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Given TV points x\, . . . , xN on the unit sphere S in Euclidean d
space (d > 3), lower bounds for the deviation of the sum ]Γ \x-Xj\a ,
a > 1 — d x £ S, from its mean value were established in terms
of Lλ-norms in the first part of this paper. In the present part it
is shown that these bounds are best possible. Our main tool is a
multidimensional quadrature formula with equal weights.

1. Introduction. On the surface S = Sd 1 of the unit sphere in d-
dimensional Euclidean space Ed (d > 3), we consider a certain class
of distance functions and distance functional, associated with a given
N point set ω^ = {*i, Xi > > XN} on S. Denote by \x - y\ the
Euclidean distance between two points x and y in Ed . Let x e Sd~ι

be a variable point. For each value of a parameter a (l—d<a<oo)
consider the distance function Ua(x, ω#) which we define as follows:

N

Ua(x, CON) = Σ,\x ~ xj\a - N τw(α, d) for a φ 0,
7=1

and
TV

:, ωN) = ±^log\x -xj\- N m(09 d).
7=1

Here m(a, d) denotes the mean value of \x - Xj\a on Sd~λ, i.e.

m(α, d) =

m(0, d) = —γ̂ r I log |x - Xj\ dσ(x),

where a is the (rf - 1)-dimensional area measure on Sd~ι.
In the first part [4] we proved certain lower bounds for the L1-norms

of the functions Ua(x, CON) (see Theorem 1 in [4]). The existence of
such lower bounds is due to the fact that uniform distribution on Sd~1

1 The author died on March 10, 1990 in a skiing accident in Austria.
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382 GEROLD WAGNER

can be approximated by an N point distribution to a certain degree
of accuracy only. In this part we will show that the lower bounds
obtained in [4] are best possible, apart from the values of certain
constants. More precisely, we shall prove:

THEOREM A. For any a > 1 - d and some positive constant c =
c(α, d), there exists, for each N > 1, an N-tuple coPN of points Sd~ι

(depending on a) such that the following relations hold:

(a) mazx€S\Ua(x,ω°N)\<c(a,d).N-aKd-V ifO<a<oo\aφ
- 2 , 4 , . . . ,

(b) min^s Ua(x, ω%) < c(a, d) N-°Hd-V ifl-d<a<0,
(c) maxx€S U0(x,ω%)<(0,d) if a = 0,
(d) Ua(x,ω°N) = 0 / / α e { 2 , 4 , . . . } and N > N0(a9 d).

In view of the relations Js Ua(x, ω#) d(σ(x)) = 0, the bounds in
(a)-(c) are also upper bounds for the L1-norms

σ(S)
ί >\Ua(x,ω°N)\dσ(x).

Js

(The reader should compare Theorem A with Theorem 1 in [4].)
Part (d) of the assertion describes an exceptional case: if a is a pos-

itive even integer, the function Ua(x, ω^) is a trigonometric polyno-
mial in the spherical coordinates of Sd~ι. Note that the logarithmic
case a = 0 for dimension d = 3 has already been treated in [3]. In
[4] we also considered, for a given set ω^ = {x\, xi, . . . , XN} of
points of Sd~ι, distance functional Ea(ωχ) defined by

N N

Ea(ωN) = Σ Σ (to " xk\a - m(a > d)) for 0 < α < 2,
7=1 k=l

and

Ea(ωN) = Σ Σ (tol" - m&>d)) for 1 - rf < α < 0.

For 0 < a < 2 and N > 2, the sum Ea(ω^) is known to be negative
(see Theorem 2 in [4]).

An application of Theorem A immediately yields
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THEOREM B. For any a with 0 < a < 2 and some positive constant
c(a, d) there exists, for each N > 2, an N-tuple OJPN of points on
Sd~ι (depending on a) such that the following inequality holds:

Here c\ (a, d) is a positive constant, independent of N.

Theorem B shows that the inequality proved in [4] (Theorem 2(a))
is best possible, apart from the value of C\ (a, d). We remark that the
special case a = 1 has already been proved by K. B. Stolarsky [2].

The situation for the sums Ea((ϋN) in the unbounded case 1 - d <
a < 0 is more complicated. The bounds obtained in [4] are thought to
be best possible only for parameters a satisfying I - d < a <3- d.
Unlike as in the preceding case, Theorem A can no longer be used
to derive the existence of "good" point sets ω^. Instead, we give a
direct construction of such point sets, but only for spheres in three-
dimensional space. We have the following proposition:

THEOREM C. Let d = 3. For any a with -2 < a < 0 and some
positive constant C\(a) there exists, for each N > 2, an N-tuple ω°N

of points on S2 such that

(1) Ea{ω*N)<-cx{a) Nl-al2

Similarly, for a = 0 and N > 2, there exists an ofiN such that

(2) E0(ω°N)>j.log+O(N).

Note that the logarithmic case has already been handled in the au-
thor's paper [3]. There the construction of the set ω°N is described
completely, but the proof of relation (2), due to its highly compu-
tational nature, is only sketched. This unpleasant situation prevails
even more in the case - 2 < a < 0, and so again we shall omit the
computational details.

For a physical interpretation of results in the special case a = -1,
d = 3, we refer to the author's paper [4].

2. Proof of Theorems A and B. The construction of "good" point
sets ω^ for the proof of Theorems A and B depends on a result
("Main Lemma") on numerical integration with equal weights. As
usual, the spherical coordinates on Sd~ι are denoted by θ\, #2 > - >
θd-2 (0 ^ θμ < π) and φ (0 < φ < 2π). Futhermore, we denote
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by Ω r the set of trigonometric polynomials in the variables θ\, Θ2,
. . . , θd_2 and φ , of degree not exceeding r, i.e. polynomials of the
form

where 7^ (μ = 1, 2, . . . , d - 2) and /: are integers, and the
aU\ > -- 9 Jd-25 k) a r e arbitrary complex coefficients.

MAIN LEMMA. For all d > 3 α«(i all r e N there exists an ΠQ =
no(ry d) such that, for all domains D c ^S^"1 of the form

D = {(θι9...,θd-2,Φ) βlμ<θμ<β2μ, Vl < Φ <

the following is true.
For each (d-l)-tuple of integers (m\, ra2, . . . , ^^-2 ? w) satisfying

nϊj > no (j = I, ... , d - 2) and n > n$, there is a set P ofn-

Π ? = l 2 m 7 P^/ΛίS ( β ^ ,θμ2,..., θμd2 , φu) (1 < μ } < Πίjr, 1 < 1/ < /l)
o« Z> wίΛ ίΛ^ property that

trigonometric polynomial p(u) = ^(#1, 02 > , ^ - 2 >

Let us make a few remarks.
(1) The mere existence of the number no(r, d) for a given fixed

domain Z) follows from a general result of P.D. Seymour and T.
Zaslavsky [1]. However, we need independence of the bound no(r9 d)
from the special choice of the domain D. As the proofs given in [1]
are not constructive, the results of these two authors cannot be used
for our purpose.

(2) We may consider formula (3) as a quadrature formula with equal
weights for the system of functions Ω r . A classical negative result for
ordinary polynomials on an interval (due to S. N. Bernstein) shows
that we may not expect the bound n${r, d) to be of an order as small
as rd~ι.
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(3) In order not to interrupt the line of the proof of Theorems A
and B, we shall postpone the proof of the Main Lemma to the end of
the paper.

The proof of Theorem A splits into several cases according to the
value of the parameter a.

The case 0 < a < 2. Let a be fixed, and let ΠQ = ΠQ (r = d, d) be
the number the existence of which is guaranteed by the Main Lemma.
Let N be sufficiently large, N = k n^~~ι + /, where 0 < / < n^~x

and k = [N/nd~1]. By cutting the coordinate intervals 0 < θμ < π
(μ = 1, 2, . . . , d - 2) and 0 < φ < 2π into pieces appropriately,
it is not difficult to see that we may divide the surface $d~x into
subdomains D\, D2, . . . , Dt, t = t(N), which are "rectangles" in the
system of spherical coordinates, and which possess the following basic
properties:

(a) We have σ{Dτ) = N~ι . nξ~ι σ(S) for τ = 1, 2, . . . , t - 1,

and for τ = t if / = 0, and σ(Dt) = N~ι . /. (1 + nd

Q~l)d-1 σ(S) if

0 < / < ^ - 1 .
(b) Denoting by \Dτ\ = supx yeD \x - y\ the diameter of Dτ, we

have

(4) \Dτ\<c2 N

where C2 is a positive constant depending on the dimension d only.

We apply the Main Lemma to each of the domains Dτ. We choose
m\ = m2 — = m^_2 = n — ΠQ for the domains £ > ! , . . . , D^_!,
and for Dt if / = 0, and m t = ra2 = •• = md_2 = (1 + nfi+ι),
« = / . 1 + n^" 1 for Dt if / > 0. The set of interpolation points,
distributed on each Dτ according to the Main Lemma, will be denoted
by Pτ, where card Pτ = n Π;=i2 mj ? w ^ mj > n a s defined above.

Let Z τ H i ( A + # ) , . . . , ^ - 2 + / ^ _ 2 ) , \{V + y')) be the "mid-
point" of the domain Dτ = {βμ < θμ < β'μ , γ < φ < /} . (This choice
of zτ on Dτ is rather arbitrary.)

Fix x e .S^""1, and denote by Dτ the convex hull of Dτ in c/-
dimensional space Ed. By relation (4), there are at most 0(1) do-
mains Dτ for which the inequality

(5) \x-y\<c2 N-ιHd-ι)

holds for some point y E Dτ. (For simiplicity, we use the same
constant c2 i n (4) and (5).) On each of these 0(1) domains, the
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following inequality is true:

(6)

uePτ

Let Mq (q = 1 , 2 , . . . ) be the class of domains Dτ such that

q c2- N'W-V < min |JC - y\ < (q + 1) c2 iV

By (4), there are at most < qd~2 domains Dτ in Mq. On each Dτ

of Mq, consider the Taylor expansion

(7) \x- = \x-zτ\"
d .

= Td{x,y)+R{x,y),

- w\«w=Zτ +R(x, y)

where

0 < < 5 < 1

The remainder term can be estimated as

(8) \R(χ,y)\ < jv

The main term T^ix, y) is a polynomial in the cartesian coordinates
of y of degree < d which, after introducing spherical coordinates,
becomes a trigonometric polynomial in θ\, ..., θd-i > Φ of the class
Ωrf, again of degree < d. By our choice of the point set Pτ, we have

j τd(χ,y)dσ(y) =

Hence, for each Dτ in Mq, noting (8), we have the inequality

N - f μ - yy aσ(y)-
ueP,

I \x-y\<*dσ(y)-Σ\x-y\a
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Here, as in the preceding inequalities, the constants implicit in the
Vinogradov symbols < may depend on a and d, but are indepen-
dent of q, τ , x, and N. Summing over all classes Mq and noting
(6), we finally obtain:

N-a/(d-\) + Y" qd~2

This proves Theorem A in the case 0 < a < 2, and Theorem B.

The case 2 < a < oc. In the cases 2 < α < 4, 4 < α < 6 , . . . , we
proceed as before, choosing successively r = d + 2, d + 4, ... , and
approximating |JC -y\a by a Taylor polynomial of degree < r. In the
case a = 2h (h = 1, 2, . . . ) , note that |x - y\a is a trigonometric
polynomial of degree 2h in the variables #i , . . . , θd_2 , Φ Choosing
D = S and r — 2h in the Main Lemma, the assertion follows.

The case 1 - d < a < 0. We proceed as in the case 0 < a < 2,
choosing r = d in the Main Lemma. The only difference in the
argument concerns the derivation of the estimate (6), which has to be
replaced in the following way: For fixed x on S, consider again those
domains Dτ for which \x — y\ < cι N~λ^d~χλ) holds for some point
y in the convex hull of Dτ. Then the following one-sided estimate is
true for a < 0:

(9) £ I* _ M|" _ J5L / \x-y\"dσ(y)>-c3(a,d) N-°Kd-ιK
utp σ^)JDτ

In order to prove (9), we simply omit the sum and estimate the integral
from above, using relation (4). In the logarithmic case a = 0, the
corresponding inequality is

(10) Σlog\x-u\--^J Iog\x-y\dσ(y)<-c4(d).

Here the sum cancels the logarithmic part of the integral, leaving a
remainder which is bounded from above.

From (8), (9), and (10) the assertion follows. This finishes our proof
of Theorem A.
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3. Outline of a proof of Theorem C. The method of constructing
"good" point sets ω ^ in the case d = 3, - 2 < α < 0 , i s o f a
similar type as the one given in §2. The verification of the inequality
in Theorem C, however, requires careful direct estimation.

We begin by describing the construction.
Let a and iV > 2 be fixed. Put N = [y/N b], where B is a

positive constant to be determined later. Denoting the spherical coor-
dinates on S2 as usual by θ (0 < θ < π) and φ (0 < φ < 2π), we
define angles ΘQ , . . . , ΘM by the conditions

0 = 0O < θ\ < - < ΘM = π

such that Nμ := y (cos θμ_ι - cos θμ) (μ = 1, 2, . . . , M) are positive
integers, and such that

Kι/>/b N <θμ- θμ-χ < K2Vb . N

holds for b < μ < M - b and certain numerical constants 0 < K\ <
K2. Each zone Dμ := {(θ, φ): θμ-χ < θ < θμ} is divided into Nμ

subdomains Dμj, where

Dμj = {(0,0): θμ_x <θ<θμ, 2π

On each Dμj, we choose a point xμj- = (ξμ, φμj), where φμj =
2πj/Nμ and c o s ^ = ^(cos^-i + c o s ^ ) . Let ω°N = {xμj}. By
a heuristic argument we will try to explain why the set ωQ

N can be
expected to satisfy inequality (1).

For fixed xμj, the term \xμj — xvk\a is roughly equal to the integral

£-jDvk\xμj-y\adσ(y);

hence the whole sum

(11) ΣΣ (\xμj-xuk\a-m(a,3))
(μ,j)φ{v,k)

corresponds to the sum of integrals

(12)
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This latter sum (12) is easily seen to be

(13) <-c5 b-ι-WV Nι-W2K

What remains to be shown is the fact that the error which we commit
when replacing (11) by (12), is of smaller order than the bound (13).
This turns out to be true if we choose b large enough, and if the
numbers Nμ satisfy some additional condition of arithmetical nature.
The proof, however, is too laborious to be presented here.

4. On quadrature formulas with equal weights. The Main Lemma
will be derived from the following theorem which may be of indepen-
dent interest in itself.

THEOREM. Let w(x) > 0 be an integral weight function on the in-

terval [—1, 1], satisfying the relations f\w(x)dx = 1 and

(14) Lι>w(x)>L2'(l-\x\)p

9

with constants Lx > 0, L2 > 0, and β > 0. Let Φ = {φ\, . . . , φs} be
a system of three times continuously differentiate functions on [— 1, 1],
with the additional property that the derivatives φ\, φ'2, . . . , φ's form
an orthonormal system with respect to the weight function w(x). Let

(15) K{ = max ^ max ^ | , | ^ | , \φn;\).

Then there exists a number n0, depending only on Lχt L2, K{, β,
and s, such that for each n > n0, there exist points t\, t2, . . . , tn

with - 1 < t\ < t2 < < tn < 1 and

(16) ^ Σ ^ ( 0 ) = f Φμ(x)w(x)dx

for all φμeΦ simultaneously.

Proof. 1. In the sequel we will have to deal with the functions φ'μ ,
Φ'μΦ'v (f* > v — 1 > 2, . . . , s), and their derivatives up to the second
order. By our assumption (15), all these functions are bounded in
absolute value by

K := f
For the construction of the point set {tj} , we use Newton's method.
We begin by defining intervals /, = [Xj-\, Xj] by the relation

ΓJw{x)ώc=J- (7 = 0, 1 , . . . , / ! ) .
J-\ n
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By assumption (14), we have (|//| = length of /,)

(17) (L{.n)-ι<\Ij\<2.(L2.γ.n)-v,

where we write γ := l/(β + 1) for the sake of brevity.
In the interior of each interval Ij, choose the (uniquely determined)

point ξj with the property that

(18) f(x-ξj)w(x)ώc = 0.
Ji

By the assumption w(x) < L\ in (14), the following inequality holds:

(19) mm{Xj-ξj,ξj-Xj_x) > (2L{ . n)~l.

We use the point set {ξj} as the starting point of a Newton itera-
tion process. By changing the values of ξj successively, we obtain a
sequence of /7-point sets on [-1, 1], converging to a set - 1 < t\ <
- - < tn < 1 with the desired property (16), provided that the number
n is chosen large enough. We remark here that if not otherwise stated,
all the constants that appear in the following parts of the proof are
assumed to depend on L\, L2, K\, β, s, but not on n .

2. Let / be any function on [-1, 1], twice continuously differen-
tiable and satisfying the relation

(20) mzx(\f{x)\,\f"{x)\)<K.

By Taylor's theorem, using (18), we have the following basic estimate:

n [ f(x)w(x)dx-f(ξj) =n [ (/(*) - f(ξj))w(x)ώc

= \ Ji(χ-ξj)
2r(ξ(χ))w(x)dx

Summing over all intervals Ij, and noting (17), we obtain:

K

(21) Σf(ξj)-nJlJ(x)w(x)dx K

7=1

Now assume that — 1 < //! < < //„ < 1 is a new set of points,
satisfying \ξj - ηj\ < δ for j = 1, 2, . . . , n, and some real δ > 0.
By (20) and (21) we have the estimate

(22)
7=1

f(x)w(x)dx
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3. Without loss of generality we may assume that f\φμ(x)w(x)dx
— 0 holds for all ^ in Φ. Suppose that after the rth step of the
iteration procedure we arrive at a point set - 1 < r\\ < < ηn < 1
(r = 0 describes the initial situation r\j — ζj) with the following two
properties:

(23)

for each / satisfying relation (20), and

n

(24) ] Γ φμ(ηj) = p μ (μ=l9...9s)9

7 = 1

where \pμ\ < σr for all values of μ, and Cr, σr are positive constants
which may depend on r.

Put η'j = r\j - hj. Replacing r\j by η'j in (24), and linearizing, we
obtain the following linear system of equations for the corrections hj :

(25) = pμ

7=1

We are looking for a solution vector (h\, hi, . . . , hn) of (25) with all
the hj being small. Here we make essential use of the orthogonor-
mality of the derivatives φ'μ with respect to w(x). We interpret the
system (25) as a set of hyperplanes in Euclidean n-space. By (23), we
obtain the following estimates for the scalar products between their
normal vectors (φf

μ{m) ? . . . ? Φμ(ηn)):

<Cr n~γ

and

(26) > n — Cr n~

7=1

An application of Lagrange's method (with multipliers λv) to the ex-
pression

v=\
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leads to a minimal solution of (25). For the multipliers λv we obtain
the following linear system of equations:

(27)

Multiplying both sides of (27) by φ'μ(ηj) and summing over j , we
obtain, using (26), a new system of equations:

(28) 2 * πn =
v=\

The matrix of the system (28) is approximately diagonal in view of
(26). We have the decomposition

A22

\ 0

0 \

/

/ I

\ *

* \

1/

= D (I

(I = identity matrix), where the entries of B are

< Cr n-η{n - Cr - n~η

in absolute value. Let us calculate the inverse matrix (Aμv)~ι:

where the entries of B\ are < Cr'n~γ/(n-(s+l)CrΊi~γ) in absolute
value. Hence the entries of the inverse (AβI/)~ι are in absolute value

< (nί+γ -S'Cr) (n1+Y -

in the main diagonal, and by

<Cr ny (nι+γ -(s

(« - CΓ n

(nι+γ - Cr)~ι

elsewhere. Inserting these estimates into (28) and (27), we obtain the
following inequalities:

(29) \λv\ < 2σr. n' (nί+? -(s

and

|Λy |<jA:αΓ./i''.(n1 + ' '-(j+l)C r)-1 (j = ! , . . . , » ) .
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If we replace r\' — ηj-hj in (24), the new error terms p'v are bounded
in absolute value by

(30) σ r + 1 < ,
^ x

λ J v **h

By (29) and (22) the new constant C r +i in (23) can be chosen as small
as

(31) Cr+ι <Cr + σr. sK2nι+γ(n - (s + l)Crn-γyι.

Keeping in mind that σ0 < C§n~y by (21), it is not difficult to prove
by induction from (30) and (31) that if we choose the number n of
interpolation points large enough, the following inequalities are true:

0> < (CQn~γ) , Cr+\ — Cr < c2* 2~r~ CQ and Cr < 2c2 CQ .

Moreover, it follows from the second half of (29) that the total dis-
placement of the initial points ξj does not exceed

oo

C3 n~ι ] P σr < C4 n~ι~γ.

Hence, in view of (19), all the limit points tj of the sequences ξj, ... ,
r\j, η'j:, . . . are contained in the interval ( - 1 , 1). This finishes the
proof of the theorem.

In order to derive the Main Lemma from the preceding theorem
we have to prove that the bound Kγ in condition (15) can be chosen
such as to be independent of certain parameters connected with the
choice of the domain D.

LEMMA. Let w(x) be a weight function on [-1, 1], satisfying the
conditions J^{w(x)dx = 1 and w(x) > L2{\ - \x\)β, where β, L2

are positive constants. Let Ψ = {T0(x), . . . , T2r(x)} be the system of
functions on [-1, 1] defined by

1-cosεxV λ

g 2 / 2 J C/=O,.. . ,r )
and

T2j+ι{x) = T2j{x) ^ ^ (j = 0, . . . , r - 1).
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Here ε denotes a positive real parameter. If the functions Tk are or-
thonormalized successively with respect to w(x) by the Gram-Schmidt
process, and if ε < εo(L2, r, β) holds, then the functions of the new
system are bounded on [-1, 1] by a constant which depends on r, L2

and β, but not on ε.

Proof. Let Ψi = {go = To, g\, . . . , g2r} be the orthonormal system
resulting from Ψ . Each gj has a unique representation of the form

(32) gj(χ) = bjOTo(x) + + bjjTj(x).

Assume that for some s, 0 < s < 2r, the following inequality holds:

(33) \bjk\<K(s9L2,β) = Ks

0 = 0 , l , . . . , j ; f c = 0 , l , . . . , j ) .

Note that (33) is true for s = 0 with KQ = I. We proceed by in-
duction on s. We orthogonalize the function Ts+\(x) with respect to
go, . ,gs by setting

s s+1

(34) fs+ι(χ) = Ts+ι(x) - Σ(gj, Ts+ί)gj(x) = Σ"j
7=0 7=0

and

Here as usual we define (/, g) = j \ f(x)g(x)w(x) dx and \\f\\\ =

(/,/)•

Note that \Tj(x)\ < 1 on [-1,1]; hence \(gj, Ts+i)\ < 1. From
(32) and (33) it follows that

(35) |α, | < ( j + l ) . A : s

for j = 0 , . . . , s +1. All we have to prove is that | | ^ + i ||2 is bounded
from below. From the inequality

\Tj(x)-χJ\<Cι{s).e2,

valid from x e [-1, 1], j = 0, 1, . . . , s + 1, and ε < 1 it follows
that fs+ι(x) admits an approximation by a monic polynomial, i.e.

fs+ι(x) = xs+ι + dsx
s + + do + R(x) = Ps(x) + R(x),

where \R(x)\ < ε2 C2{s, L2, β). Using expansion of ps(x) into



ON MEANS OF DISTANCES. II 395

Legendre polynomials, we easily obtain:

max \fs+ι(x)\ > c3(s) - c2 - ε2,

where c3(s) > 0.

Furthermore, using \f^+ι{x)\ < Σ\aj\ \Tj(x)\ < C4(s> L2, β), we
find that \fs+ϊ (JC)| > \c$(s) holds on an interval of length >δ(s, L2 , β)
> 0, provided that ε is small enough. From the assumption w(x)>
L2(\-\x\γ we obtain the estimate | | ^ + i | | 2 > c5(s, L2, β) > 0, which
proves the assertion in view of the relations (34) and (35).

COROLLARY. AS the derivatives Tj{x) and T"{x) (j — 0, . . . , 2r)
are bounded on [-1, 1], uniformly in ε > δo, it follows from (32) that
the assertion of the lemma is also true for the derivatives gj and g".

The proof of the Main Lemma is now completed as follows.
Let D = {θ\μ < θμ < θ2μ, φ\ < 0 < φ2} c S be the given domain.

First we note that it is sufficient to prove the Main Lemma for do-
mains D for which the differences θ2μ - θ\μ (μ = 1, . . . , d - 2)
and 0 2 - 0 i are sufficiently small. In order to obtain the asser-
tion for domains of arbitrary size, we only have to stick together a
bounded number of suitable "small" D's. Secondly we note that it
is sufficient to prove the existence of the bound rto(r) for each co-
ordinate separately. Without restriction, we choose the coordinate
θ\, the proof for the other coordinates being essentially the same.
We are hence given the interval of integration θ\\ < θ < Θ2\, the
weight function ύnd~2θχ, and the system of functions Ωr(0i) =
{1, cos θ\, . . . , cos rθ\, sin θ\, . . . , sin rθ\} . By a suitable linear
transformation, replacing the variable θγ by x, we obtain the interval
- 1 < x < 1, the weight function

/>
sindd zε(x -

where ε = \{θ2χ -θn) and x0 = (Θ2Ϊ + θn)/(θ2\ -θn), and the sys-
tem Ω'r = {1, cosεx, . . . , sin rex}. We replace the system Ω'r by the
equivalent system Ω'/ = {1, GQ , G\, . . . , G2r} , where GQ , . . . , G2r

are arbitrary primitives of the functions go, gi, . > Sir defined in
the proof of the lemma. By the lemma, the assumptions of the the-
orem are now satisfied with β = d - 2, L\ and L2 depending on
d only, and K\ < c(L2, β, r) = c(r), as soon as ε < εo(L2, β, r) =
εo(r). This finishes the proof of the Main Lemma.
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