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It is shown that for each 0 < p < g < 0o the space L?(0, oo) +
L%(0, oc), defined as in Interpoliation Theory, is universal for the
class of all Orlicz function spaces LY with Boyd indices strictly
between p and g (i.e. every Orlicz function space LY is order-
isomorphically embedded into L”(0, oco) + L(0, c0)) . The extreme
case of spaces having Boyd indices equal to p or g is also studied. In
particular every space L"(0, oo) + L°(0, co) embeds isomorphically
into the sum L?(0, co)+L9(0, co) forany 0 <p<r<s<g<oo.

0. Introduction. It is a well-known fact from Interpolation Theory
(cf. [L-T II] Proposition 2.b.3) that given 1 < p < g < 0o, every re-
arrangement invariant (r.i.) Banach function space X on the interval
(0, oo) with Boyd indices between p and g, is an intermediate space
between the spaces LP(0, oco)NL?(0, oo) and LP(0, oco)+ L4(0, o0).
This means that LP(0, co) N L4(0, co) C X C LP(0, oo) + LI(0, o0)
with continuous inclusions.

One of the purposes of this paper is to study the universality of
the spaces LP(0, oo) + L9(0, co) with respect to classes of intermedi-
ate r.i. function spaces X, in the sense of whether the above inclusion
X c LP(0, 00)+L4(0, oo) can be replaced by suitable isomorphic em-
beddings of X into LP(0, oo) + L9(0, co). At the same time, these
spaces LP(0, co)+L9(0, co) can be regarded as Orlicz function spaces
L?(0, ), taking the Orlicz function ¢(x) = xP A x? = min(x?, x9),
and, consequently, we are also interested in finding universal Orlicz
function spaces for classes of quasi-Banach Orlicz function spaces
L¥(0, ).

These questions are motived in part by the existence of positive
results of universality in the context of Orlicz sequence spaces: J.
Lindenstrauss and L. Tzafriri (cf. [L-T I] Theorem 4.b.12) proved that
there exist universal Orlicz sequence spaces /¢ with arbitrary prefixed
indices 1 < p < g < oo such that every Orlicz sequence space [V
with indices between p and ¢ is isomorphic to a (complemented)
subspace of [?.

We show here that, in general, for 0 < p < ¢ < oo, the spaces
LP(0, co)+ L9(0, co) are universal for the class of all Orlicz function
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spaces LY (0, co) with Boyd indices strictly between p and g. On
the other hand, this universality of the spaces L?(0, co) + L4(0, o)
does not hold for every intermediate r.i. function space X : there are
Lorentz function spaces which cannot be embedded into L”(0, oo) +
L9(0, 00).

These results are deduced from the two main theorems presented
in §2 (Theorems 3.A and 3.B), which are obtained through results of
representing the Orlicz function y , between p and ¢, in an integral
form with respect to the function x? A x? = ¢(x), i.e. there exists a
probability measure v on (0, co) such that, up to equivalence,

_ [T elxs)
w(x) = /0 P dv(s).

Several remarkable consequences are given in §3. Thus, in Proposi-
tion 6 we obtain sufficient conditions on the embedding of Orlicz func-
tion spaces LY (0, oo) into Orlicz spaces over finite measure L?[0, 1],
which were obtained by Bretagnolle and Dacunha-Castelle ([B-DC]) by
using probabilistic tools (see also [J-M-S-T]).

Corollary 8 extends a recent result of S. J. Dilworth ([D]) about the
scale of spaces L%(0, o) + L1(0, oo) for 2 < g < co. We show that
forany 0 < p <r<s<g < oo the spaces L"(0, oo) + L*(0, co) are
order-isomorphic to sublattices of the space L?(0, co) + L4(0, o0).

We would like to thank Ives Raynaud for helpful suggestions on this
topic.

1. Preliminaries. Let us start with some notations and definitions.
By ¢ we denote an Orlicz function, i.e. a non-decreasing continuous
function defined for x > 0 so that ¢(0) = 0 and ¢(1) = 1. Two
Orlicz functions ¢ and y are equivalent at oo, denoted by v < y

(resp. at 0, ¢ L w) if there exist a constant C > 1 and xy > 0 such
that C~lp(x) < w(x) < Co(x) for every x > xp (resp. 0 < x < Xxp).
When ¢ and y are equivalent at oo and at 0 we say that ¢ and w
are equivalent, i.e. ¢ ~ . Given 0 < p < 00, an Orlicz function ¢
is p-convex (resp. p-concave) if ¢(x!/?) is a convex function of x
(resp. a concave function).

(I, u) means the Lebesgue measure space for 7 = [0, 1] or (0, o0).
The Orlicz function space L?(I) is defined as the set of equivalence
classes of u-measurable scalar functions on 7 such that

m(f/u)=‘/1¢(|f(t)|/u)du(t)<oo for some u > 0.
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The space L?(I) is an F-space when we consider the F-norm
|flp = inf{u > 0: m(f/u) <u}.

It is well-known ([M-Q0]) that an Orlicz space L?(0, oo) is p-norm-
able (0 < p <1) if and only if there exists a p-convex function y
such that L?(0, oo) = L¥(0, o0), where L¥(0, o) is endowed with
the p-norm,

11y = inf{u >0 [T wlLA ) dute) < 1} ,

so (|Iflly)!/? is a quasi-norm (in the case p = 1, | ||, is the usual
Luxemburg norm). Moreover, recall that if two Orlicz functions ¢
and y are equivalent (resp. ¢ ~ ), then L?(0, co) = L¥(0, o0)
(resp. L?[0, 1]= LY[0, 1]) and the identity map is an isomorphism.

An Orlicz function ¢ satisfies the Aj,-condition (resp. at oo) if
there exists a constant A > 0 such that ¢(2x) < Me¢(x) for x > 0
(resp. x > xo for some xo > 0). L?(0, oco) is separable iff ¢ verifies
the Aj-condition.

For basic properties of Orlicz spaces we refer to [Lu] and [Mu]. For
Banach structure properties see [L-T II], [J-M-S-T], [H-Ro] and [R].

Following the terminology of Woo ([W]) we have the following:

DEerFINITION 1. Let 0 < p < ¢ < oo. An Orlicz function ¢ is said
to be between p and g if ¢(x)/x? is non-decreasing on R* and
@(x)/x? is non-increasing on R*. By .Z(p, q) is denoted the set of
all Orlicz functions ¢ between p and g.

It is clear that every Orlicz function ¢ which is p-convex and ¢-
concave belongs to #Z(p, q). If p <p; and g, < g, then Z(p;, q1)
Cc Z(p,q). Also it is very easy to show that a function ¢ with
continuous derivative belongs to Z'(p, q) iff

p<x¢'(x)/p(x)<q foreveryx >0.

ProrosITION 2 ([M] and [W]). Let 0 < p < q < co. For every
Orlicz function ¢ € % (p, q) there exists a p-convex and q-concave
Orlicz function w with continuous second derivative, such that ¢ and
v are equivalent.

The following result of universality for Orlicz sequence spaces is
given in [L-T I], Theorem 4.b.12: Given 1 < p < g < oo there exists
an Orlicz function ¢, ;, = ¢ which is p-convex and g-concave at
0, such that for every Orlicz function ¥ p-convex and g-concave
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at 0, the Orlicz sequence space /¥ embeds isomorphically into /?.
Moreover [? has a 1-complemented copy of /¥ .

We analyze here possible results of universality like the above one in
the context of Orlicz function spaces L?(0, co). In [J-M-S-T], Theo-
rem 7.1, it is proved that if a rearrangement invariant function space
X([0, 1]), in particular an Orlicz function space LY[0, 1], is isomor-
phic to a complemented subspace of a reflexive Orlicz function space
L?(0, o0), then L¥[0, 1] = L?[0, 1] or L¥[0, 1] = L?[0, 1], up to
an equivalent renorming. It follows from this result that there are no
Orlicz function spaces L?(0, oo) which are complementably universal
for classes of function spaces LY (0, oo). This leads us to study the
existence of universal spaces L?(0, oo) just for (non-complemented)
isomorphic embedding.

We will make use of the following remarkable result given in [J-
M-S-T]: Every reflexive Orlicz function space L?[0, 1] can be repre-
sented isomorphically as the Orlicz space L?(0, o), where @ is the
function defined by x2? at 0 and by ¢(x) at co.

2. Main results. Given 0 < p < g < 00, let us denote by x? A x4
the Orlicz function defined by min{x?, x9} = ¢(x) for every x > 0.
Obviously the function x? A x? belongs to the class Z(p, q).

The main results of this paper are the following:

THEOREM 3.A. Let 0 < p < g < o©o. For every Orlicz function
v € Z(p,q), which is non-equivalent to the function xP and x4
neither at 0 nor at oo, the Orlicz space LY (0, oo) is order-isomorphic
to a sublattice of L* (0, 00).

THEOREM 3.B. Let 0 < p < q < oo. For every Orlicz function
v € Z(p, q) such that w(x) = xP at co and y is non-equivalent
to the function xP and x? at 0, the Orlicz space LY(0, co) is order-
isomorphic to a sublattice of L*"*'(0, ).

In order to prove these theorems we give some preliminary re-
sults. Given a positive function g of an Orlicz space L?(0, co) with
llgllp = 1, we consider the Orlicz function @, defined by

D, (x) = /OOO p(xg(s))ds forx>0.

It holds that the Orlicz space L®s(0, o) is order-isomorphic (and
isometric) to a sublattice of L?(0, oo). This follows from the fact that
the map T: L®:(0, o0) — L?((0, ) x (0, 00)) defined by T(f) =
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S ®g,where f®g(t,s)= f(t)g(s), is an (isometric) order-isomor-
phism into L?((0, oo0) x (0, 00)) (see [J-M-S-T] pp. 189 for the proof
in the case of convex functions ¢, which also works in the p-convex
case).

ProPOSITION 4. Let ¢ be an Orlicz function verifying the A,-condi-
tion and v be a probability measure on (0, 0o). If w is the Orlicz
function defined by

(1) w(x) = /0 " p(xs)/p(s)dv(s) forx >0

then the Orlicz space LY (0, co) is order-isometric to a sublattice of
L?(0, 00).

Proof. 1t is similar to the one given in [J-M-S-T], Theorem 7.7,
in the case of normed Orlicz spaces over the [0, 1] interval. Let us
sketch it for the sake of completeness.

Let us define a positive function g by its distribution function:

uis: g(s) € A} = /A 1/p(s)dv(s)

for every measurable set 4in (0, co). For each positive u-measurable
function /4 on (0, o)

| r) e dvis) = [ sy dut.
0 0

In particular for & = ¢, we get [~ o(g(1)du(t) = 1, s0 g €
L?(0, o0) and (|g|lp = 1. Now, taking A(s) = ¢(xs) for x > 0,
we obtain that y(x) = ®,(x). Hence we conclude that

L¥(0, 00) = L®(0, 00) S L?(0, c0). u]

The next results allow us to represent Orlicz functions of the class
Z (p, q) in an intergral form of type (1):

PROPOSITION 5.A. Given 0 < p < q < oo and the Orlicz func-
tion ¢(x) = xP Ax?. Every Orlicz function v € % (p, q), which is
nonequivalent to the functions x? and x9 neither at 0 nor at oo, can
be represented, up to equivalence, as

v = [ oxs)/p(s)dvis)
for some probability measure v on (0, 00).

PROPOSITION 5.B. Given 0 < p < g < oo and ¢(x) = xP Ax9.
Every Orlicz function y € Z(p,q) such that y(x) = xP at oo,
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and which is non-equivalent to the function x? and x? at 0, can be
represented, up to equivalence, as

v(x) = [~ o(xs)/o(s)dv(s
for some probability measure v on (0, 00).

Proof (5.A). We will take some ideas of the proof of Theorem 4.5
in [W]. We assume by Proposition 2 that y is a continuous second
derivative. Consider the function
(//( _xl/ q—P)

- xplar
It follows easily from the properties of the function y that N is a
non-decreasing function, N(0) = 0, and satisfies

limxN'(x)=0 and lim N'(x)=0.

x—0 X—00

We define the function
o0
O(x) = / (P=2=IN" (P9 (p — q)p(x1) dt
0

N(x) =

1/x
= x4 / 2-24=1N(2=9)(p — q)4 dt
0

[e ¢}

+ xP / P-U-IN"(tP=9)(p — q)tP dt .
1/x

Making the variable change u = P9,

(1/xy~*
d(x) = x"/

=xIN((1/x)P79) = y(x).
Now, denoting by N the function
N(t) = 227247\ N" (7~ (p — q) ,

we have the expressions

0
N"(u) du+x"/ uN"(u)du
(1/xy~1

© WAL~

1=y/(1)=/O‘lzq—pﬁ(z)dwr/lwﬁ(t)dt:/o AL Nyar

and in general for x > 0

1/x AT 0o AT
t//(x)=x‘1/ tqwdt+x1’/ tP—N—(th
0 P 1/x 2

_ /°° (xt)? A (X AN
0

N S N@®adr.



UNIVERSAL CLASSES OF ORLICZ FUNCTION SPACES 93

Hence, taking the probability measure v on (0, co) defined by

I/(A)—/At t’\tpN(z)

we are done. O

Proof (5.B). We will keep the above notation. So, reasoning as be-
fore, we consider the function

D(x) = Ii( /1 oo(p — @)PP M IN"(P=9) (xt)P A (x2)1dt

for every x > 0, where N is defined as in the above proof, but only
on the interval [0, 1]. And the constant K is

o
K= / (p — q)tP~ 2~ IN"(P~9) P dt .
1

By integrating, we get
@(x) = 1/K(x’ N((1/x)?~?) - xIN'(1)).
Now, from the definition of N, it follows that there exists 0 < xp < 1
such that
XPN((1/x)P~9) — qu’(l)
(x)

N’(l)—q >1/2
w(x) ~

for every x € [0, xp]. Therefore w Lo,
Proceeding as in 5.A we consider the function

N =% tz” 2EIN"(=)(p ~ q)

l//(.X) ~ Aoo Mdll(t),

obtaining that

P AL
where v is a probability measure on (0, co) defined by v ([0, 1]) =
and for every measurable set 4 in (1, o0)

V(A)=/At N Sy dt. .

Proof of Theorems 3.A and 3.B. It follows directly from Propositions
5.A and 5.B together with Proposition 4. O

3. Consequences. We start this section giving an embedding result
for Orlicz spaces over finite measure space.
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PROPOSITION 6. Let ¢ be a convex Orlicz function at co which is q-
concave at oo for some q < 2. Then the Orlicz function space LY[0, 1]
is universal for the class of all Orlicz function spaces LY (0, oco) with
weZ(r,s) and g<r<s<?2.

Proof. From ¢ € % (1, q), it follows that ¢(x)/x" is a decreasing
function for x > 1. So

! 1
[ otaminars [apmhrar <o
0 0

and, by Proposition 8.9 in [J-M-S-T] (see also [L-T II] Theorem 2.f.4)
we obtain that the space L’[0, 1] is isometrically isomorphic to a sub-
space of L?[0, 1]. Now, using the important isomorphic representa-
tion of L'[0, 1] as the space L* ¥’ (0, oo) ([J-M-S-T] Theorem 8.6)
together with Theorem 3.A we conclude that

LY(0, 00) S L'[0, 11 S L?[0, 1]. O

REMARK. The above result was stated implicitly by Bretagnolle and
Dacunha-Castelle in [B-DC].

Notice that Proposition 6 extends a well-known result of Bretag-
nolle, Dacunha-Castelle and Krivine ([B-DC-K]), obtained by using
p-stable random variables: If 1 < p <r < 2, then the space L’[0, 1]
is (isometrically) isomorphic to a subspace of L?[0, 1].

Let us remark that here we have not used probability tools in the
proof of Theorems 3.A and 3.B, but when we prove Proposition 6 we
do implicitly because we make use of the Theorem 8.6 of [J-M-S-T]
which requires Poisson processes. (Also notice that is the reason of
losing the isometric property.)

We turn now to give a representation of the universal Orlicz spaces
in Theorems 3.A and 3.B as a sum L?(0, oo) + L4(0, o), which are
well-known spaces in Interpolation Theory (see [L-T II]). As a conse-
quence we will extend a recent result of S. Dilworth ([D]) on the scale
of spaces L*(0, co) + L9(0, 00).

Given L?(0,0c0) and LY(0, co) the space sum L?(0, 00) +
LY (0, co) is the space of all functions f on (0, co) which can be
written as g + /# such that g € L?(0, o) and 4 € L¥(0, ), en-
dowed with the norm (or quasi-norm) defined by

1 llg+y = inf{llglly + [12lly: /=g +h}.
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ProPoOsSITION 7. If ¢ and y are Orlicz functions verifying the A,-
condition, p(x) < y(x) for 0 < x <1, and y(x) < p(x) for x >
1, then L?(0, 00) + L¥Y(0, c0) = L?Y(0, 00), the identity being an
isomorphism.

Proof. Given f € L ¥(0, co), we consider the functions f! =
fxa, and f? = fx, where 4;=|f|7([0, 1]) and 4= |f]7'(1, o).
Hence f1e€L?(0,00) and f2€L¥(0,0), so the inclusion L?¥(0,c0)
C L?(0, o0) + L¥(0, o) is continuous. Indeed, if

“fn”w\v/ E" 0,

then
Ifallp ——0 and | f3lly —0

(cf. [Mu], Theorem 1.6). Hence,

Ifllo+y = O-

Now, we show that the above inclusion is also onto, which finishes
the proof by the Open Mapping Theorem.

If fe L?0,00)+ L¥Y(0,00) with f = g+ h, g € L?(0, 00)
and & € L¥(0, o0), consider g!, g2, A!, and A? as before. Then
g2e L¥(0, 00), ! € L?(0, o0), and f = g'+g2+h'+h2. Itis clear
that g! + h! € L?2¥(0, o0), since Jﬂﬁg—hlﬂ <1 for every ¢t > 0.
Let us see that g2 +h% e LV (0, o00). If A =|g%+h?~1([0, 1]), we
have |g2+ h%|x4 < |g%|x4; hence

[ o> +#ydi < [ p(g*ar < oo,
4 4
so (g2+h¥)x € L Y(0, o).
Finally, as g2+ h%* € LY(0, o), we have
(&% + 1) %0, 0004 € LYY (0, 0),
and we can conclude that f € L?¥(0, o). O

A direct consequence of the above proposition and Theorems 3.A
and 3.B is the following:

COROLLARY 8. Let 0 < p <r <s < q. The space L"(0, o) +
L5(0, oo) is order-isomorphic to a sublattice of LP(0, oco)+ L7(0, o).

The case p = r = s follows from the fact
LP(0, 0o) ~ LP[0, 11 S L™ (0, 00).
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REMARK. The above result in the particular case of p =r =2 has
been obtained by S. Dilworth in [D], Theorem 5.7, using a different
argument, and giving several structure properties of the scale of spaces
L2(0, co) + L9(0, oo0) for 2< g < co.

We pass now to give more consequences of Theorems 3.A and 3.B,
related with the Boyd indices of rearrangement invariant (r.i.) func-
tion spaces. Let us recall their definition, following [L-T II], where
they are given as the converses of the original Boyd indices in [Bo].

Let X be a r.i. Banach function space. For 0 < s < oo, we define
the dilation operators D; on X by (Dsf)(¢) = f(¢/s) for 0 <t < x,
which are linear and continuous. Now, the Boyd indices py and gy
are defined by

. log(s) log(s)
PX = % g (1D, ) ook Tog(IDs )
. log(s) log(s)
. og(s . og(s
= 1 Tog(IDsl0) — 0551 Tog(IDsl)
It holds that 1 < py <gx <.

In Interpolation Theory the following result is known (see [L-T IIJ,
Proposition 2.b.3), showing the r.i. Banach spaces are intermediate
spaces between the spaces L?(0, oo) N L9(0, o0), with the norm of
the maximum, and L?(0, oo) + L4(0, o0).

PROPOSITION 9. Let X be an r.i. Banach function space on (0, c0).
Then, for every 1 <p <px < qx < q < oo, we have

LP(0, 00) N LY(0, 00) C X C LP(0, 0o0) + LI(0, 00)

with the inclusion map being continuous.

Let us show here that when we restrict ourselves to considering
Orlicz function spaces L?(0, co) = X, we can substitute the above
inclusion X ¢ LP(0, oo) + L9(0, oo) by an order-isomorphism.

When ar.i. function space X is an Orlicz function space L?(0, o),
the associated Boyd indices py and gy coincide with the Matuszew-
ska-Orlicz indices o, and s; respectively (see [Bo], also [Ma]). Let us
recall that these indices o; and s, related with the growing behavior
of the Orlicz function ¢ in the positive real line, are defined by

a _ 1i. log(infso{p(4u)/p(u)})
% = ,113?0 log(4)
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and log (suPso{p i)/ (1)})
a _ i JO8(SUPy>0\ P AU)/P(U
Sp = hm log(A) '
Hence, given 0 < p < g < oo, for any Orlicz function space L?(0, co0)
with Boyd indices verifying

P<px=0,<s5,=qdx <(,

we get that the function ¢ is, up to equivalence, a strictly p-convex
function and a strict g-convex function (see f.i. [Ma] pp. 22-24).
Thus, the next proposition follows now from Theorem 3.A.

ProposITION 10. Let 0 < p < g < oo. If an Orlicz function space
L?(0, 0c0) = X has Boyd indices p < px < qx < q, then L?(0, c0) is
order-isomorphic to a sublattice of LP(0, oo) + L9(0, o).

In the case 1 < p < g = 00, it also holds that the space LP(0, oo)+
L>(0, oo) is universal for every Orlicz function space L?(0, co) = X
with Boyd indices p < px < gx < oo. This follows from the fact that
the space L?(0, oo) + L>*(0, oo) contains an isomorphic copy of />
and the spaces L?(0, oo) are separable.

REMARK. In general the continuous inclusion map in Proposition
9, LP(0, o) N L9(0, o0) C X, cannot be replaced by an isomorphic
embedding as in the above proposition. For example, if p = 2 <
r < q, then the space L2(0, co) N L9(0, oco) which is isomorphic to
L9(0, co) cannot be embedded into the space L"(0, co).

Finally, let us show that the last proposition does not hold in gen-
eral for intermediate r.i. Banach spaces different from Orlicz function
spaces:

ExaMpPLE. Consider the Lorentz function space X = L, (0, oo)
defined as the space of all measurable functions f on (0, co) such
that its decreasing rearrangement f* verifies

/oo(f*(t))t‘l/zdt <.
0

It holds that its associated Boyd indices are py = gx = 2; hence
by Proposition 9, we have L, (0, co) C LP(0, oo) + L4(0, co) for
I<p<2<g<oo.

However, the space L, (0, co) does not embed isomorphically
into L”(0, co) + L9(0, o0). Indeed,

LP(0, 00) + LI(0, 00) = L¥ (0, 00)
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is a reflexive space, but the space L, ;(0, oo) is not reflexive (it con-
tains an /'-complemented subspace, see [F-J-T]).

REMARK. We do not know whether there are Orlicz function spaces
over the [0, 1]-interval universal for intermediate classes of Orlicz
function spaces LY[0, 1], i.e. similar results to Theorems 3.A and 3.B
for Orlicz spaces over finite measurable spaces L?[0, 1]. Related to
this question, it holds that the universal spaces L?(0, oco)+L4(0, c0),
for 1 < p < g < 2, cannot be represented as a r.i. Banach function
space on the [0, 1]-interval (see [J-M-S-T] p. 230).
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