. Fur-
thermore, each of these finite series defines a Lebesgue measurable
function, so we use the Lebesgue Dominated Convergence Theorem

to obtain:
1 1 00 1 1 ; 5
/—1ﬁdx—j§ﬂTi/—1[uk(x)] dx.

The eigenfunctions are normalized and the left side of the equation is
obviously 1, so that
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It should be observed that formula (4.3) is simply a trace formula
for the Green’s operator I';, since the jth eigenvalue of I'y is, of
course, l/l{;, and the trace of such an operator is the sum of its
eigenvalues. So we can reformulate (4.3) in the form:

(4.4) trace(I'y) = % .

5. Characterizing S? with multiplicities. In this section we will use
the formula (4.3) and the following theorem of Berger to characterize
the standard sphere by the multiplicities of its eigenvalues.

THEOREM 5.1 (Berger °63). Let Spec(A, M) = Spec(A, M;). If
dim M < 4 and M, is isometric to the standard sphere then so is M, .

We only need this theorem for the case dim A/ = 2. The proof in
the 2-dimensional case is quite simple. It uses the fact that the vol-
ume and Euler characteristic are determined by the spectrum via the
asymptotic expansion of the heat kernel. Then the Cauchy-Schwarz
inequality is employed to show the curvature must be constant. (See
Berger et al. [2].)

Let’s recall that 47" denotes the mth eigenvalue for the operator
Ly, so that A}( is the minimal, non-zero eigenvalue for L; . The next
result discusses the dependence of ,I}c on the index k.

LEMMA 5.2 (Monotonicity Theorem). Let 0 < k < j, and let /1}( and
/ljl. be the first eigenvalues of the operators L, and L; respectively.
Then A} < 4;.

Proof . By Rayleigh’s Theorem we have that ).}( = infy g1 (L, @),
out ! /2 k2 2
Lo, )= [ (1672 +56) ax

after an integration by parts. So we can now see that (L;¢, ¢) <
(Lj¢, ¢) for all ¢ because k < j, and, therefore, 1; < A;. Now
suppose A}c = A]l- = A with eigenfunctions ¢ and y respectively; then
Ly =4Ai¢ and Ly = Ay, sothat (L;y, ¢) = (Lyo, ¥). As aresult,

aw (1ax) )7 (7)< (i V) v) 4 (7-9)

but dix( f j—x) is self-adjoint, so (k2 — jz)(SJ‘% , ¢) = 0. But first eigen-
functions are non-negative; hence the expression (% , ¢) is the inte-
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gral of a non-negative, non-trivial function, so (Sj‘é , ¢ > 0; this means
k = j. This is a contradiction, so we must have A} < 4;. |

Let DSpec(—A) ={A1, A2, ..., Am, ...} be the list of distinct non-
zero eigenvalues of —A, in which 4; < A; whenever i < j. Also, recall
that E; denotes the eigenspace associated with the eigenvalue 4.

LEMMA 5.3. Let Am € DSpec(—A) and assume dimE; =2m + 1
for all m € N. Then for each m € N,
i+1
Am = )«{,;__j
forall j suchthat 0<j<m-1.

Proof. The proof is by induction on m. For the case m = 1 we
have j = 0 and dim Ezl = 3. As a result, it must be the case that
A1 = Al for some r. Now, suppose r # 1. Then by the minimality
of 4; we must have 1; < A} so that ! < A} for r > 1, but this
contradicts Lemma 5.2. So A; = A} and the m =1 case is finished.

Now assume forall m e {1, ..., n} that A, = l{n+_1j for all j such
that 0 < j < m — 1. It must be proved that the conclusion holds for
the case m =n+1. Now, since dimE; =2(n+ 1)+ 1, there exist
n+ 1 pairs (k,-,jki) € N x N such that k; < ky < -+ < kpy1, and

Anstl = Ai’f" forall ie{l,...,n+1}. There are n+ 1 of the distinct
integers Ilci so k,.1 > n, and by the induction hypothesis there is no
Am for m < n, which is a type k,,; eigenvalue. So it must be the
case that ji =1, and, therefore, 4,4 = Ay

Now we want to show that &,y =n+1. Suppose not; then &, >
n + 1, and, as a result, one of two situations occurs. Either for some
i<n+1, ki =n+1 and then Ji, =1, so that

1 1
A'H—l = lki - lkn+l i
or for some r > 1, A}, = Ayyr > Ayy1 so that
1
A >al

n+l

In either situation the monotonicity theorem is contradicted, so we
must have k,,; = n+ 1. And now, for i < n + 1 there is no other
choice but to have k; = i. But we can re-index so that k; =n+1—j.
With the use of the induction hypothesis it is easy to see that j, =
j + 1; in other words: l

Anil = /1{;:[11_]. for all j suchthat 0 < j < n.
And the proof by induction is finished. O
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THEOREM 5.4. Let (M, g) be a surface of revolution and let 1,, be
its mth distinct eigenvalue. If dim E, =2m+1 for all m, then the
metric g is the standard (i.e. constant curvature) metric on S?.

Proof. By Lemma 5.3, it is easy to see for all k¥ and j > 1 that
Ak+j—1 = A}, . Substituting this equation into the trace formulae (4.3)
for both k and k + 1 yields

1 00
>

Jj=1

and k+1 Z

/q«k+ j—1 '1k+ J
The two series can be subtracted term by term, because of the absolute
convergence, to obtain:

r ot _1
k k+1_/1k'

Asaresult, 4; = k(k+1) for all kK € N. But these are the eigenvalues
for the standard sphere and, since the multiplicities are those of the
sphere, the Berger theorem, i.e. Theorem 5.1, finishes the proof. O

6. A property of eigenfunctions which characterizes S2. The the-
orem of this section was discovered during a search for isospectral
potentials for the Laplacian on surfaces of revolution.

The problem of finding the spectrum for —A plus a potential has
been addressed by many authors including Fegan [8], Guillemin and
Uribe [11], and Weinstein [17]. In the first two papers above, isospec-
tral potentials for homogeneous spaces are found. In an example, the
second paper addresses the problem on the standard SZ. In this case,
it is clear that their technique depends on the fact that products of
highest weight eigenfunctions are also eigenfunctions. (In our nota-
tion these are the eigenfunctions u}c.) So in an attempt to generalize
these techniques to other surfaces of revolution one might ask, first of
all, is the square of an eigenfunction also an eigenfunction? We found
the answer to be no in every case except the standard sphere, and this
leads to another characterization theorem. (Compare with Cheng [5].)

The standard metric on $? has the following property: If u}(x) is
the eigenfunction for A}, then [u}(x)]? is the eigenfunction for A},
It will now be shown that the standard metric is the only one with this
property.
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THEOREM 6.1. Let (M, g) be a surface of revolution with metric
(1.1). If h and h? are both eigenfunctions of —A, then the metric is
the standard (i.e. constant curvature) metric on S?.

Proof. The expansion (2.2) shows that if 4(x, 6) and A%(x, 6) are
both eigenfunctions then there exists a k type eigenfunction u(x)
such that u2(x) is a 2k type eigenfunction. So the problem reduces
to a problem regarding the functions # and u?. Let A be the eigen-
value for u, 5 be the eigenvalue for u2, and let 4 = sup /. So by
hypothesis we have a system of equations:

2
(6.1) di‘; (f(x)%) _%u:_w,
2 2
6.2) 4 (f(x)‘f,—‘;—) }‘(';) S

We expand (6.2) to obtain

(6.3) 2u2‘—i— (f( )Zi) +2f (d”) - ;-(’%M —y

Multiplying (6.1) by —2u and adding this to (6.3) gives us

du (24 — 17)f-i—2k2
2/ ( )‘ 7o)

or equivalently,
du\?  (2A-n)f+2k? ,
(64) (E) -

From equation (6.4) it can be shown that the eigenvalue n depends
on A as follows (see Engman [7] for a proof):

k2
n=2 (A + Y )
So that equation (6.4) simplifies to:
2
(6.5) (fg—z) =k? (1 — %) u?,

and this equation is differentiated to obtain:

du d du k2 df Sx)\ . du
2 I (f(x)d_x) =—Tax" 2”"2( T) U
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Now substitute equation (6.1) into the left-hand side of this equation

and we get: )
k2 df S = 2k
S (- 2)
Next, we square both sides and substitute (6.5) into the right-hand
side of the result to obtain:

:];1; (%)2u4=k2 (2/1_253) (1——f—(Ai)) ut,

and because u*(x) >0 a.e. on (-1, 1) we can divide by u* a.e. on
this interval and simplify to get the following equation for smooth
functions f:

(6.6) (jﬁ) +5 (2,1 2k2> f_%j_(z/l 25)

By putting ¢ = (4/k?)(24 — 2k?/A4)? we see that (6.6) simplifies to:

2
(6.7) (%) =c(A-f).
Differentiating one more time produces:
JAf df __ df
dx dx2~ Tdx’

so the smooth solutions that we seek are those satisfying the boundary
value problem:
a’f ¢
dx= 72
f(=1)=0=f(1) and f'(-1)=2=-f'(1).
Clearly, the differential equation has a quadratic solution and the
boundary conditions show that the solution is:

f(x)=(1-x%).
As we saw in §1 this function gives us the standard metric, i.e. the one
with Gauss curvature, k(x) = 1.
This ends the proof. O
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