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Ideas underlying the proof of the "simple" trace formula are used
to show the following. Let F be a global field, and A its ring of
adeles. Let π be a cuspidal representation of GL(«, A) which has
a supercuspidal component, and ω a unitary character of A x / F x .
Let So be a complex number such that for every separable extension
E of F of degree n, the L-function L(s, ω o N o r m ^ ) over E
vanishes at s = s0 to the order m > 0 . Then the product L-function
L(s, π <g> ω x π) vanishes at s = So to the order m . This result is
a reflection of the fact that the tensor product of a finite dimensional
representation with its contragredient contains a copy of the trivial
representation.

Let F be a global field, A its ring of adeles and Ax its group
of ideles. Denote by G the group scheme GL(n) over F, and put
G = G(F), G = G(A), and Z ~ Fx , Z ~ Ax for the correspond-
ing centers. Fix a unitary character e of Z/Z, and signify by π a
cuspidal representation of G whose central character is ε. For al-
most all F-places v the component πv of π at υ is unramified and
is determined by a semi-simple conjugacy class t(πv) in G = G(C)
with eigenvalues (zj(πυ); 1 < i < n). Given a finite dimensional
representation r of G, and a finite set V of F-places containing
the archimedean places and those where πv is ramified, one has the
L-function

Lv(s, π, r) = H det(I-q-sr(t(πv)))-1

which converges absolutely in some right half plane Re(s) >> 1. Here
qυ is the cardinality of the residue field of the ring Rυ of integers in
the completion Fυ of F at v.

In this paper we consider the representation r of G on the (n2— 1)-
dimensional space M of n xn complex matrices with trace zero, by
the adjoint action r(g)m = Ad(g)m = gmg~ι (m e M, g e G).
More generally we can introduce the representation Adj of G x C x

by Adj((g, z)) = zr(g), and hence for any character ω of Z/Z the
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L-function

Lv(s, π, ω, Adj) = f ] det(/- qϊst{ωυ)r{t{πv)))-\

Here V contains all places υ where πv or the component ωυ of ω
is ramified, and t(ωv) = coυ(πυ) π_υ is a generator of the maximal
ideal in Rv.

In fact the full L-function is defined as a product over all υ of local
L-functions. These are introduced in the /?-adic case as (a quotient
of) the "greatest common denominator" of a family of integrals whose
definition is recalled from [JPS] after Proposition 3 below. The local
L-functions in the archimedean case are introduced below as a quo-
tient of the L-factors studied in [JS1]. We denote by L(s, π, . . .)
the full L-function.

More precisely, we have

Lv(s, π, ω, Adj) = Lv(s, π <g> ω x π)/Lv(s, ω),

where Lv(s9 π\ x πi) denotes the partial L-function attached to the
cuspidal GL(/t;, A)-modules πz (/ = 1,2) and the tensor prod-
uct of the standard representation of Gi = GL(rt\, C) and Gι =
GL(«2 > C). This provides a natural definition for the complete func-
tion L(s9 π , ω, Adj) globally, and also locally. This definition per-
mits using the results of [JPS] and [JS1] mentioned above. In partic-
ular, for any cuspidal G-module π , the L-function L(s9 π , ω, Adj)
has analytic continuation to the entire complex s-plane.

To simplify the notations we shall assume, when ω Φ 1, that ω
does not factorize through z »-> v{z) = \z\ this last case can easily
be reduced to the case of ω = 1. Indeed, L(s, π, ω ® vs', Adj) =
L(s + sf, π, ω, Adj). Our main result is the following.

1. THEOREM. Suppose that the cuspidal G-rnodule π has a supercus-
pidal component, and ω is a character of Z/Z of finite order for which
the assumption (Ass E, ώ) below is satisfied for all separable field ex-
tensions E of F of degree n. Then the L-function L(s9 π , ω, Adj)
is entire, unless ωφ\ and π®ω ~ π . In this last case the L-function
is holomorphic outside s = 0 and s = 1. There it has simple poles.

To state (Ass E, ω) note that given any separable field exten-
sion E of degree n of F there is a finite galois extension K of
F, containing E, such that ω corresponds by class field theory to a
character, denoted again by ω, of the galois group / = Gdl(K/F).
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Denote by H = Gdl(K/E) the subgroup of / corresponding to E,
and by ω\E the restriction of ω to H. It corresponds to a charac-
ter, denoted again by ω\E > of the idele class group A^/Ex of E.
When E/F is galois, and NE/F *S th e norm map from E to F, then
ω|2? = ω o JYE//Γ . Our assumption is the following.

(Ass; E, ω) 7%e quotient L(s9 ω\E)/L(s, ω) of the Artin {or
Hecke, by class field theory) L-functions attached to the characters ω\E
of Gvi(K/E) = H and ω of Gdλ{K/F) = / , is entire, except at s = 0
and s = 1 when ω Φ 1 and ω\E = 1.

If E/F is an abelian extension, (Ass E, ώ) follows by the product
decomposition L(s, ω\E) = Πζ L(s, ωζ), where ζ runs through the
set of characters of Gal(E/F). More generally, (Ass E, ώ) is known
when E/F is galois, and when the galois group of the galois closure
of E over F is solvable, for ω = 1 (see, e.g., [CF], p. 225, and the
survey article [W]). For a general E we have

L(s, ω\E) = L(s, Indjy(ω|E)) = L(s, ω)L(s, p),

where the representation Ind^(ω|£") of / = Gdλ(K/F) induced from
the character ω\E of H, contains the character ω with multiplicity
one (by Frobenius reciprocity); p is the quotient by ω of Ind^(ω|2s).
Artin's conjecture for / now implies that L(s, p) is entire, unless
ω\E = 1 and ω Φ 1, in which case L(s, />) is holomorphic except at
s = 0, 1, where it has a simple pole. When [E : F] = n, ω = 1 and
AT is a galois closure of E/F, then / = Gdλ{K/F) is a quotient of
the symmetric group Sn . Artin's conjecture is known to hold for S^
and £4, hence (Ass; E9 I) holds for all E of degree 3 or 4 over
F, and Theorem 1 holds unconditionally (when ω = 1) for GL(3)
and GL(4), as well as for GL(2).

The conclusion of Theorem 1 can be rephrased as asserting that
L(s, ω) divides L{s, π ® ω x π) when π®ωφπorω=\, namely

the quotient is entire, and that the quotient is holomorphic outside s =

0, 1, if π®ω~π and ω Φ 1 of course we assume (Ass E, ω) for
all separable extensions E of F of degree n. Note that the product
L-function L(s, π\ x πι) has been shown in [JS], [JS1], [JPS] and
(differently) in [MW] to be entire unless %2 — n\. In this last case the
L-function is holomorphic outside 5 = 0, 1, and has a simple pole at
s = 0 and s=\. This pole is matched by the simple pole of L(s, ω)
when ω = 1. Hence L(s, π, 1, Adj) is also entire.

Another way to state the conclusion of Theorem 1 is that // L(s, ω)
vanishes at s = SQ to the order m > 0, then so does L(s, π ® ω x π),
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provided that (Ass E, ώ) is satisfied for all separable extensions E of
F of degree n. Note that L(s, ω) does not vanish on |Res - \\ > \ .

Yet another restatement of the Theorem: Let π be a cuspidal G-
module with a supercuspidal component, and ω a unitary character
of Z/Z. Let SQ be a complex number such that for every separable
extension E of F of degree n, the L-function L(s, ω\E) vanishes at
s = so to the order m > 0. Then L(s, π ® ω x π) vanishes at s = so
to the order m. This is the statement which is proven below. Note
that the assumption that ω is of finite order was put above only for
convenience. Embedding A£ as a torus in G, the character ω\E can
be defined also by (ω\E)(x) = ω(detx) O Π X G A ^ C G . In general
ω would be a character of a Weil group, and not a finite galois group.

When n = 2 the three dimensional representation Adj of GL(2, C)
is the symmetric square Sym2 representation, and the holomorphy of
the L-function L(s, ω Θ Sym2π) (s ^ 0, 1 ifπ^ωc^π.ωφl) is
proven in [GJ] using the Rankin-Selberg technique of Shimura [Sh],
and in [Fl] using a trace formula. Another proof was suggested by
Zagier [Z] in the context of SL(2, R) and generalized by Jacquet-
Zagier [JZ] to the context of π on GL(2, A). This last technique is
the one extended to the context of cuspidal π with a supercuspidal
component and arbitrary n > 2, in the present paper.

The path followed in [Z] and [JZ] is to compute the integral

/ Kφ(x, x)E(x, Φ, ω, s)dx

on x in ZG\G, where E(x, Φ, ω, s) is an Eisenstein series, and
Kφ{x ,y) the kernel representing the cuspidal spectrum in the trace
formula. The computation shows that the integral is a sum of mul-
tiples of L(s9 ω\E) (with [E : F] = 2 in the case of [Z] and [JZ]),
and on the other hand of (a sum of multiples of) L(s, π ® ω x ft),
from which the conclusion is readily deduced. However, [Z] and [JZ]
computed all terms in the integral, and reported about the complexity
of the formulae. To generalize their computations to GL(n), n > 3,
considerable effort would be required.

To bypass these difficulties in this paper we use the ideas employed
in [FK] and [F2] to establish various lifting theorems by means of a
simple trace formula. In particular we use a special class of test func-
tions φ, with one component supported on the elliptic regular set, and
another component is chosen to be supercuspidal. The first choice re-
duces the conjugacy classes contributing to Kφ(x, y) to elliptic ones
only, while the second guarantees the vanishing of the non-cuspidal
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terms in the spectral kernel. The first choice does not restrict the
applicability of our formulae. Thus our Theorem 1 is offered as an-
other example of the power and usefulness of the ideas underlying the
simple trace formula.

For a "twisted tensor" analogue of this paper see [F4].
We shall work with the space L(G) of smooth complex valued func-

tions φ on G\G which satisfy (1) φ(zg) = e(z)φ(g) (z e Z, g e G),
(2) φ is absolutely square integrable on ZG\G. The group G acts
on L(G) by right translation: (r(g)φ)(h) = φ(hg). The action is uni-
tary since ε is. The function φ e L(G) is called cuspidal if for each
proper parabolic subgroup P of G over F with unipotent radical
N we have /φ(ng)dn = 0 (n e N\N) for all g eG. Let r0 be
the restriction of r to the space LQ(G) of cusp forms in L(G). The
space LQ(G) decomposes as a direct sum with finite multiplicities of
invariant irreducible unitary G-modules called cuspidal G-modules.

Let φ be a complex valued function on G with φ(g) = ε(z)φ(zg)
( z € Z ) , compactly supported modulo Z, smooth as a function on the
archimedean part G(JFOO) of G, and bi-invariant by an open compact
subgroup of G(Af) here Ay is the ring of adeles without archimedean
components, and i ^ is the product of Fv over the archimedean
places. Fix Haar measures dgv on Gυ/Zυ (Gv = G(Fυ),Zυ its
center) for all υ such that the product of the volumes \KV/ZV n Kv\
converges; Kv is a maximal compact subgroup of Gv , chosen to be
Kυ = G(Rυ) at the finite places. Then dg = ®dgv is a measure
on G/Z. The convolution operator r(φ) = JG/z<p{g)r(g)dg is an

integral operator on L(G) with the kernel Kφ(x, y) = Σφ{x~ιyy)
(γ G G/Z). In this paper we work only with discrete functions φ .

DEFINITION. The function φ is called discrete if for every x € G
and γ e G we have φ(x~1γx) = 0 unless γ is elliptic regular.

Recall that γ is called regular if its centralizer Zy(G) is a torus, and
elliptic if it is semi-simple and Zγ(G)/Zγ(G)Z has finite volume. The
centralizer Zγ(G) of an elliptic regular γ e G is the multiplicative
group of a field extension £ of F of degree n . For a general elliptic
γ, we have that Zγ(G) is GL(m, F7) with n = m[Ff: F].

The proof of Theorem 1 is based on integrating the kernel Kφ(x, y)
on x = y against an Eisenstein series, as in [Z] and [JZ].

Identify GL(« - 1) with a subgroup of GL(Λ) via g ι-+ ( g °). Let
[/ be the unipotent radical of the upper triangular parabolic subgroup
of type (n - 1, 1). Put Q = GL{n — l)t/. Given a local field F,
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let S(Fn) be the space of smooth and rapidly decreasing (if F is
archimedean), or locally constant compactly supported (if F is non-
archimedean) complex valued functions on Fn . Denote by Φ° the
characteristic function of Rn in Fn if F is non-archimedean. For
a global field F let S(An) be the linear span of the functions Φ =
(g)Φϋ, Φv e S(F£) for all υ, Φv is Φ° for almost all v. Put
ε = (0, . . . , 0, 1) (G A"). The integral of

(1.1) f(g,s) = ω(detg)\detg\s I Φ(aeg)\a\ns ωn (a) dx a
JAX

converges absolutely, uniformly in compact subsets of Res > £ . The
absolute value is normalized as usual, and ω is a character of Ax/Fx .

It follows form Lemmas (11.5), (11.6) of [GoJ] that the Eisenstein
series

E(g, Φ, ω, s) = Σf(γg,s) (y G ZQ\G)

converges absolutely in Res > 1. In [JS], (4.2), p. 545, and [JS2],
(3.5), p. 7, it is shown (with a slight modification caused by the pres-
ence of ω here) that E(g, Φ, ω, s) extends to a meromorphic func-
tion on Res > 0, in fact to the entire complex s-plane with a func-
tional equation E(g, Φ, ω, s) = E((g~ι, Φ, ω~ι, 1 -s) here 'g is
the transpose of g and Φ is the Fourier transform of Φ. Moreover,
E(g9 Φ, ω, s) is slowly increasing in g G G!\G, and it is holomor-
phic except for a possible simple pole at s = 1 and 0. Note that f(g)
and E{g, s) are Z-invariant.

2. PROPOSITION. For any character ω of Ax/Fx, Schwartz func-
tion Φ in S(An), and discrete function <p on G, for each exten-
sion E of degree n of F there is an entire holomorphic function
A(Φ, φ, ω, E, s) in s such that

(2.1) / Kφ(xyx)E{x,Φ, ω, s)dx
JZG\G

on Res > 1. The sum over E ranges over a finite set depending on
(the support of)φ.

Proof. Since the function φ is discrete the sum in Kφ(x, x) =
Σφ(x~λyx) ranges only over the elliptic regular elements γ in G/Z .
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It can be expressed as

(2.2) Kφ(x,x) = Σ W{T)]~λ Σ Σ <P(X-Iδ-Iyδx).
T γeτ/z δeG/τ

Here T ranges over a set of representatives for the conjugacy classes in
G of elliptic tori (T is isomorphic over F to the multiplicative group
of a field extension E of degree n of F T is uniquely determined
by such E, and each such E is so obtained). The cardinality of the
Weyl group (normalizer/centralizer) W{T) of T in G is denoted by
[W{T)]. It is easy to check that for any elliptic T we have G = TQ,
and T Π Q = {1}. Hence the sum over δ can be taken to range over

β .
The left side of (2.1) is equal, in the domain of absolute convergence

of the series which defines the Eisenstein series, to

/
JZG\G

K9(x, x) Y" f(yχ > * ) d x = / K<P(X > * ) / ( * ,s)dx,
γeZQ\G JzQ\G

since x H-> Kφ(x,x) is left G-invariant. Substituting (2.2) this is
equal to

1 Σ ί
T γeT/Z JZ\

note that x \-> f(x, s) is left Q-invariant.
To justify the change of summation and integration note that given

φ, the sums over T and γ are finite. Indeed, the coefficients of the
characteristic polynomial of γ are rational, and lie in a compact set
depending on the support of φ (and a discrete subset of a compact
is finite). This explains also the finiteness assertion at the end of the
proposition.

Substituting now the expression (1.1) for f(x, s) we obtain a sum
over T and γ of

/ φ(x~ιγx)f(x, s)dx = / φ(x~ιγx)ω(detx)\detx\sΦ(εx)dx
Jz\G JG

= \ <P(x~lyx) Φ(etx)ω(dettx)\dettx\sdtdx.
JT\G JΊ

Here T = T(A) ~ A£, where T is the centralizer of 7 in G, and
T(F) = T. The inner integral, over T, is a "Tate integral" for
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L(s, (ύ\E) it is a multiple of L(s, ω\E) by a function which is holo-
morphic in s in C and smooth in x, depending on Φ, ω and E.
The integral over x ranges over a compact in T\G, since φ is com-
pactly supported modulo Z. The proposition follows.

We now turn to the spectral expression for the kernel Kφ(x,y).

DEFINITION. The function φ on G is called cuspidal if for every
x, y in G and every proper F-parabolic subgroup P_ of G, we have
JNφ(xny)dn = 0, where N = jV(A) is the unipotent radical of P =

When φ is cuspidal, the convolution operator r(φ) factorizes
through the projection on LQ(G) . Then r(φ) is an integral opera-
tor whose kernel has the form

Kφ(x,y) = Σκ«φ{x,y), where K*(x9y) = Σ{r{φ)φπ){x)φ\y).

The sum over π ranges over all cuspidal G-modules in LQ(G) . The
φπ range over an orthonormal basis consisting of K = Π υ ^-finite
vectors in π. The φπ are rapidly decreasing functions and the sum
over φπ is finite for each ψ (uniformly in x and y) since φ is In-
finite. The sum over π converges in L2, and hence also in a space of
rapidly decreasing functions. Hence Kφ(x, y) is rapidly decreasing
in x and y, and the product of Kφ(x, x) with the slowly increasing
functions E(x,Φyω,s), is integrable over Z<7\G. The resulting
integral, which is equal to (2.1), can also be expressed then in the
form

Σ Σ / (r(φ)φπ)(x)φπ(x)E(x, Φ,ω,s)dx.
π φπ

To prove Theorem 1 we now assume that L(s, ω) is zero at s = SQ .
It is well known then that |Reso - \\ < 5 > hence SQ Φ 0, 1. If SQ
is a zero of order m of L(s, ω), then by (Ass E, ω) the function
L(s, ω\E) vanishes at s0 to the order m. Making this assumption for
every separable field extension E of degree n of F we conclude that
(2.1) vanishes at s = so to the order m, and that for all j (0 < j < m)
we have

(2 3 ) ; ΣΣjZG G(π(<P)Φπ)(x)φπ(x)E{j)(x, Φ, ω, so)dx = 0.

At our disposal we have all cuspidal discrete functions ψ on G,
and our aim is to show the vanishing of some summands in the last
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double sum over n and φπ. In fact, fix a π for which Theorem 1
will now be proven. Let V be a finite set of F-primes, containing
the archimedean primes and those where π or ω ramify. Consider
φ = (g^ φv (product over all F-places v ) where each φυ is a smooth
compactly supported modulo Zv function on Gv which transforms
under Zv via e~ι. For almost all υ the function φυ is the unit
element φζ in the Hecke algebra H v of Λ^-biinvariant (compactly
supported modulo Zv transforming under Zυ via ε " 1 ) functions on
Gv . For all v g V the component φv is taken to be spherical, namely
in Mv.

Each of the operators nv{φv) for v g V factorizes through the
projection on the subspace πv

v of Kυ-fixed vectors in πv. This
subspace is zero unless πυ is unramified, in which case πv

 v is one-
dimensional. On this ^-fixed vector, the operator πv(φυ) acts as the
scalar φ^{t{πυ)), where φ^ denotes the Satake transform of φv . Put
φv(ί(πv)) for the product over υ & V of φX{t{πυ))9 and πy(φv) =

Kv(<Pv) Then (2.3) j takes the form

(2.4),

where

(2.5)7 a(π, φy, j ,Φ, ω, s)

(πv(φv)φ*)(x)φπ(x)E{j)(x,Φ,

The sum over π ranges over the cuspidal G-modules π = 0 πυ with
πf ^ {0} for all v g K; π κ ' F denotes the space of Π ^ F ^ "
fixed vectors in π. The sum over φπ ranges over those elements in
the orthonormal basis of π which appears in (2.3) j , which, for any
v g V, as functions in x e Gυ , are Λ^-invariant and eigenfunctions
of πυ(φv), ψv e Uv, with eigenvalues t(πυ). In particular φπ{x) =
ΦUxv) Ylvtv ΦίM, for such φζ (v£V).

A standard argument (see, e.g., Theorem 2 in [FK] in a more elab-
orate situation), based on the absolute convergence of the sum over
π in (2.4) j , standard estimates on the Hecke parameter t(πv) of the
unitary unramified πv (v g V), and the Stone-Weierstrass theorem,
implies the following.

3. PROPOSITION. Let π be a cuspidal G-module which has a su-
percuspidal component. Let ω be a character of TLjZ. Suppose that
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L(s, co\E) vanishes at s = SQ to the order m for every separable ex-
tension E of F of degree n. Then for any Φ and a function φy such
that φ is cuspidal and discrete with any choice of <g)φv (v g V), we
have that a(π, φy, j ; , Φ, ω, so) is zero.

We shall now recall the relation between the summands in (2.5) j
and the L-function L(s, π<g>ω x π ) . Let ψ be an additive non-trivial
character of A modulo F (into the unit circle in C), and denote by
ψυ its component at v . An irreducible admissible Gυ -module πυ is
called generic if H o m ^ ( ^ , ψυ) Φ {0} . By [GK], or Corollary 5.17 of
[BZ], such πv embeds in the Gv-module I n d ( ^ v ; Gv, Nv) induced
from the character n = (ny) >-• ψ(n) = KΣi<kn n M"+i) of the
unipotent upper triangular subgroup Nυ of Gv . Moreover, this em-
bedding is unique, equivalently the dimension of H o m ^ {nυ , ψυ) is at
most one. The embedding is given by nv 3 ξ H-* Wξ, where Wξ(g) =
λ(π(g)ζ) {g € G) and λ Φ 0 is a fixed element in H o m ^ ί ^ , ψυ).
Since nv is admissible, each of the functions Wξ is smooth (under
right action by Gυ). If πv is generic, denote by W(πυ) its realiza-
tion in I n d ( ^ ) W(πυ) is called the Whittaker model of πv . It is
well-known that any component of a cuspidal G-module is generic.

Given π, consider Wy Φ 0 in W(πv) for all i;, such that Wy is the
normalized unramified vector Wv° (it is ^-invariant and Wv°(l) =
1) for all v £ V. The function φ'(x) = Σ p G ^ \ β ^ ' ( / λ X ) ' where
^ ( x ) = Πυ Wy(xv), is a cuspidal function in the space of π c LQ(G) .
Substituting the series definition of E(x ,Φ,ω,s) = ΣZQ\G f(yχ> s)
in

/ φ"(x)φ'(x)E(x, Φ,ω,s)dx {φ" eπc L0(G))
JZG\G

one obtains

φ"(x)φ'(x)f(x ,s)dx= f φn{x)W\x)f{x, 5) rfx.
ZQ\G JZN\G

Since W'{nx) = ^(fl)W(.x), and fN^φ"(nx)ψ(n)dn = Wφ»(x)
is the Whittaker function associated to the cusp form φ", the integral
is equal to

Wφ,,{x)W\x)f{x,s)dx

Wώ,,{χ)Wf{x)Φ{εx)ω(άt\x)\άz\x\sdx.
N\G
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If φ" is also of the form φ"(x) = ΣPeN\Q W"{px), where W"{x) =
Ylυ W"(xv) is factorizable, then Wφ» = W" and the integral factorizes
as a product over all υ of the local integrals

(3.1) / Wi\x)ΨΌ(x)Φυ(ex)ωυ(drtx)\detx\s

υdx9
J \

provided that Φ(x) = l\v Φv{xv).
When Wl = W® = W"9 and Φ v is the characteristic function

φ£ of R" (and v & V), the integral (3.1) is easily seen (on using
Schur function computations; see [F3], p. 305) to be equal to
L(s 9 nυ ® ωv x nv). For a non-archimedean v E V the L-factor
is defined in [JPS], Theorem 2.7, as a "g.c.d" of the integrals (3.1) for
all WXv , W2υ G ϊΓ(π v) and Φv . In the archimedean case the L-f actor
is defined in [JS1], Theorem 5.1. It is shown in [JPS] and [JS1] that
the L-f actor lies in the span of the integrals (3.1). The product of
the L-factors, as well as the various manipulations above, converges
absolutely for s in some right half plane.

4. LEMMA. The functions Wfj G W{πv) {and so φ' e π) can be
chosen to have the property that φ! factorizes as 0 ^ φr

v .

Proof. Since W^ is Λ^-invariant for v & V, so is φ!, and we have

where φ® is the ^-invariant function on Gυ which takes the value
1 at 1 and is the eigenfunction of the operators πυ(φυ), φv eMv ,
with the eigenvalue t(πυ).

The space π c LQ(G) is spanned by factorizable functions, namely
φ' is a finite sum over j (1 < j < J) of products ® v φf

JV of functions
φ'jυ on Gv (which are smooth, compactly supported modulo Zv,
transform under Zv via eυ), with φf

jυ = φ® for all v & V. Each
of the functions φ\υ {v G V) is (right) invariant under a congruence
subgroup Ky of the standard compact subgroup Kv of Gv . Namely
φ\v is a non-zero vector in the finite dimensional space πv

κ'v of Af-
fixed vectors in πv. The Hecke algebra H(Λ^) of ^-biinvariant
compactly supported modulo Zυ functions on Gv which transform
under Zυ via ε" 1 generate the algebra of endomorphisms of the finite
dimensional space πv

κ'v. Consider p v G H ( ^ ) such that πv(φυ) acts
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as an orthogonal projection on φ\υ . Then {®veVnv{φv))φt lies in
π, is of the form 0 ^ φ'lυ , and is defined by the Whittaker functions

y, as required.

Proof of Theorem 1. For π as in the theorem, and So as in (2.3) j ,
we shall choose Wy e W(πv) with factorizable φf(x) = 0 V φ'υ(xυ) =
ΣPeN\Q W{px) and proceed to show the vanishing of the correspond-
ing summand in (2.5) j . Recall that by the assumption of Theorem
1 there is an F-place v2 such that nVj is supercuspidal. Let ^i be
another F-place in V, say where π and ω are unramified. Put
V" = V - {υ2} and V for V" - {vx} .

Consider the matrix coefficient φv (x) = (πv2(x~ι)Φv > Φυ ) of the
supercuspidal GVi -module πVi. Note that φf

υ is a Q ° -function on
Gy2 modulo Zy2, and ( , •) denotes the natural inner product. The
function φ'v is smooth and compactly supported on GVi modulo ZVi,
and it is a supercusp form (/ φ'v (xny) dn = 0, n e NVi — unipotent
radical of any parabolic subgroup of GVi). It is well-known that a
function φ = 0 φυ whose component at v2 is a supercusp form is
cuspidal. By the Schur orthogonality relations, the convolution oper-
ator πVi{φf

v ) acts as an orthogonal projection on the subspace gener-
ated by φy . Working with φ = 0 φv whose component at v2 is φv

we then have that φ is cuspidal and that the sum in (2.5) j ranges
only over the φ (= φπ) whose component at v2 is φv (up to a scalar
multiple).

As in the proof of Lemma 4, for each υ e V we may choose φυ

in H(i^) such that nv(φυ) acts as an orthogonal projection to the
subspace of π'υ spanned by φ'v. Choosing the components φυ of φ
at v e V to be of the form φ% * φ'υ , with any φ", the sum in (2.5) j
for our π extends only over those φ in the orthonormal basis of the
chosen π c LQ(G) whose component at v Φ v\ is φ'υ . But φ is left
G-invariant, being a cusp form, and G = ( ? Π ^ Gυ Hence the only
φ which contributes to the sum in (2.5) ; is φf, whatever φυ is.

We still need to choose φv such that φ = 0 φυ be discrete. It
suffices to choose φVχ to be supported on the regular elliptic set in
GV[. Moreover, since φ'υ is right invariant under a compact open
subgroup K'υ of KVχ c GVχ, we can choose the support of φVχ to be
contained in ZVK'V . Then nVι(φVι) acts as a scalar on φf, and we
normalize φVχ so that this scalar be one.

In conclusion, for any choice of Wy e W(πv) for all v , with Wy =
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® for υ g V, and any choice of φv (v e V), we have that

JZG\G

= Π / {nv{φv)Wl){x)Wl

υ{x)Φv{εx)ωυ{άt\x)\άtXx\s

vdx
veVJNυ\Gv

L(s, πυ ®ωv x *„)

vanishes at so to the order ra. Here nVι(φVι)Wy = W^ . In fact we
may choose f̂ J to be W® e W(πυ)9 and Φ^ to be Φ$ . Since πυ

and ωVι are unramified, the corresponding integral is then equal to
the L-factor, so v\ can be deleted from the set V.

To complete the proof of Theorem 1, note that the L-function
L{s, πυ ® ωv x πv) lies in the span of the integrals (3.1). Hence the
assumption for every separable extension E of F of degree n that
L(s, ω\E) vanishes at s = SQ to the order ra, implies the vanishing
of Π i ^ , ^ ® ^ x ^ ) to the order ra. This completes the proof
of Theorem 1.
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