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Let K and S be compact convex sets and let A(K) and A(S)
be the corresponding Banach spaces of continuous affine functions.
If the Banach-Mazur distance between A(K) and A(S) is less than
2, then under certain geometric conditions, the extreme boundaries
of K and S are homeomorphic. This extends a result of Amir and
Cambern, and has applications to function algebras.

1. Introduction. Let X and Y be compact Hausdorff spaces. The
classical Banach-Stone theorem states that if the spaces C(X) and
C(Y) of (real) continuous functions are isometric, then X and Y
are homeomorphic. There have been several generalizations of this
theorem, among which is the following result of Amir [2] and Cambern
[9]:

If there is a (surjective linear) isomorphism ¢. C(X) — C(Y) such
that ||o||lle~|| < 2, then X and Y are homeomorphic.

Alternative proofs of this result have been given by Cohen [12] and
Drewnowski [13]. The result is false if the bound ||¢|||¢~!|| is not
less than 2 [11] although it has been generalized to spaces of vector-
valued continuous functions (cf. [5, 7, 10, 15, 17]). Nevertheless, in an
attempt to extend the result to certain function spaces, for instance,
to function algebras, we found that the arguments used in [9] and
[12] can actually be adapted to a setting more general than function
algebras which not only yields more general results but also gives new
insight into the essentials of these arguments.

Our setting is that of compact convex sets K (in locally convex
spaces) and the Banach spaces A(K) of (real) continuous affine func-
tions on K. We will show, given two compact convex sets K and
S with extreme boundaries 0K and 9SS respectively, if there is an
isomorphism ¢: A(K) — A(S) satisfying ||¢|||l¢~!|| < 2, then any
one of the following conditions implies that /K and 95 are home-
omorphic:

(i) K and S are Choquet simplexes, and every extreme point in
K (and S) is a weak peak point;
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(i) K and S are metrizable, and every extreme point in K (and
S) is a weak peak point;

(iii) 8K and OS are closed, and every extreme point in K (and
S) 1s a split face.

The proof under condition (i) contains the idea of isolated points in
the second-dual method in [12]. Noting that C(X) is an A(K)-space
for some Bauer simplex K, and vice versa, Amir and Cambern’s result
reads as follows:

If K and S are Bauer simplexes and if there is an isomorphism
9: AK) — A(S) with ||p|llle~!|| < 2, then 0K and 8S are homeo-
morphic.

This can be regarded as a special case of (iii) and indeed, as will
be shown, condition (iii) is exactly what is needed in Cambern’s ar-
guments [9] to construct the homeomorphism. Finally, if &/ is a
function algebra with state space K, then every extreme point of K
is both a weak peak point and a split face, and the extreme bound-
ary 0K identifies with the Choquet boundary of .2/ . Moreover, the
uniform closure of re identifies with A(K). Therefore the above
results apply to function algebras.

2. Compact convex sets. Let K be a compact convex set in a locally
convex space. The extreme boundary 0K of K is the set of extreme
points, with the relative topology. A face F of K is called a split
face [1; p. 133] if there is a face F’ of K such that every point in
K\(F UF') can be uniquely represented as a convex combination of
a point in F and a point in F’. The complementary face F' is
also split and is the union of all the faces disjoint from F. Every
face of a triangle is split; more generally, every closed face of a Cho-
quet simplex is split [1; p. 144]. Let A(K) be the Banach space of
real continuous affine functions on K with the supremum norm and
pointwise ordering. The constant function 1 on K is also denoted by
1. We will identify K, via the evaluation map, with the state space
{ne AK)*: u(1) =1=||u||} in A(K)* and so, if F is a closed split
face of K, then A(K)* =lin F s lin F/ where lin denotes the linear
span. Note that the convex hull of a finite number of split faces is
also a split face. If F is a closed split face of K, then any continuous
affine function on F has a norm preserving extension to a continu-
ous affine function on K. Moreover, if the complementary face F’' is
also closed, then given a € A(F) and b € A(F’), there is an extension
f€A(K) with f|F =a and f|F'=b. Let F be a closed split face
of K and let yr be the characteristic function of F . Then the upper
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envelope function
xr(x)=1inf{a(x): a € A(K), a> xr}

is upper semi-continuous with F = )2;1(1) and F' = 2;1(0); more-
over, the set {a € A(K): a > yr} is directed downward [1; p. 141]
and so g is affine, and there is a decreasing net (a,) in A(K), with
a, > Xr , converging pointwise to 7 such that for any ¢ > 0, there
exists aq such that o > a¢ implies 1 +J > a,. These facts are
crucial and will be used repeatedly in the sequel. We refer to [1] for
further results on compact convex sets and Choquet theory as well as
undefined terminology.

DEeFINITION. Let K be a compact convex set and let x € 9K.
We call x a weak peak point if given 1 > & > 0 and an open set U
containing x, there exists # € A(K) such that ||A|| <1, A(x) > 1—¢,
and |4| <e on OK\U.

ProvrosITION 1. If x is a weak point in K, then {x} is a split face
of K. The converse holds if 8K is closed in K .

Proof. The first assertion is an extension of Asimow’s result in [3].
Write yx, for the upper envelope 7(; which is concave and u.s.c.
Since x € 0K, we have K = co({x} U F) where {x} = x7!(1) and
F = x71(0), and every z € K has a representation

z=xx(z2)x+ (1= xx(2))y (Y€EF).

To show that {x} is a split face, we need to show that F is convex
and the above representation is unique.

We first show that for 1 > ¢ > 0 and y,, y,, y3 € F, there exists
h € A(K) such that h(x) > 1—¢ and |h(y;)| < e for j=1,2,3.
Let u; be a maximal measure on K representing y;. Then u;j{x} =
#i(Xixy) < X3 (vj) = 0 (cf. [1; Proposition 1.3.1]). So there exists a
closed neighborhood U; of x with u;(U;) < §. Let U = UinU,NUs.
By hypothesis, there exists 2 € A(K) such that |k|| <1, A(x) > 1—¢,
and |h] < § on OK\U. So |h| < £ on OK\U which contains dK\U .
By maximality of u;, we have

€

&
ol = | [ hdw| < [ i+ [ i <5+
3K aKNU JK\U

We now show that F is convex. Let y,,y, € F and let z =
Ay1 + (1 — A)y, where 0 < A < 1. It suffices to show x.(z) = 0.
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Suppose xx(z) > 0. Write z = yx(z)x + (1 — xx)(2)y3 with y3 € F.
Let & = $xx(z). Then by the above, there exists 4 € 4(K) such that
h(x)>1—¢ and |h(y;)| <e for j=1,2,3. So |h(z)| = |Ah(y1) +
(1 =A)h(y2)l < &. Butalso |h(z)] = |xx(2)h(x) + (1 - 2x)(2)h(y3)| >
Xx(2)(1—€&)—(1—xx)(z)e = ¢ which is a contradiction. So xx(z) =0.

Finally, given any representation z = fx + (1 — B)y’ with y' € F
(and 0 < B < 1), xx(z) > B as xx is concave. Suppose xx(z) > fB.
Then equating the two representations yields

v Xx(2) =B 1= xx(2)
Y=T1-p TTi-B

from which 0= x,(y') > W > 0 which is impossible. So x.(z) =
B and it follows that y' =y.

Now suppose 9K is closed and {x} is a split face. We show that
x is a weak peak point. Let 1 > &¢ > 0 and let U be an open
set containing x. As x € K, we have {x} Nco(K\U) = @. Let
G = co(K\U) and let F be the complementary face of {x}. Since
{x} is asplit face, there is a decreasing net (a,) in A(K), with 1+§ >
a, > Xx, converging pointwise to y,. Since GNJK is a compact
subset of F and yx =0 on F, we have a, | 0 on GNJK and by
Dini’s theorem, we can find a, € A(K), with 1+ 5 >a, > xr and
las,| <5 on GNOK which contains OK\U . Let h = a, — 5. Then
Al <1, A(x)>1—¢ and |h| <& on OK\U.

ExAMPLE 1. Every extreme point of a Bauer simplex is a weak peak
point.

ExAMPLE 2. Let K be the state space of a function algebra &7 .
Then 8K identifies with the Choquet boundary Ch of & and
every x € 0K is a weak peak point by Bishop’s characterization of
ChZ (cf. [8; p. 97]). Indeed, our definition originates from this
example, and we also note that, as in [8; Theorem 2.3.4], an equivalent
definition for a weak peak point x in K is that given ¢ > 0 and open
set U containing x, there isan 4 in A(K) such that ||k]| = 1 = A(x)
and |h| <e on OK\U.

ExXAMPLE 3. Let K be the Poulsen simplex (cf. [4; p. 130]). Then
every x € 0K is a split face, but it is not a weak peak point. Con-
sider y = 1x + x’ for some x’ € K\{x}. Choose a closed convex
neighborhood U of x such that y ¢ U. Then x' ¢ U. If x
was a weak peak point, there would exist 4 € A(K) with ||A| < 1,
h(x)>1-1 and |h| < % on OK\U. So h(y) = Lh(x)+3h(x') > 4.
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Let y = limgxg with xg € 0K. Then y ¢ U implies xg ¢ U
eventually and so A(y) = limg h(xp) < % which is impossible.

3. Isomorphisms of A(K). Let K be a compact convex set iden-
tified with the state space {u € A(K)*: u(1) = 1 = |u||}. Then
the convex hull co(K U —K) is the closed unit ball in 4(K)* and so
A(K)** identifies naturally with the space 4°(K) of bounded affine
functions on K, with the supremum norm and pointwise ordering.
Let Ko = {u e A°(K)*: u(1) = 1 = ||u||} ¢ A(K)***. Then A°(K) is
isometrically order-isomorphic to 4(K?) and hence we can turn the
bounded affine functions on K into weak* continuous affine func-
tions on K?. The identifications A(K)** = A%(K) = A(K?) will be
used throughout. Note that K embeds asa o(A4(K)***, A(K)**)-dense
convex subset of K?, via the embedding A(K)* — A(K)**. More-
over, if K is a Choquet simplex, then K? is a Bauer simplex and K
is even a split face of K’ [14; Example 3.3(b)]. An important ele-
ment in Cohen’s second-dual method [12] involves the isolated points
of 8K? which turn out to be in 9K .

LEMMA 2. Let K be a compact convex set and let F be a dense face
in K. If x € 0K is an isolated point in 0K, then x € F.

Proof. There is a closed set G C K with K\{x} =0KNG. Since
x ¢ G, we have x ¢ c0G by Milman’s theorem. By density of F,
there exists y € F with y ¢ coG. Note that K = co({x}uUc0G) and
so y=Ax+(1—-21)z with 0<A<1. Now F isafaceand y € F
gives x € F.

LEMMA 3. Let K be a compact convex set and consider K C K.
Let x € K be a split face of K. Then x is an isolated point in K
as well as a split face of Kb with a closed complementary face.

Proof. Consider the affine function x, € 4%(K) with {x} = x71(1)
and x;!(0) = {x}’ being the complementary face in K. Now con-
sider xx € A(K®) and let Z denote {z € K?: xx(z) = 0}, a (weak *)
closed face of K?. Let y € K?\Z. By denseness of K in K?,
y is the weak limit of a net y, in K\Z. Since x is a split face
of K,y, = rax + (1 —14)z, for each o where z, € ZNK and
o = xx(Va). By compactness of K?, we may assume z, converges
to an element z in Z. Taking limits and using the continuity of
xx on Kb weget y = rx + (1 —r)z where r = x.(y). Conse-
quently, the representation of y as a convex combination of x and
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an element of Z is unique, x € K?, and 6K?\{x} C Z. Hence,
{x}={ye Kb | xx(y) > }} NOK® and x is isolated in K .

We thank the referee for pointing out that the following result is
accessible via the general results of [6, 7, 17]. Since this result is not
stated explicitly in these references, we include here, for completeness,
our alternative argument involving isolated points for the interested
reader.

THEOREM 4. Let K and 5 be Choquet simplexes in which every
extreme point is a weak peak point. Let ¢: A(K) — A(S) be a surjec-
tive linear isomorphism with |¢||||l¢~ || < 2. Then 8K and 8S are
homeomorphic.

Proof. Consider the second dual map ¢**: A(K)** — A(S)**. By
previous remarks, and since K? is a Bauer simplex, A(K)** = A(K?)
= C(0K?); the same applies to A(S)**. Consulting Lemma 3 in [12],
the condition |(p**xx)(»)| > 1ll¢|l establishes a 1-1 correspondence
between the isolated points x of K” and the isolated points y of
8S?. By Lemma 2 and Lemma 3, 8K is the set of isolated points of
OK? and the same for 8S. Thus we have a bijection H: 8S — 0K
given by H(y) = x whenever |(¢**xx)()| > %||¢||. But this bijection
is just the map p defined below and, by the weak peak point property,
shown to be a homeomorphism in the proof of Theorem 7.

We now turn to arbitrary compact convex sets K and S in which
every extreme point is a split face. Suppose there is an isomorphism
9: AK) — A(S) with |o|lle '] < 2. We may, and will always
assume, that ||¢|| < 2 and |¢(a)| > c||la|| for all non-zero a € A(K)
where 1 < ¢ < 2. This loses no generality for, if necessary, we can
replace ¢ by c|l¢~!|l¢ where |p]lll¢~!| < 2 < 2. Given such an
isomorphism, how does one construct a homeomorphism p: 85 —
0K ? We follow Cambern’s approach. Let y € 8S5. Consider the
dual map ¢*: A(S)* — A(K)*. Since every x € 0K is a split face
of K Cc A(K)*, we can write ¢*(y) = Ax + u for some A € R and
u €lin{x}', where {x}' is the complementary face. It turns out that,
if K and S are metrizable, then there is a unique x € 8K for which
|A| is large, that is, [4| > ¢. So we can define p(y) = x and show it is
a bijection which is even a homeomorphism if every extreme point is a
weak peak point. In the nonmetrizable non-simplex case, however, we
need to assume the closedness of the extreme boundaries to complete
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the arguments. Note that, in the classical Banach-Stone theorem, ¢
is an isometry with A =1 and u = 0, and ¢* itself already induces
a homeomorphism.

Now we describe the details. Let x € 0K and let xx = %y} be
the upper envelope function which is affine and u.s.c. on K. Consider
Xx € A(K)**. We will denote by (-, -) the bilinear functional on a pair
of Banach spaces in duality. Let y € 8.5 with ¢*(y) = Ax + ¢ asin
the previous paragraph. Then, noting that {x} = y7!(1) and {x} =
x5 '(0), we have (v, 9**Axx) = (9*(¥), Xx) = A0x, xx) + (1, Xx) = 4.
As in [9], we have the following basic contructions. Let

Y={yedS:3Ix € dK with [y, 9™ xx)| > c}.

First observe that for each y € Y, there is at most one x € 0K with
Ky, @**xx)| > c¢. Indeed, if there are x, x’ € 0K with ¢*(y) = Ax +
p=Ax"+p" and ||, |¥'] > c, then 2> [|p*(¥)|| = |af +||p] > c+]ul
implies 2 — ¢ > |lu| which gives (2 —c¢)+ (2 —c) > |lull + & >
le—p'|| = |A/x'—Ax|| = |A'|+|4A| > 2¢, contradicting ¢ > 1. Therefore,
we can define p: Y — 0K by p(y) = x whenever [(y, 9™ xx)| > c.
Likewise, we let

. 1
X = {x € 8K: Iy €8S with |(x, p**1x,)| > 5}
and define 7: X — 8S by t(x) = y whenever |(x, ¢ !x)| > %
What remains is to show that Y = S and p is a homeomorphism.
We demonstrate this for the metrizable and the nonmetrizable cases

separately in the next two sections.

4. The metrizable case. We assume in this section that K and S
are metrizable, that every extreme point of K (and S) is a split face
in the following two lemmas. We adopt the previous notations.

LEMMA 5. The maps p: Y — 3K and t: X — 0S are onto.

Proof. Let x € 0K . We show there exists y € .5 with |(y, ¢** xx)|
> ¢. By separability of A(K), there is a decreasing sequence (a,) in
A(K) converging to x, pointwise. So ¢**xx = lim, ¢(a,) pointwise
on S.If |(y, **xx)| <c forall y €4S, then |{(y, lim, ¢(a,))| <c
for all y € S and by Meyer’s maximum principle [1; Proposition
1.4.10], we have

c > sup <y, lim ¢(an)>| =sup (v, ¢ xx)|
yeS n y€ES

= llo™ xxll > cllxxll = ¢
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which is a contradiction. So Y is nonempty and p is onto. Similarly
T is onto.

LEMMA 6. If y € Y with p(y) = x, then x € X and 1(x) = y.
Hence Y =39S and p: 8S — 0K is a bijection.

Proof. Suppose either x ¢ X or x € X but 7(x) # y. Then
[(x, p**1xy)| < . We deduce a contradiction. Let

d= sup [(x', 9" 1)
x'€edK -

Since x, is the pointwise limit of a sequence of continuous affine
functions, as in Lemma 5, we have |¢**~!x,|| < d by Meyer’s max-
imum principle. Note that d > ¢ and by Lemma 5, d > . So
we can pick x’ € K such that |(x’, ¢**1x,)| > €, 1. There exists
y' €Y with p(y/) =x'. As |(x, o Ixy)| <L, x#x" and so y #
y'. Therefore 0 = (¥, xy) = (9*(v), 9™ ' xy) = (X', 9™ 1 xy) +
(W', 9**~1x,) where, as before, ¢*(y') = Ax' + 4/ with |¥| > ¢
and ¢l <2—-c < 1. Now |[(Ax', p*~1x))| > ||- € > d while
(', @ 1) < Il x|l < (2 —c)d < d. This is impossible.
The last conclusion can be easily verified, using Lemma 5.

Finally, to prove that p is a homeomorphism, we need to assume a
slightly stronger condition, namely, that every extreme point is a weak
peak point.

THEOREM 7. Let K and S be metrizable compact convex sets in
which every extreme point is a weak peak point. If there exists an
isomorphism ¢: A(K) — A(S) with |¢||le~!|| < 2, then 8K and 8S
are homeomorphic.

Proof. We show that the bijection p: S — 0K is a homeomor-
phism. Let F C 0K be closed and let F = 0K NG for some closed
set G C K. We show p~I(F) is closed in 0S. Let x € 9K\F
with p(y) = x. Then y ¢ p~!(F) and there is a closed neighbor-
hood V of x such that ¥ NG = @. Note that F c dK\V. As
before, write ¢*(¥) = Ax + u with |A| > ¢ and u € lin{x}’. Write
K=Y rik; with r; € R and k; € {x}’. Let r = 3", |r;| and let
4; be a maximal measure on K representing k. Choose 1 >¢& >0

such that & < min(Jﬂl“Tcl, c—1). Since x is a weak peak point, as in

the proof of Proposition 1, there are closed neighborhoods U; of x
with u;(U;) < §,andifwelet U= U;N---NU,NV and noting that
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F c K\U, wecan find &, € A(K) such that ||| <1, Ac(x) > 1-¢
and |hy|<ée on FU{ky, ..., ky}. We claim

plF)= () {peaS: o), )| <ch.
X€OK\F

Indeed y ¢ p~!(F) implies [(¢(hx), ¥)| = |[(hx, 9* (V)] = [(Ax, Ax)+
(hx, m)| > 1A|(1 — &) —re > ¢ since I( he, m)) = | iy, riki)] <
T lrile = re. Also, for y' € p~lI(F) with ¢*(y/) = Ax' + 1/,
|A'| > c and x’ € F, we have [(¢(hx), ') = [{hx, XY + (hx, @')| <
[A'le +||i|l < 2e+(2—-¢)<c. So p“l(F) is closed in 45 and p is
continuous. Similar arguments show that p~! is continuous.

5. The nonmetrizable case. From now on, K and S are nonmetriz-
able compact convex sets in which every extreme point is a split face.
We assume that 0K and 9.5 are closed in K and S respectively. As
before, let ¢: A(K) — A(S) be an isomorphism such that ||g|| < 2
and ||p(a)|| > c|la|| with 1 < ¢ < 2. Then one can define the maps
p:Y —-0K and 7: X — 0S. Weneedtoshow Y =05 and p isa
homeomorphism. In the metrizable case, this can be achieved by in-
voking Meyer’s maximum principle which, however, is not available in
the nonmetrizable case. Instead, one needs more delicate arguments.

Our first task is to show that Y # @ and p is onto, in other words,
given x € 8K, we need to find y € 85 such that [{(y, p**xx)| > c.
Fix a decreasing net (a,) in A(K) converging pointwise t0 x such
that a, > xx and for any é > 0, we have 1 +J > a, from some «g
onwards. Then ¢**i, = lim, ¢(a,) pointwise on .S and so we need
to find y € S with |(y, lim, ¢(a,))| > c. Fix x € 0K as above. For
each a, let 9S, = {y € 3S: |(p(a.), y)| > c¢}. Note that 0S5, # @
since ¢(dq) € A(S) and sup,cys((9(da), V)| = [|9(a)ll > cllaal| > c.
Let 0Sx = {y € 8S: y is a cluster point of {y,} with y, € 8S,}.
Since 8S, # @ and since 05 is compact, we have 39Sy # @. Now
we are going to show that 0S5, is finite and it contains the point we
are looking for.

LEMMAS. Let 1 >e>0and c—-2e>1. Let y € 3Sx. If g € A(S)
satisfies g(y) > 1—¢ and ||g|| < 1, then |{(9p~1(g), x)| > L(c—1-2¢).

Proof. Let y be a cluster point of {y,} with y, € S, . By choosing
a subnet, we may assume 1+ % > a, and g(y,) > 1 —¢ for all a.
We have [(p(aa), yo)| > c. Let A, = £1 such that (¢(Aqas), Vo) >
c¢. Then ||lg + ¢(Aaaa)l| = |8(Va) + (9(Rala), Vo)l > 1 =€+ c. So
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lo~1(g) + Aadall > 3(1 —€+¢) > 1. Note that ||p~!|| <1 <1 and
le~1(g)|| < 1. For each «, by Bauer’s maximum principle [1; p. 46],
there exists x, € 9K such that

(™1 (8), Xa) + Aada(Xa)| = 971 (8) + Aattall > 3(1 — £ +0)

which implies [(p71(g), xa)| > 2(1—e+¢)— (1 + %)= 3(c—1-2¢)
and a,(x,) > %(c — 1 —¢). By compactness of K, we may assume
(xo) converges to some z € K. We show z = x. Suppose z # x.
Then lim, a4(z) = 2x(z) = 0. So there exists a; such that a, (z) <
3(c — 1 —¢). Further, there exists a > a; such that a, (x,) <
Hc—1—-¢). As (a,) is decreasing, we have 1(c —1—¢€) < a,(Xa)
< da, (X4) < 5(c — 1 — &) which is a contradiction. So x, — x and it

follows that |{p~1(g), x)| = lima [(p~1(g), Xa)| > 4(c — 1 - 2¢).
LEMMA 9. 8S, is finite.

Proof. Let y;,...,y, € Sy with n > 1. If ¢ —2 < 1, then
n < 2 and there is nothing to prove. Let ¢—2 > 1. Pick g; € A(S)
such that ||g|| <1, g(»))=1-1 and g(y;) =0 for j # 1. This
can be done because {y;} is a split face of co{y;, ..., y,} which is
in turn a closed split face of S. Let G = {y € S: |gi(»)| > L} u
{yj: J # 2} which is closed in §. Since y, ¢ G and y, is a weak
peak point by Proposition 1, there exists g, € A(S) with ||g] <1,
&(2)>1—-1 and |g| <1 on 85N G. Next, consider y3 ¢ {y €

S: 1)l 2 5 or |@20)| 2 33Uyt j # 3}, we get g3 € A(S) with
lgsll <1, 85(y3) >1—1 and |g3] <L on {p €8S: g1 ()| > % or

1©&2) > Lyu{y;: j # 3}. Continue. We get g1, ..., g, € A(S) with
lgill <1V;, gi(y))>1—1 and |gj| <} on

{y€8S:|g()| =1 forsome k <j—1}U{yc: k#j}.

We show that |[g +- -+ gnll = sup,cas (81 + -+ 8n)(¥)| <2. Let
y €90S. If y =y, for some j, then |g;(y;)| <1 and |g(y;)| < 1
for k #j. So |(gi+ -+ &)l <1+=L <2 If y#y; forall
J, then either |g;(»)| < 1 forall j<n—1 or |gj(¥) =1 for some
j <n—1.In the former case, |(gi+ -+ g)(V)| <=l +1<2.In
the latter, we have |g (V)| < % for k # j and again

n-—1
I(g1+---+gn)(y)|<7+1-
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So |lg1+ -+ &l < 2. Now by Lemma 8, either

((p"(gj),x)>%<c—1—%) or (¢‘1(—gj)x)>—;—(c—l—%).

As the norm ||g; + - -+ + gn|| remains the same if we change the sign
of any g;, we have, by changing signs if necessary, that

2> |lg1+--+ gl =|e (co“ (Z&')
J

> D07 (g))
J

> 2 c—l—g
-2 n)’:

> Z(w_l(gj) ’ x)

J

So n< =% and 89, is finite.

c—1

LEMMA 10. The map p: Y — 0K is onto.

Proof. Let x € 0K and let a, | x» as above. By Lemma 9, 9.5,

is a finite set {y;,..., y,} say. We show there exists y; € 9Sx
with (v, 9™ xx)| = |{¥),lim, ¢(as))| > ¢. Suppose, otherwise,
(yj,lim, ¢(ay))| <c forall j. Let F =co{y;,...,yn} whichisa

closed split face of S. Let F’ be its complementary face. Recall that
co(SU—S) is the closed unit ball in 4(S)*. Since [p*~!(x)|| <1 <1,
we can write

9 1 x) =4 Br1z1 + A (1 = B1)z| — AaBarza — Aa(1 — Ba)Zh

where A + 4 = |lo*"'(x)||, 0 < B1, B2 <1, z;,2z; € F and
zy,z5,€ F'. Let 6 = $(1 — (A1 + A2)c) > 0. There exists a; such
that a > a; implies [(¢(a.), V)| < c+0 for j=1,...,n. Let
a > a;. Then

(p(aa), *71(x)) = L1 B1(9(aa) , 21) — A2B2(p(aa) » 22)
+(0(aa), A1(1 = B1)z] — A2(1 — B2) z5)

where [(p(da), z;)| < c+9d for i =1,2. Let u; and u, be max-
imal measures on S representing z; and z; respectively. Then the
supports of x; and u, are contained in F’ by [1; Corollary IL.611].
Let u = A1(1 — B1)ur — 42(1 = B2)ua. Then u(0Sx) =0 and u is
supported by 95 as u; and u, are. Therefore there is a compact set
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G C 8§ such that GNASy = @ and u(dS\G) < . As GNASy =@,
there exists a; such that a > a, implies |(¢(a,),y)| < ¢ for all
¥y € G. Note that |u|(G) < A1(1 — B1)+42(1 = B5). It follows that, for
a2 ap, a2,

1< (p(as), * 1 (x)) < i Bi(c+9)
+AaBa(c+0)+ )/BS 0(a0)dp
S MBic+Aafac+ A1 B16 + 4220

+ /(;vf(aa)du‘ + p(a.)du
S Aipic+ A2 fac+ A1 B10 + Ay Brd

+A1(1 = By)c+ Ax(1 — ,82)c+2-g
= (M1B1+A282)0 + (A +A2)c+ 6
= %(1 — (A1 +A2)0)(1 + A1 B1 + A2B2) + (A1 + Aa)c
<1=(A1+4)c+ (A +Az)c=1

which is a contradiction. So there exists y; € 9Sy with |(y;, o™ xx)| >
c. This proves Y # @ and p is onto. Analogously, one can show
that 7: X — 8§ is onto by considering, for each fixed y € 45, the
finite set 0K, of cluster points of {x,} where x, € 0K, = {x €
0K: {p~1(bs), x)| > } and (b,) is a decreasing net in A(S) con-
verging pointwise to x, € A%(S) and for any 6 > 0, b, < 1+6 for
large . As before, the following lemma shows that p: S — 9K is
a bijection.

LeMMA 11. If y e Y with p(y)=x, then x € X and 1(x) =

Proof. Suppose either x ¢ X or x € X but 7(x) #y. We deduce
a contradiction. Let (b,) be as above and let 9K, = {x;, ..., xXs} C
0K with |[(x;,lim, ¢p~1(b,))| > . Let 0 < ¢ < 1. There ex-
ists o) such that a > «; implies [{p~'(bs), X1)] > 1 —&. As
[(x,lim, p~1(b,))| < 1, we have x # x; and so y # y; where
p(¥1) = x;. Consider ¢*(y;) = ox; +v with |o] > ¢ and |Jv| <
2—-c<1. Let F =co{X,, ..., X,} which is a split face of K. Now
[(x;, limg p~1(ba))] < 1 for j=2,...,n, and as in the proof of
Lemma 10, we can write

v=uB1z1+ A1 = B1)z] = A2Baza — A(1 - Br) 2}
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where A1+ 4 =||v| <2-¢c, 0L B, L1, 21,2z € F and
z}, z5 lie in the complementary face F’. Moreover, as in that proof,
by constructing a representing measure x4 and a compact set G C 0K
with u(8K\G) < ¢, one can show that, for large «,

{01 (ba) , V)]
<MPBi(F+E)+ 4803 +e)
+ {o 7 (ba), Ar(1 = B1)z} — Aa(1 — B2)25)|
SMBi(3+e) +pa(3 +e)

/ ¢-1<ba>du|+ [ o Gudn
G OK\G

<SPG +e)+ Al +e) + 31— B1) + (1 - Br) +¢
= 1(A1 +42) + (41 +A2)e < (2 —c)(% + &)

Since y # y;, there exists b € A(S) such that b > x, and b(y;) =
and it follows that b,(y;) = 0 for large «. Hence 0 = b,(y;)

(0~ (ba), p*(¥1)) = (971 (ba) , 0x1) + (97! (ba) , v) where
(o~ (ba), ox1)| > c(3—8) > (2 )3 +&) > (97! (ba), V)|
which is a contradiction. This proves the lemma.

+

0

Finally, the proof for p: 8S — 8K being a homeomorphism is as
in the metrizable case and so we obtain the following result.

THEOREM 12. Let K and S be compact convex sets with closed
extreme boundaries OK and 0S respectively. Let every extreme point
of K (and S) be a split face. If there is an isomorphism ¢: A(K) —
A(S) with |olllle~|| < 2, then OK and 8S are homeomorphic.

We end with some examples and applications to function algebras.

ExXAMPLE 1. Both Theorem 7 and Theorem 12 are false for arbitrary
compact convex sets, even in the finite dimension. Take any triangle
K in the plane. Let S be the quadrilateral obtained from cutting off
a tip of K. Then the restriction map ¢: A(K) — A(S) is clearly an
isomorphism and one can make ||¢|/||¢~!| less than 2 by cutting off
a small enough tip. However dK and 8 are not homeomorphic.

EXAMPLE 2. Let X = {z € C:J < |z] <1} andlet 4 = {f €
Cc(X): f(z) is analytic for 1 < |z| < 1}. Then the state space
K={ueAd:u(l)=1=|u||} of 4 is not a simplex, but 9K is
closed and every extreme point of K is a split face [4; p. 108].



84 CHO-HO CHU AND HENRY B. COHEN

Let &/ be a complex function algebra on a compact Hausdorff space
X and let K = {u e &*: u(1) =1 = ||u||} be its state space. Then
0K identifies with the Choquet boundary Ch&/ of & (cf. [4; p.
12]) and the uniform closure re&/ of re/ in Cr(X) is isometrically
isomorphic to A(K) [4; Theorem 1.4.9]. By Bishop’s characterization
of Ch&/ , every x € 0K is a weak peak point.

COROLLARY 13. Let &/ and % be separable function algebras. If
there is an isomorphism ¢:re s — reZ such that |¢||le~"| < 2,
then their Choquet boundaries are homeomorphic.

COROLLARY 14. Let &/ and & be function algebras with closed
Choquet boundaries. If there is an isomorphism ¢: re s/ — re % with
lelllle Y < 2, then their Choquet boundaries are homeomorphic.

The above results should be compared with Jarosz’s result in [16]
that there exists ¢y > 0 such that if there is a complex isomorphism
@ between two function algebras .&/ and & with |¢||l¢~ || <1+e,
€ < &gy, then their Choquet boundaries are homeomorphic.
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