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OF THETA REPRESENTATIONS OF GL3

G O R D A N S A V I N

Let V be the theta representation of GL3—the two fold central
extension of GL 3 . Let W be a spherical representation of GL 3 .
We show that there is a nonzero GL3 invariant trilinear form on
V ® V* (8) W if and only if W is a lift from SL2 . In this case the
form is unique up to a scalar.

Introduction. Let A: be a global field and A its ring of adeles.
Let σ be an irreducible 3 dimensional representation of the Galois
group Γ of L Assume, for simplicity, that σ(Γ) c SL3(C). Then,
according to Langlands there exists an automoφhic representation
π c Z,2(PGL3(/c)\PGL3(A)) such that the corresponding L-functions
are equal. Consider the symmetric square of the representation σ.
Then, conjecturally, the corresponding L function will have a pole
only if the symmetric square representation contains a copy of trivial
representation. But this means that there is a quadratic form invariant
under σ and therefore σ(Γ) c SO3(C). Since SO3(C) = L SL 2 , the
automoφhic representation π should be a lift of an automoφhic rep-
resentation of SL2 . Let πv be a local component of π. If it is spher-

PGL

ical, πυ is the local lift of a representation of SL2 if πυ = indβ

 3 χ
where χ is a character of the diagonal subgroup of PGL3 given by

"•*for some unramified character μ: k* -> C*
On the other hand, Patterson and Piatetski-Shapiro [PP] have con-

structed the symmetric square L-function corresponding to a cuspidal
automoφhic representation π of PGL3. Moreover, they showed that
the residue at s = 1 of this L-function is

φ(g)θ(g)θ'(g)dg
)

where φ £ π and θ, θ' are "theta functions" of Kazhdan and Pat-
terson [KP]. They are certain automoφhic forms on GL 3—the two
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fold central extension of GL3. Let F be a local field. In [FKS] we
have constructed a smooth model (#3, V) of the local component
of "theta functions". Let (π, W) be an irreducible representation
of PGL 3 (F). From what was explained above, it is natural to ask
whether there is a GL3 invariant trilinear form on V ®V* ®W. We
have the following result:

THEOREM. Let F be a local field of the characteristic φ 2. Let
(π, W) be a spherical representation of PGL3. Then there exists a
GL3 invariant trilinear form on V <g> F* ®W if and only if π is the
lift of a representation of SL2. Moreover, the form is unique up to a
scalar.

We remark that the article of Prasad [P] was perhaps the first re-
sult indicating relationship between special values of L-functions and
invariant functional.

Acknowledgment. I would like to thank Professor S. Rallis for sug-
gesting the problem and R. Howe for the help.

Preliminaries and notation. Let Pi (resp. P2) be the standard (2,1)
(resp. (1,2) parabolic subgroup of GL 3 . Let Pi = MχU\ and
p 2 = M2U2 be standard Levi decompositions. We shall use the letter
N to denote the unipotent group of uppertriangular matrices of GL2
and GL3 and the letter T to denote the group of diagonal matrices
of GL2 and GL3. It will be clear from the context which is meant.
Finally put Nx = NnMι, N2 = NnM2 and B = TN.

Let P = MU be a parabolic subgroup and (π, V) a smooth mod-
ule. Define V(U) = span{> - π(u)v\v e V, u e U}. Then Vv =
V/V(U) is the module of coinvariants.

Let X be an algebraic variety over the field F. Then S{X) will
denote the space of locally constant, compactly supported functions on
X. Obviously, S{XX x X2) = S(Xι)®S(X2). Let q be an algebraic
function on X. Then one can define a representation π of N on
S{X) by

71 I))m=φ{nq{x))f{x)

where φ is an additive character of F . It is easy to check that
S(X)N = S(Y) where Y is the subvariety of X defined by q = 0.

We need to recall some facts about the principal series representa-
tions of GLi(F). Let St denote the Steinberg representation of GL2 .
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Let λ be a multiplicative character of F* such that λ2 = 1. Put

Let μ be a character of i 7 *. It defines a character χμ: T —> C* by
the following formula:

Let π(μ) = ind 5

 3 ^ (normalized induction). To describe the com-
position series of π(μ) we need to introduce σ\, σ2 representations
of GL3 defined as follows:

0 -+ 1 -> ind? L 3 1 -> σ2 -> 0.

Here the induction is not normalized! We need the following result
about the principal series representations. A reader can find details in
Carrier's article [C, §111].

PROPOSITION 1. The representations π(μ) are irreducible and π(μ)
= π(μ~ι) unless μ is of the two following types:

(a) μ = λ\ \±ιl2, λ2 = 1. The composition series consists of

indpLU(det) and indf^3 Stλ.
(b) μ = I | ± 1 . The composition series consists of the trivial repre-

sentation, the Steinberg representation, σγ and σ2.

The central extension and theta representation. Let ( , ) : F

{±1} be the Hubert symbol. Let GL^i 7 ) be the 2-fold central ex-
tension of GLn(F) and s: GLΠ —• GLW the section as in [FKS]. The
extension can be characterized in the following way:

fl/, bj),

where diag(αz) denotes the diagonal matrix with entries α 7. More-
over the section s is an isomorphism on N and we will identify N
and s(N). Fix a nontrivial additive character φ: F —> C*. Define a
function γ = γφ: F* -> C* by
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LEMMA 1 (Weil [Wl]). The function γ has the following properties:

(a) γ(ab) = γ(a)γ(b)(a,b),
π

DEFINITION 1. Let C2(F) be the space of locally constant functions
on i7* such that

(a) f(x) = 0 if \x\>c,

(b) f(y2x) = f(x) if W, \y2χ\<l/c,

where c is a constant depending on / .

The theta representation θ2 of GL2 can be realized on the space
of/unctions / on F* such that |x | 1 / 4 /(x) e C2(F). The action of
GL2 is given by the following formulae [F]:

θ2 (s ( J "^ ) ) /(x) = cy{x)\x\χl2 JF \y\ι'2f(xy2)Φ(xy)dy

for some constant c.

PROPOSITION 2. Let λ be a multiplicative character of F* such that
λ2 = 1. Then Θ2 = θ2® vl(det).

Proof. Let 0 b£jhe e v e n Weil representation of SL2. Let G be
the subgroup of GL2 consisting of the elements whose determinant
is a square in F*. It is easy to see that θ extends to G and that

02 = i n d ^ 2 θ. Since GL2/<? = F*/(F*)2 the proposition follows.

DEFINITION 2. Let H be a group and C its center. We say that H
is a Heisenberg group if H/C is abelian.

To give a characterization of #3 we need a simple result about
Heisenberg groups (see [KP, §0.3]):
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LEMMA 2. Let H be a Heisenberg group and C its center. Let
δ be a character of C. Assume that δ is faithful on [H, H] c C.
Then there is unique irreducible representation πs of H such that C
acts by multiplication by δ. Moreover, πs Θ π^ is just the regular
representation of H/C. D

Let T be the inverse image of Γ J n GL3. Let Z be the center of
GL3 and Z the^inverse image in GL. It is easy to check that Z is
the center of GL 3 . The group f is a Heisenberg group with center
C = Z s(Γ2) where T2 is the group of diagonal matrices whose
entries are squares. Define a character δ of C by

δ(s(z)s(t2)ζ) = γ(z)ζ, ζe{±l}.

Let πs be the corresponding representation of T. Define p to be, as
usual,

Ia \
a

c

In [FKS] we have the following theorem.

THEOREM 1. There is a unique representation (#3, V) 0/GL3 such
that VN = pχl2 ® πs. The properties of Θ3 are:

(1) 03(s(z)) = γ(z)Id, zeZ.

(3) Let Vo = V(Uι)Π V(U2) then Vo = S(F* x F) with the action
of B given by

fa b

031 s I d I I f(*> y) = (χ> rf)l*</|1/2/(«*, ** + <ty),

1 uy

(4) F(C/i)-

/n particular, it follows that we have a filtration of V as a B module
such that the quotients are Vo, Vux{N\)9 VU2(N2) and VN.

REMARK. Note that the dual representation #3 is obtained by re-

placing φ by φ.
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Proof of the Theorem. Let (π,W) be a representation of GL 3.
Then the existence of a nontrivial trilinear GL3 invariant form is
equivalent to the existence of a nontrivial GL3 intertwining map from
F ® F * to W*. Hence we have to compute dimHomG(F(8)F*, W).
Assume that π = indf χ. Then by the Frobenius reciprocity we
have dimHomG(F ® V*, W) = dimHomΓ((K ® V*)N, pχ). In
other words we have restricted the problem tocomputing the Γ-
equivariant functionals on ( F 0 F * ) A Γ . From B filtration of V it
follows that (V® V*)N has a filtration whose quotients are
( ^ ( J V O β K ^ ί ^ ) ) ^ , ( ^ ( Λ i ) ® ^ ^ ) ) ^ and K*®

Let Γμ be the functional on S(F*) given by

Obviously, we have the following simple proposition:

PROPOSITION 3. The functional Γμ is unique up to a nonzero con-
stant μ-equivariant functional on S(F*) with respect to the standard
action of F*. D

Next we need to describe i7* equivariant functionals on Cι{F).

PROPOSITION 4 (see [W2]). Let μ be a character of F*. The func-
tional Γμ extends to CiiF) if μ2 φ\.

Proof. Let (9 be the ring of integers of F and w a uniformizing
element. Put q = \τu\~ι. Assume that μ2{x) = \x\~s Let / e
Cι{F). Consider the integral

Λ,(/)= / (f(x)-f(zσ2x))\x\^
JF* \X\

Obviously As(f) is defined for every s and if Rc(s) > 0 then

= (ί-qs)Γμ(f).

This formula extends the functional Γμ to CiiF) if μ2{x) = \x\~s

and s Φ 0. If μ2 is ramified then Γμ extends by taking the Principal
Value integral. The proposition is proved.

PROPOSITIONS. Let χ be a character ofT. The space of χ-equivari-
ant linear functionals on VN®V^ is at most \-dimensional It has the
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dimension one if and only if χ = pλ

λl b ) =μda)μ2(b)μ3(c),

μj = 1 and μ{ - μ2 μ3 = 1.

Proof. It follows from Lemma 2.

Let μ be a multiplicative character of F*. Let δι>2(μ), δ\>3(μ)
and δ\y3(μ) be the characters of T defined by

δl2(μ)(t) = μ(a)μ(bΓι,

δ23(μ)(ή = μ(b)μ{c)-1,

δl3(μ)(t) = μ(a)μ(cΓι

where t = diag(α, b, c). Let Wτ>χ denote the space of χ-equivariant
functional on a smooth T module W.

PROPOSITION 6.

(a) dim(FC/ (N\) ® VA (Nι))L'χ = <
1 ι i t 0 otherwise.

T v Γ 1 */Z — pδi3{μ) 9
(b) dim(Ft/ (Λ2) ® Kr/ ( A ^ ) ) ^ = ̂2 2 2 (̂  0 otherwise.

Proof. Using property (2) of 03 and the description of 02 it is easy
to check that VUχ (Nx) = S(F*) and therefore (VUχ (N{) ® K^ (iVi))^ =

with the action of T given by

(I Jj/ ( x ) =lclb f(τx)
Part (a) now follows from Proposition 3. Part (b) is proved analo-
gously.

PROPOSITION 7.

0 otherwise.

Proof. Using property (3) of 03 it follows that
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with the action of TN\ given by

ab
a n d

After taking the Fourier transform in the second variable the action
becomes

0 3 Θ 03* ( I 1 \\Ax>y) = fix > y)Φ(nxy).

Therefore (Fo ® V£)N = S(F*) with the action of T given by

'a

The proposition follows from Proposition 3.
Let us call T equivariant functionals appearing in Proposition 5

(resp. Propositions 6 and 7) of type I (resp. II and III). Since VN® V£
is a quotient of (V Θ V*)N, functionals of type I extend to (F ®
V*)N. In the next several propositions we are studying extension of
the functionals of type II and III to (V ® K*)τv.

PROPOSITION 8. The functionals of type II extend to (V ® V*)N if
and only if μ2 φ\.

Proof, Since VJJ is a quotient of F it follows that (Vu ΘVΛ)N is

a quotient of (F ® F * ) ^ . Recall that VUχ = 02 ® I det I 1/ 4. The value

of a pδ\2{μ) equivariant functional on {Vux{N\)®Vu {N\))NX is given

by the following integral.

I(ftof*)— I \x\ι/2f(x)f*(x)u(x~1) —
1μ\J <y J ) — / I Ή J \ Λ ) J V Λ/A ί 'v-Λ ' / i ^ i *

JF* \X\

If / G 02 ® I det I1/4 and /* e 02 ® I det I1/4 it follows from the de-
scription of 02 that | X | 1 / 4 / ( J C ) and \x\ι/*f*(x) eC2(F). Therefore
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Iμ defines a pδ\2(μ) equivariant functional on ( F ® F*)^ if μ2 φ 1
by Proposition 4. It remains to deal with μ, μ2 = 1. Let φ e F^ be
a function given by

| JC |~ 1 / 4 if \x\ < 1 and x is a square,

0 otherwise.

Let
/ / 2

2 V v 1

= /

= /

T h e p r o j e c t i o n o f i ; o n ( J f y ® F ^ ) ^ l i e s i n ( F ^ ( i V Ί ) < 8 > F ^ ( i ^

$ ( F * ) a n d i s g i v e n b y

\w\2φ(x)φ*{x) - \w\3φ(π2x)φ*(vσ2x)

-\τu\ if |JC| = \τu\~2 and x is a square,

0 otherwise.

It follows that Iμ(v) < 0. On the other hand, if the functional Iμ

extends to {V®V*)N then the equivariance implies Iμ(v) = 0. Con-
tradiction. Similar conclusions can be obtained for the characters
pδ23(μ). The proposition is proved.

Let mij{μ) be the multiplicity of pδij(μ) equivariant functionals
on (F ® F*)τv. If the principal series representation π(μ) is irre-
ducible then π(μ) = indβ δij(μ) for all 1 < / < j < 3 [C]. In particu-
lar, rriij(μ) is independent of /, j . Therefore, we have obtained the
following corollary.

COROLLARY 1. The functional pδ\i(μ) of type III extends to
(V Θ VηN if μ φ I \±ι, μ2 φ \ | ± 2 am/ //2 ^ 1. If μ2 = I
and μ ψ 1 Â̂ n /ί rfo^ not extend. D

It remains to deal with ρδ\^{\).

PROPOSITION 9. The functional pδ\^{\) of type III ίioes1 A20ί extend
to (V®V*)N.

Proof. The value of a pδ\τ,(μ) equivariant functional on
is given by the following integral:

ί
JF

F* JF \

Let ψ be a function on F* x F given by

l if |x| < 1 and |y| = 1,

θ otherwise.
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Then φ eV(Uι) and let

v = \w\φ ®φ*

The projection of υ on {V{UX) ® V*(U{])Uχ lies in (Vo ® Vζ)Uγ =
S(F* x F) and is given by

\w\φ(x, y)^*(x, y) - \w\φ(wx,

_ Γ —|-cc71 if |JC| = I-CCJI"1 and \y\ = 1,

\ 0 otherwise.

It follows that I\{v) < 0. On the other hand, if the functional I\
extends to (F® V*)χ then the equivariance implies I\(v) = 0. Con-
tradiction. The proposition is proved.

COROLLARY 2. Let χ be a character of T. Then dim(F ® V*)^*

< 1. •

Let μ\, //2? /̂ 3 be three characters of i7* such that μj = 1 and
μi#μ2 μ3 = I Let / be a character of Γ defined by χ(diag(α5 Z?? c))
= μ\(a)μ2(b)μ3(c). Define π(//i, μ2, μ$) = indfχ (normalized in-
duction). It is unitary irreducible representation. We are now ready
to formulate our main result:

THEOREM. Let (π, W) be a quotient of a principal series represen-
tation of GL 3 . Then the space of GL3 invariant trilinear forms on
V <g> V* ® W is 0 or 1 dimensional The dimension is 0 unless π is
one of the following:

(a) π(μι, μ2, μ3) > μj = 1
(b) π(μ), μ2φ\-\±ι and
(c) ίr/v/α/ representation,

(d) ? L 2

(e) £V
(f) σ!, σ2 and St.

/n cases (a)-(d) the dimension is 1. In cases (e) αnrf (f) ίΛ^ dimension

is < 1.

Proof. Clearly the dimension is 0 unless π is one of the represen-
tations in (a)-(f). Since representations in (a) and (b) are irreducible
these two cases follow from Corollary 2. The trace tr: V x V* —> C
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is a GL3 invariant trilinear form for π = 1. We can similarly deal
with the representations in (d). Indeed, Vυ <8> Vfi is a quotient of
(V®V*)V. Since Vv = θ2 ® | det | 1 / 4 and θ2 = 02 ® μ(det) by
Proposition 2 we can define an appropriate P-equivariant functional
on (V®V*)u defining a map from V®V* into indpμ. The theorem
is proved.

COROLLARY. Let (π, FT) &£ a spherical representation of GL 3 .
Then there exists a GL3 invariant trilinear form on V ® V* ® W
if and only if π is the lift of a representation of SL2 . In this case the
form is unique up to a scalar.

Proof. Note that there is only one nontrivial unramified character
μ of F* such that μ2 = 1. Therefore if n{μ\, μ2, μ$) is spherical
then π(μι, μ2, μs) = π(//, 1, /z"1) for some unramified character μ,

A final remark. Recently Bump and Ginsburg [BG] have generalized
the work of Patterson and Piatetski-Shapiro to construct an integral
representation of the symmetric square L-function corresponding to
a cuspidal automorphic representation π of PGL^. As in the case
n = 3, the residue at s = 1 of the L-function is

φ{g)θ(g)θ\g)dg
)

where φ e π and θ, θr are "theta functions" of GLW—the two fold
central extension of GL^ . The result of Bump and Ginzburg suggests
the following generalization of our result:

CONJECTURE. Let F be a local field_of the characteristic ψ 2 and let
(0, V) be the theta representation of GLn . Let (π, W) be a spherical
representation of PGLW . Then there exists a GLn invariant trilinear
form on V ® F* ® W if and only if π is the lift of a representation of
Sρ(2ra) if n — 2m + 1 or π is the lift of a representation of SO(2m)
ifn — 2m.
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