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NILPOTENT LIE GROUPS AND SOLVABLE LIE GROUPS
ACTING ON SIEGEL DOMAINS

JUNKO INOUE

We study Fourier transforms of L’-functions (1 < p < 2) on
nilpotent Lie groups and affine automorphism groups of Siegel do-
mains. We get an estimate for the norm of the L?-Fourier transform
for certain classes of nilpotent Lie groups. For affine automorphism
groups, which are nonunimodular, we give an explicit definition of
L?-Fourier transform, and obtain an estimate for the norm.

Introduction. First of all, let us recall some known results of the L?-
Fourier transform on unimodular groups. For such groups, the classi-
cal Hausdorff-Young theorem was generalized by Kunze [13]. Follow-
ing a description of Lipsman [14], we briefly mention the generaliza-
tion. Let G be a separable locally compact unimodular group of type
I, and G be the unitary dual endowed with the Mackey Borel struc-
ture. Denote by dg a Haar measure on G, and by u the Plancherel
measure on G associated with d g . Thatis, u is uniquely determined
by the abstract Plancherel formula; for ¢ € L'(G) N L*(G),

(0.1) /G p()Pdg = /atr(n(m*n(w»dmn),

where n(p) = [;p(g)n(g)dg. We consider the Fourier transform
& to be a mapping of LI(G) to a space of u-measurable field of

bounded operators on G; (Pp)(n) = n(p), for p € LI(G), n€G.
Let 1<p<2and g = pl (p — 1), and for a u-measurable field of

bounded operators F on G, let

171 = ( Lieeng, due) ",

where ||[F(n)||c, = (tr(F(n)*F(n))4/?)!/4. Denote by L4(G) the Ba-
nach space defined by the space of measurable fields F such that
IF|lg < oo in the usual way (with norm || -||;). Then the Hausdorff-
Young type inequality

(0.2) 1L el < llells

295



296 JUNKO INOUE

holds for ¢ € L'(G) N LP(G). Thus the Hausdorff-Young theorem
asserts that the map ¢ — P¢ from L!(G) ﬂy’(G) to L9(G) extends
to a continuous operator &°?: L?(G) — L4(G) and its norm

(0.3) #P(G)| = sup [|FP(g)]q < 1.
llell, <t
Next, let us consider the norm | %?(G)||. For the case of G =
R" (the classical Fourier transform), Babenko [1] and Beckner [2]

obtained the norm

1p\ 12
(0.4) IPP(R™)|| = A2,  where 4, = (%) :
On the other hand, by a result of Fournier [8], the following statements
(1) and (2) are equivalent for a locally compact unimodular group G:

() |#P(G)]l=1.

(2) G has a compact open subgroup.

For various examples which do not have compact open subgroups,
Russo obtained estimates for the norm in [18], [19] and [20].

In §1, we deal with connected and simply connected nilpotent Lie
groups G with Lie algebras g. We first treat irreducible representa-
tions of G, and give an estimate for ||7t(¢)||cq (p € L1(G) N LP(G))
for irreducible representations 7 satisfying the condition (C1) (Propo-
sition 1.2). Then we give an estimate for || Z?(G)| for groups G
satisfying the condition (C2) (Theorem 1.3) as follows:

(0.5) |7 (G)|| < AF S

where m is the dimension of generic coadjoint orbits of G in g*
(the dual space of g). Here let us note that the Plancherel measure
is supported on the set of representations corresponding to generic
orbits in g* by the Kirillov mapping. Applying Theorem 1.3 to the
Heisenberg groups and the nilpotent groups of real upper triangular
matrices, for example, we get the same estimates as those obtained by
Russo in [19].

Section 2 is devoted to a nonunimodular case. We will treat con-
nected and simply connected Lie groups whose Lie algebras are normal
Jj-algebras (see 2.1 for definition). In the sequel, let G = expg be such
a group.

An extension of the Hausdorff-Young theorem to general (i.e., not
necessarily unimodular) locally compact groups was given by Terp
[21] in terms of the spatial theory of von Neumann algebras. But we
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will give an explicit realization of the LP-Fourier transform based on
the Plancherel theorem of Duflo and Moore [5]. For each irreducible
representation 7 corresponding to one of the generic coadjoint orbits,
which are open, we modify the map ¢ — n(¢) using the operator
called the formal degree of n [5], and define LP-Fourier transform
PP . Then the following estimate for the norm is obtained:

(0.6) IPP(G)|| < g™/

(Theorem 2.2.1). This result (0.6) is compatible with (0.5) for m =
dimG.

Let us remark that Eymard and Terp [7] and Russo [20] developed
their LP-Fourier analysis for the ax + b group (the group of all affine
transformations of the real line), and we are generalizing their results
toour G.

The author would like to thank the referee for his very useful com-
ments and for the suggestion of focusing on the L? norm estimates.

NoTtATIONS. Let G be a Lie group and dg a left Haar measure on
G . We denote by A = A; the modular function of G, i.e., d(gx) =
A(x)dg. If ¢ isafunctionon G and 1< p < oo, we put ¢*?)(g) =
A(g)~VPp(g-1) for g € G. (We often use p* for p*(1).) We regard
LP(G) as equipped with the involution ¢ — ¢*®) .

Let # be a Hilbert space. Then we denote by % (#’) the space of
bounded operators with the operator norm | - ||« , and by & & (#)
the space of compact operators. For 1 <p < oo, C,(#) is the space
of T € Z(¥) satistying ||T|c, = (tr((T*T)?/?))'/? < co, where tr(")
denotes the trace. It is a Banach space with the C,-norm || - ||C,, .

1. The norm of the L”-Fourier transform for nilpotent Lie groups.
Here we treat connected and simply connected nilpotent Lie groups.
First of all, let us summarize the Plancherel theorem for such groups
in terms of the orbit method. (For details, we refer to Chapter 4 of
(4].)

Let g be a nilpotent Lie algebra, G = expg, ©: g*/G — G be the
Kirillov mapping which assigns the coadjoint orbit G - f (f € g*)
to the class of 7, = indgf Xr: the representation of G induced by a
character x, of By = expb,, where b, is a real polarization at f
and xs(expX) = eV-/X) (X eby).

Let {X;,..., X,} be a strong Malcev basis for g (i.e, g; =
R-span{X\, ..., X;} isanideal of g foreach i),andlet {/,, ..., [}
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be the dual basis for g*. For each / € g*, define S(/) ={2 < j < n;
gj-1 +8(0) # gj + 8(1)}, where g(1) = {X € g; (X, g]) = {0}}, the
radical of /([-, -]).

Then there are disjoint sets of indices S, 7 with SUT ={1, ...,
n}, and a G-invariant Zariski-open set Z such that S(/) =S for all
[ € Z . Define the Pfaffian Pf(/) for / € Z by

| PE())|? = det(/([X;, X;1))i, jes-

Let V7 = R-span{/;; i € T} and d! be the Lebesgue measure on Vr
such that the unit cube spanned by {/;; i € T} has volume 1. Then
for a function ¢ € L'(G) N L?(G), we have the Plancherel formula

(L.1) o3 = [ lmam (o)l PO dL.

T

Thus we get the following description:

1/q
(1.2) nﬂ’P((p)nq:(/% . ||n2n,<¢>||‘fcq|Pf(l>|d1) .

Before computing (1.2), we treat the C,-norm of n(¢) for an irre-
ducible representation 7.

DEeFINITION 1.1. Let § be an ideal of g and dX be a Lebesgue
measure on h and / € h* such that /([h, b]) = {0}. For ¢ € L1(G),
define a function F#¢(/)(-) on G associated to / € h* by

(1.3) Fro()(g) = /b V10 (exp X)g) dX

for almost all g€ G.
Since Fp(l)(hg) = e VU Fo(l)(g) for h = expY € H =
exph, we regard |[#¢(/)(-)| as a function on H\G.

ProrosITION 1.2. Let f € g* and ny be the corresponding irre-
ducible representation of G. Suppose the following condition:

(C1) there exists an ideal b satisfying g(f) C b and f([b, b]) = {0}.

Let b/ = {X € g; f([X,h]) = {0}}, which is a subalgebra,
and H/ = exph/. Taking Lebesgue measures on 4 and 4/, let
|PE(h/ /b, f)] = (det(f1Y:, Y;1)/2, where {Y;} is a unit basis for
b/ /b of volume 1. Giving a Haar measure on G, we take the in-
variant measures on H, H/, H\G and H/\G normalized by the
Lebesgue measures on 4 and b/ through the exponential map and the
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transitivity of invariant measures. Then the following inequality holds
for l<p<2, 1+4=1and g e LY (G)NLP(G):

(1.4) lms(@)llq

Sc(g’b’f’p)

2

LP(H\G)

1/q
( [, 1%l -(flh))(')lng)
H\G

where
C(g, b, [, p) = ((2m)"/94,)@ime+dimelDN=2 dmb)/2 pf(p/ /g, £)|71/4,
and dg is the invariant measure on H/\G. (We regard g —

Fe (gL (fly)()| as a function on H'\G.)
If p =2, equality holds in (1.4).

Proof. The proof is by induction on the dimension of g. The propo-
sition is trivial for dimg = 1 (regarding c(g, b, f, p) = 1 in this
case). Assume that the proposition is valid for all dimensions of g
less than or equal to n — 1, and that dimg = n. Let 3 be the center
of g and Z =expj.

Case 1. Suppose that 3nker(f) # {0}. Taking 0 # Z € (3nker f),
let § = g/RZ with the quotient map pr: g — g, and G =expg with
P: G — G. We factor down f and = into f € g* and 7 € G
respectively. Then the radical §(f) = pr(g(f)), (pr(h))/ = pr(p”),
and the coadjoint orbit G- f corresponds to 7.

For ¢ € C.(G) (compactly supported continuous functions on G),
define the function ¢ € C.(G) by

=/(o((exptZ)g)dt, geaq.

Then, writing § = pr(b) and H = exph, and taking the invariant
measures on G, H\G and H/\G associated to those on G, H\G
and H/\G through the projection P respectively, we have n(p) =
7(@) and by the induction hypothesis,

Iz(@)llc, = llz(D)lic,

. . 1/q
<Cs,5, f,p) ( / G TE T, .>|ng>

L’(H\G)

1/q
=C(g, b, f,p) (/Hf\Glg’E(o(g"“(fla)a')I"dg> ,

LP(H\G)
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where dg and dg are the invariant measures on H/\G and H/\G.
(The last equality is verified by the property of the quotient spaces.)

Case 2. Suppose that ker(f)N3 = {0}. Since 3 is 1-dimensional, we
cantake Xy, Y, Zegsuchthat 3=RZ, [g, Y] =3, [Xo, Y]=Z
and f(Y)=0. Regarding g as acting on §, we may assume

(1.5) Yeb ifph+#s;

Let g; = ker(adY) and G| = expg;. Then g = g; ® RXj, the radical
of f'= flg,:81(f") = 9(f)+RY, and h C g;. Let n; denote the
irreducible representation of G; corresponding to Gy - f.

Using the supplementary basis Xy to g;, we realize n as induced
from n;, whose space is denoted by # . That is, for £ = &(¢) €
L*(R, #), the space of #{-valued L2-functions on R with a Lebesgue
measure dt, define the action of G = G;expRX, by

n(g1expsXo)é(t) = m(g))E(t +5),

where g, € G, gl = (exptXp)gi(exp—tXp).
Then we have n(¢p) for ¢ € C.(G) as the integral operator

n(p)E(t) /k (t, 8)¢(s)ds,

where ky(¢, s) = fGl m1(81)p(g exp(s — t)Xo)d gy, dg; is the Haar
measure on G, such that dg =dg; dt for g = gy exptX,. For each
fixed ¢, s € R, putting ¢*-*(g;) = o(g/ Yexp(s — 1)Xp) € C(Gy), w
regard the integral kernel as

ko(t, s) =mi(p"").

Here let us recall an inequality of Hausdorff-Young type for integral
operators due to Fournier and Russo [9]. Let /# be a complex Hilbert
space, % (#) be the space of bounded operators on #Z, and M be
a o-finite measure space. Denote by L2(M , #) the Hilbert space of
square integrable /7 -valued functions on M . We consider an integral
operator K on L?(M, #) with operator-valued kernel k, a % (#)-
valued function on M x M , by letting

K&(x) = /M k(x, Y)EW) dy

for all ¢ € L(M, #), and almost all x € M .
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If 1<p, r,s<oo, define the norm ||-fc ,,,s by

kllc, 1. = { [ ([ ke, y)nc,,)'dx)s/' dy}

We get from [9] the following estimate for the norm of K. Let
1<p<2, ;+5=1.Suppose [k, p,q <oo and [k*|c,,p,q <,
where k*(x, y) = k(y, x). Then the integral operator K with kernel
k belongs to C,(L*(M, #)), and

1/s

1/2 x1/2
(1.6) IKllc, < IkI, QIR IE2, o

If p =2, equality holds in (1.6).

Now we return to the proof. Giving RX; the Lebesgue measure
such that X, has volume 1, let dX; be a Lebesgue measure on g;
adapted to the direct sum decomposition g = g; ® RXj.

Subcase 2.1. Here we suppose that h =3 =g(f). Let 31 = g1(f") =
RZ +RY , which coincides with the center of g; . We apply the induc-
tion hypothesis to G; with the Haar measure dg; = d(exp X;) = d X,
7, 31 with the Lebesgue measure normalized as 3; = RY ® RZ and
@'-*. Putting a basis {Y;},<i<»—3 of g1/31 whose unit cube has vol-
ume 1, and writing f; = f]; , we get

(1.7) I71(0" e, ) < callF, 0" (DOrznG,) »

where

c1=c(g1,31,f,Dp)
= (((2m)"94,)" 3| det( L ([Y5 , Yi]))1<i k<n—3) /)2,

and get equality in (1.7) for p = 2. For g, € Gy,
.0 () (&)
= / o((exp(zZ + yY)g1) " exp(s — 1) Xp)eV "/ EZHY) g4z dy
R2
=% 0AZ* + tAY*) (g1 exp(s — ) Xo),

where {Z*, Y*} C 3} is the dual basis of {Z, Y}, and A= f(Z).
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We first calculate the norm |lkjlic,,p,q:
a/p
( INOACPYD ds)
alp Ve
< ( [ ([@o 0O dt) ds> (by (1.7)

a/p e
(// P(AZ" +sAY ™) (g, *exp(t — s)Xo)|P d & dt) ds) :
Z)\G,

1/q

1/q

1/q

a/p
”7[1(¢S’t)“%q(‘yl)dt> ds)

q/p
( L] ez +sar )(glexpzxow’dgldt) ds)
Z)\G,

»la 1/p
/ f / |, 0(AZ" +s/1Y*)(g1exszo)|4ds> dé dt)
Z\G,

(by the generalized Minkowski’s inequality)

1/p
< (2m)2 4,07V, ( [ [ [1500z  exoyYa ewpixol dyde dz)
Z)\G,
(by (0.4) with our normalization of the Lebesgue measures)
= (275)1/qu)~_1/qu “‘Z(o(fls)(')”L"(Z\G)'

(If p = 2, equality holds in the above estimate.) Noticing that the
unit cube of the basis {Yo =Y, Yy,..., Y, 3,Y,» = Xo} of g/3
has volume 1, and that [Y;, Yy] =0 for i <n-3, [Y,-2, Yo]=Z
we get

det(f(1Y;, Yi])o<i,k<n—2 = A2det(f([Y;, YiD)1<i k<n—3
and
(27)9 4,2~ 4¢,
= (((2m) /9 4,)" 1 det(f([Y;, Ye])o<i,k<n—2l /)2

Thus we have
lkpllc,,p,q < Cl8, 35, f, DIFHe (1) 2\6)-

On the other hand, remarking that k; =k, , we also have ||k, lic,.p.q

< C(s, 3, [ DIAe" (DO 2\ Since [Fo()Orz6 =
%50 (1))l rz\6) » We conclude that

Iz(@)llc, < Clg, 3, f, IS0 (N rz\6) »
and that equality holds for p =2.
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Subcase 2.2. We next suppose that h # 3. Recalling that Y € §
(1.5), we note that h/ C g;. As in Subcase 2.1, we will estimate the
norm ||k$||cq, p.q- Apply the induction hypothesis to Gy, 7y, h and
@*>! using the Haar measure on G; adapted to the decomposition
g = g ® RX; and the invariant measures on H/\G; (denoted by
dg,) and on H\G, suitably normalized:

(O] P

1/q
C(s1,b, 1, p) (/H\ |Foo® (&] ﬁ)()lngl)

L?(H\G))
where f; = fly. Since

[, 15 e fwld

H\G,

= [, 108 05X S~ exple — )Xol d,

for x € Gy,
1/q D 1/p
( [, 150 f1><~>|ngl) d
H\G,
LP(H\G))
1/q
- (/I |F0((g1expsXo)™" - f1)()I? dgl)
H\G,
L(H\G)

Thus,
C(gl s b’ fl s p)—l”k;”qu,q

<\

q 1/q
ds
LP(H\G)

(by the induction hypothesis)

1/q
(-/f 1% 0((g1 expsXo) ™! -ﬁ)(-)l"dg‘)
HI\G,

IN

1/q
(fu /,,f . 1Folgexpsxo)™ - O dd ds)
- LP(H\G)
(by the generalized Minkowski’s inequality)

1/q
= (/; I%w(g“-fn)(-)l"dg)
H/\G

L (H\G)
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Since dim g; +dim g;(f’) = dimg+dimg(f), weget C(g, b, f,p) =
C(g1, b, f', p). As the proof of Subcase 2.1, the inequality (1.4) is
verified. a

Now we get an estimate for |[%?(¢)|, when g admits an ideal b
such that the condition (C1) is satisfied for almost all f € g* with §.
Remark that if a subspace | of g satisfies that f([(, []) = {0} for all
fe# c g*, where Z is a dense subset of g*, then [ is an abelian
subalgebra.

THEOREM 1.3. Let g be a nilpotent Lie algebra of dimension n,
G =expg and m be the dimension of the generic orbits. Suppose that
g satisfies the following condition. (C2) There exists an open dense
subset 7% of ¢* such that the ideal generated by Jcq 9(f) is abelian.

Then the inequality

122 (G| < A"~
holds for 1 <p < 2.

COROLLARY 1.4. Let G = expg be a connected and simply con-
nected nilpotent Lie group with the center Z = expj. Suppose that
G has irreducible square integrable (mod the center) representations.
Then . .

“c@p(G)” S AI(’dme+d1mZ)/2.

Proof. An irreducible representation 7 is square integrable mod Z
(i.e., m occurs discretely in the induced representation indg nz by
the central character n; of =) if and only if the dimension of the
corresponding orbit Q is dimg/3, thatis, g(f) =3 for f € Q (e.g.,
[4](4.5)). And then square integrable representations correspond to
the generic orbits. Thus the condition (C2) is satisfied in this case.

REMARK 1.5. There are nilpotent Lie groups which satisfy (C2) but
do not have square integrable (mod the center) representations. For
example, the nilpotent Lie group N, of n real upper triangular ma-
trices with ones on the main diagonal is such a group for n > 4. In
this case,

2P (N)|| < Aén/Zl-[(n+1)/2].

In [19], Russo obtained similar estimates for | #?(G)| for the
Heisenberg groups, the group N, and some low dimensional nilpotent
Lie groups. The results are based on estimates for ||7t(¢)||cq for each
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irreducible representation 7 using the inequality (1.6) of integral op-
erators under explicit realization of n. Our method, where we also
use (1.6), is a generalization of the computation in [19].

Proof of Theorem 1.3. Let b be an abelian ideal satisfying b D g(f)
forall f € Z, and H = exph. We may choose a Malcev basis

{X1,...,Xn} for g such that h = R-span{X,, ..., X} for some
k. We use the notations in the Plancherel theorem (1.1). Noting
Tc{l,...,k},let §={1,...,k}\T, V¢ = R-span{/;; j € S’}

and pg be the projection of h* = Vr @ Vy to Vg . If f e Z, then
bt+G-f=G-f, where bt = {/ € g*; l|; = 0}, since h D g(f). Thus,
considering the coadjoint action of G on h*, we get a parametrization
of generic orbits in Z from Chapter 3 of [4]. (We may assume that
7 1is included in the set of generic orbits treated in the reference.):
The set Z’' = {l|,; ! € Z} is dense in h* and every G-orbit in %’
meets Vr in a unique point. Furthermore, there is a difffomorphism
Y: (#'NVr)xVg — %' such that (pgo¥)(f, A) = 4, and the Jacobian
determinant of W is identically 1. Let Sj’, ={1<i<n;gi1+4y #
gi+b'} and TP = {1, ..., n}\S9. We take the invariant measures
on G, H and H/\G defined by the Lebesgue measures on g, b
and h/\g such that {X;, ..., X}, {X1,..., Xi} and {Xj;jGS?}
span unit cubes of volume 1 respectively. Identifying G with H x
(H\G), let us treat ¢ = p® ¢, € C.(H)® C.(H\G). Writing @o(/) =
s eV-UX) go(exp X)dX , we have

| 10oce(s, 217 d2

s’

= |Pf(’ /b, f)|™! / Bo(g™" - (f1p))I9 d &I PE(S),

H\G

where dA is the Lebesgue measure such that {/;; i € S’} spans a unit
cube of volume 1, and d¢ is the G-invariant measure on H/\G. In
fact, the Jacobian determinant of the map H/\G — {f} x Vy: & —

P-1(g7t- (fly)) is
|det(g_l ' f([Xl s Xj]))iES(f),jES'l = Idet(f([Xl ’ Xj]))jgsg,jes'l ’
and

|PE()I? = | det(f([X;, X;])i,jes]
= | det(F([Xi, X;))ieso, jest ' PEH/ /b, f)I2.
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Thus from Proposition 1.2 and (0.4),

Loy, Ve @ PR

< 2n)” dim bAg(Zn—m-—Z dim b)/2

Y CITA
?/nV

g 190087 DI 81 PR
_A4(2” m)/z(zn.Aq) dim§

AN?dArd ’
/) rW/ 160((f, D)1 A2 10151

Aq(2n m)/2(2nAq)—d1mb/ RO dll|¢1||Lp (H\G)

2 2
< AP g|4, 6

This implies the theorem. O

2. The LP-Fourier transform on affine automorphism groups of Siegel
domains.

2.1. Preliminaries. Concerning affine homogeneous Siegel do-
mains, let us recall the notion of normal j-algebras introduced by
Pyatetskii-Shapiro:

DEFINITION 2.1.1. A triple (g, j, w) is a normal j-algebra if

(1) g is a real completely solvable Lie algebra (i.e., g admits a
decreasing series of ideals g; such that dimg;/g;,; = 1),
(2) j:g— g is a complex structure,
3) X, jYl=[X,Y]+jUX, Y]+ j[X, jY] forall X,Y €g,
(4) w € g* has the properties
(a) w([Y, jY]) >0 forall Y €g- {0},
b) o([jX,jY])=w(X,Y]) forall X,Y eg.

It is known that the connected and simply connected Lie group G =
expg with a normal j-algebra (g, j, @) can be realized as an affine
automorphism group acting simply and transitively on a Siegel domain
of type II, and vice versa. (For details, see e.g. [11], [16].) Thus,
starting from a normal j-algebra (g, j, @), which we often denote
by g only, we study the corresponding group G = expg.
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Here we summarize fundamental facts of the structures of normal
Jj-algebras and unitary representations of corresponding groups.

For a normal j-algebra (g, j, @), let A be the symmetric positive
definite bilinear form A(X, Y) = w([X, jY]) on g, and let a be the
orthogonal complement of [g, g] with respect to A. Then a is an
abelian subalgebra of g, and the adjoint representation of a on [g, g]
is real diagonalizable. There exists a unique element S € a such that
adS|js = 1j,. The eigenvalues of adS are at most 1, 1 and 0.
Denoting each eigenspace by g;, k=1, % , 0, we have

8=019912®g, and
J81=290, Js1,2=01/2> I[8i>0k]C 8itk>

with the convention that if i +k # 1, 1 nor 0, g, = {0}, [11],
[16].

We next consider unitary representations of G = expg. Since G
is an exponential group (i.e., the exponential mapping is a diffeomor-
phism of g onto G), its unitary dual G is parametrized by the coad-
joint orbits of G on g* through the Kirillov-Bernat mapping. In the
case of a normal j-algebra, G has open orbits, whose union is dense
in g*. They correspond to the classes of square integrable represen-
tations of G. (The criterion of square integrability used in the proof
of Corollary 1.4 holds for exponential groups [6].)

Let us give a more detailed description of open orbits. Notice that
the subgroup G, = expgp acts on g} by the coadjoint action since
g1 is an ideal of g. Let / € g*, and /; = [|g . Then the orbit G-/
is open in g* if and only if Gy -/, is open in gj. Thus, regarding
0" =019}, according to the direct sum decomposition g =
91 © 912 ® go, we have

G'I=G0-11+gf/2+ga,

for an open orbit G-/ [15] (1.3), [17] (Proposition 3.3.1).
Throughout §2, g is a normal j-algebra, G = expg and dg is a
left Haar measure on G.

2.2. A Hausdorfj-Young theorem for G. Let n be an irreducible
square integrable representation of G in a Hilbert space /# . Then
from [5], there exists a unique operator K, in #, self-adjoint posi-
tive, semi-invariant with weight A~!, i.e.,

(2.1) n(g)Kn(g) ' =A(g) 'K, foral geG,
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and satisfying that
(2.2) /G €, 2(g)mP dg = IEIRIK: 2l

forall £ € #Z and 75 € domK,,‘l/z, the domain of K;l/z. The
operator K, is called the formal degree of =.

Using the formal degree, we state our Hausdorff-Young theorem as
follows.

THEOREM 2.2.1. Let g be a normal j-algebra, G = expg, and dg
be a left Haar measure on G. Taking a set of representatives of classes
of irreducible square integrable representations of G, {(n;, #z);i €
1}, let Ky be the formal degree of m; in the sense of [S]. Let p, q be
exponents such that 1 <p<2, 1 +1=1.

(1) Let 9 € LY(G) N LP(G). Then the operator ni(qJ)K,li/q can be

extended to a Cgy-class operator, denoted by [ni(¢)K,l,i/ 1, and satisfies
the following inequality;,

1/q
(2.3) (Z () Kx/ NI ) < 4™ gll.
iel

If p =2, equality holds in (2.3).

(2) The mapping ¢ — nf(p) = [x; (¢)K,i,/q] extends uniquely to a
continuous mapping n¥: L?(G) — Co(2), i€l.

Let P: LP(G) — @jc; Cq(#r) be the mapping defined by ¢ —
PP(p) = B, 7 (p). Then PP is continuous and injective, and the
image PP (LP(G)) is dense in @;c; Cq(Zn)-

The involutions of L?(G) and @;c; Cy(#z) are preserved, ie.,

(2.4) PP(p*?)) = Pl (p) = PP (p)°

iel
In the case of p =2, P? is a surjective isometry.

REMARK 2.2.2. It is obtained from the Plancherel theorem of Duflo
and Moore [5] that %2 is a surjective isometry. But we will prove it
simultaneously in the course of establishing the inequality (2.3).

On the ax+b group, Eymard and Terp [7] and Russo [20] obtained
similar results. The former is based on the Plancherel theorem of
Duflo and Moore, but the latter is based on that of Kleppner and
Lipsman [12]. In order to obtain L?-estimates, they used the integral
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operator inequality (1.6), which we will also use, and got the same
estimate with that of our n =2 case.

We give here a representative of each class of irreducible square
integrable representations, and an explicit description of the formal
degree, to be used later.

Recalling that the classes of irreducible square integrable represen-
tations correspond to open coadjoint orbits, let 2 be an open coad-
joint orbit. Put an element f € Q and take a real polarization by
at f satisfying the Pukanszky condition [3]. Defining a character
of B =expbs by xs(expX) = eV-1/X) for X € by, construct the
induced representation 7 = indg Xy of G from yr. The representa-
tion 7 is irreducible and its class is the corresponding one under the
Kirillov-Bernat mapping. Remark that we can always take such a po-
larization b, such that g; C by C gy, (see [10], Remark 2.5). Thus
putting n = g; + g1/2, which is a nilpotent ideal, and N = expn, we
regard n as induced from the irreducible representation o = indg Xf
of N, n=ind§o.

Regarding G as the semidirect product G = NG, we take a right
Haar measure dgy on G and dn on N such that A-l(g)dg =
dndgy, for g = ngy, n € N, gy € Gy. Letting #; be a space
of o, we realize 7 in the space L%(Gy, %, dgy) of #,-valued L?-
functions on Gy, acting on the right:

(n(ngo)&)(x0) = o (xonxy )¢ (Xogo)

for f€L2(G0, Zy dgo), ngo€ G=NGy, x9 € Gy.

We next choose the Lebesgue measure dX on g such that dg =
Uc(X)dX , where ug(X)=|det((1 —e-29X)/ad X)|, g=exp X [3].
Letting {X;}1<;<, be a basis of g such that the unit cube has volume
1, define a function / — D; on g* by

(2.5) Dy = |det(/([X;, Xid)i<i,k<nl (I €9%).
Putting a unit basis {Xq, ..., X'h’ Moot s Vs Yy o1 Y,,l},where
n=span{V;, Y, ;1<i<ny,1<k<n} and gy =span{¥;; 1 <
k < ni}, we get

(2.6) Dy =|det(l(IVi, ViD)i<i,k<n| | det([Xi, YiDi<i,k<n I

since [g;, n] = {0}.
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DEFINITION 2.2.3. Let K, be the operator in LGy, %, dgpy)
defined by multiplication by the function cfA‘l, where ¢y =
((zn)—dingf)l/z .

Then K/ is the formal degree of z (see [6]).

2.3. Proof of Theorem 2.1. Let Q be an open coadjoint orbit. Tak-
ing an element f € Q and a real polarization b, at f, we realize the
corresponding irreducible representation 7 in /# and define the for-
mal degree K, as we mentioned in 2.2.

DEFINITION 2.3.1. Let w € L1(G) and dX be a Lebesgue measure
on g;. We define the partial Euclidean Fourier transform # ¥ on
G, =expg; with dX by

Frw(l)(g) = / eV 1)y (exp X)g) dX ,
9

for / € g} and almost all g€ G.

Let ¢ € Ce(G), and & € # = LX(Go, %, dg) such that K /% ¢
# . From the semi-invariance (2.1),

Q1) (@)K = [ (@K O o(e)de

- /G A9 (g)(K 7 (£)E) (xo)p () dg

= (K/"n(A~"119)¢)(xo)

Let us identify G with g; x (G;\G) by taking a global section s
of G{\G, and choose a right Haar measure d¢ on G;\G such that
A~Y(g)dg =dXdg for g = (expX)s(g) with X €g;, £ € (G|\G).

We next suppose that ¢ = ¢; ® ¢ € C.(g;) ® C.(G1\G) and that
the Euclidean Fourier transform of ¢;, denoted by ¢,, is of support
compact. Letting A: Go — g} be the mapping defined by A(xp) = x; 1.
fi, where xo € Go and f; = f|y , and noting that m(exp X)n(xp) =
eV X)p(xy) for X € g; and n € 7, we get
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2

4 (x0)(m(8)E)(x0)A™/U(g)p(g) dg|| dxo

HWWM%L

=/GO

/ A~V (xg)eY " X) (7(4(2))E) (x0) 9 ((exp X)4(£))
8, /G \G

2

CAVP(s(g))dX dg| dxo

A=Y (x0)(m((2))E)(x0)AYP (4(2))
G\G

=/GO

2

- Ao(xo- [)0(8)dg| dxo

< sup |A~Y4(x) g1 (x5 fw//|WammW

x,€G,
19(2)AYP (4(2))* d g dx
= sup A~Y40-Y (N e (DI lo AP 22 £ 2.
IEGo~f1| ( ( ))¢1( )l ”¢ ”L (GI\G)” ”

(Note that A is a diffeomorphism of Gy onto Gy - f;.) Here we
regard the function / — D; on g* as defined on g remarking that
Dy, = Dy for any m € gi-. Then

Dy =Dy, =AT'A7ND))Dy, €G- fi.
Thus

sup [A™V4QATHD) g (DI
leG,-f,

< sup (DlDfl)z/" sup |¢1]* < oo,
le(G, f,Nsupp @,)

which implies that the operator n(@)K!/? extends to a bounded op-
erator, denoted by 77(¢p).

REMARK 2.3.2. For such a ¢, it holds that

(2.8) ' (9)* = Kn(¢*) = 2 (9*?),
(2.9) n?(p) = K'9n(a~/4p).
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Proof. Let ¢, n e # and suppose that ¢ € dom K1/9. Then
(n(p)K'9E, ) = (K'9E, m(9*)7).

Noting that K1/ is self-adjoint, we conclude that z(¢*)n € dom K1/4
and that n?(p)* = K!/9n(p*). Using (2.7), the second equality of
(2.8) and (2.9) are obtained. O

Now, we will estimate the C,-norm of n?(¢). Identifying G with
NGy according to the realization of 7, we get for ¢ € domK!/4

n(p)K /9(x0)
= /G o (xonixy A4 (x00)¢ (X020) 0 (n20)A(0) dn d gy

=cft [ [ oo e(e)onsg a0
- AYP (g0)Ao(x0)A™ ! (x0) dnd gy
=cft [ [ otmelanotxg na)at (o) dndso,

where Ag(g) = |det(ad, xo)|~!. Letting p™(ngo) = ¢(x;'ngo) and
for each fixed xy, gy € Gy, regarding ¢p*(ngy) as a function on N,
define a Fourier transform for o ;

o(p(ngo)) = [ o(n)p™(ngo)dn,
which is a bounded operator of #, . Then
w(p)(x0) = ¢l [ olp™(ngn))E(a0A”(20) do,
and we regard 7”(¢) as the integral operator with integral kernel

ko(x0, 80) = ¢/ %0 (9™ (ngo))AV? (g).

Let us remark that the representation ¢ = indg Xs 1s square in-
tegrable. In fact, from D, # 0 and (2.6), the singular space of the
bilinear form f([-, -]) on n is g;, which is the center of n. Choose
a Haar measure dn on G;\N such that the transitivity holds with
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measures dn and d.X . Applying Proposition 1.2 to o, for each fixed
X0, 8 € Go, we get

dim(n 2
lo (g™ (ngo))lic iz < 45" """ 2c(0) 1| Fig™ (f1)(ng0)ll rim) »

where c(o) = (2n)dime—dim3)/2| pf(g/3 f)|~!. Using the notations
Ay(x0) = | detadg xo|~!, An(x0) = |detad,xo|~" for xp € Gy, we get

0% (f1)(ngo) = / V=1 g% (exp X)ngo) dX
9,
eV~ 05D ((exp X)xy ' ngo)AT ! (x0) d X
9y
= Fio(xs - f) (g ' ngo)AT (x0)

and

I F19% (f1)(ngo)ll L7 (,\m)
1/p
= (/ 1Fro(xg " f1) (x5 ngo)l d”) AT (x0)

1

“(f

1

1/p
(A f)(nxg " go)lP dﬁ) (A1/AN)MP (x0) AT (x0).

Thus we have the inequality

1/p
(2.10) lky (%0 20)llc. ) Sa( /G e g go)lpd”)

1

A () ATV (x0)A VP (g0)

where
_ Aédimn/g.)ﬂc(a)l/qc}/q,

for xy, go € Gy.
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As the proof of Proposition 1.2, we first estimate the norm
“k(;”Cq,p,q-

ks llc,.n.qa

a/p l/q
- (/ (/ ks (g0, Xo)||%q dgo> dxo)
G, \/G,
a/p
=e (/c (/Go fcl\zv Folx" - f)(nxs &)l dnA(go)dgo>

1/q
AR (x0)AT (xo) dxo) (by (2.10))

1/q

a/p
=o (/G (/GO/G \Fio(xy " - fi)(ngo)l? dnA(go)dgo) Al_'(xo)dxo)

pla 1/p
<“(/Go f (/ A0 - fi)ngol'A7 (Xo>dXo) dsz(go)dgo)

(by the generalized Minkowski’s inequality for measures Al_1 (x0) dxo
and dnA(gy)dgo) -
Choose a Lebesgue measure dypX on gg such that

dgo=d(exp X) = ug (X)do X ,

for gy = exp X € Gy, where ug (X) = |det((1 —e~2dX)/ad X)|. Let
{X;} (resp. {Y;}) be a basis of gy (resp. g;) whose unit cube has
volume 1. Then under the mapping xp — A(xp) = X 1. f; from G,
(with the Haar measure dgy) to g} (with the Lebesgue measure di),
which is the dual space of g; with the Lebesgue measure dX, we
have dA(xp) = A7 (x0)| det(f([X:, Yi]))i x| dXo. Thus we have

ksllc,.p.q
< a|det(f([X;, Yil))i x|~/

- ( [ (Lseamaeaz)™ dsz(go>dgo) "

where Q' = Go - fi C g} . Again noticing that k; = kq,.(p) from (2.8),
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we get

Iklic. 5.0
< odet(f([X;, Yil))i k|74

( L (L |%¢*@><x>(ngo>|qdz)p/q dnA<go>dgo)l/p.

By some simple calculation, it can be shown that the right-hand sides
of the above two inequalities coincide.
Recall that

Adlmn/s )/2 c(o )1/qc}/q’

and that
c(o) = ((2m)3m /e[ det(f([V;, Vi])I™H)Y2,

where {V;} is a basis of n/g; whose unit cube has volume 1. Using
(2.6), we get

— ((zn)—dingf)lﬂ
= (27)” 42| det(f([X;, Ye]))| | det(/(1Vi, ViD)I'/2,

and
a|det(f(LX;, Ye]))|~V/4 = (2m)~ dimai/a g(&m /072,

Thus identifying with g; x (G{\G),

(2.11) [=(@)K/?|c,
—di (dimn/g,)/2
< (271.) dlmgl/qu imn/g

- ( |, o ([ 1siewmsor @) A(g)dg) "

Taking a system of representatives {f;; i € I} of open orbits Q;
(iel),let (n;,#, Ks) be the associated representation and the
operator of 2.2. Then, recalhng that ¢ = ¢ ® ¢, ¢ € C.(g1) and
¢ € C.(G;\G), we obtain the following:
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S I (@)L,
iel
< (27[)— dimglAg(dim“/Ql)/z

> </c \G (/Q '%¢1(/1)¢(g)|"d,1)p/qA(g) dg>

icl
(by (2.11))

a/p

(271.)— dimglAg(dim“/Bl)/z

a/p
N[ Fo w1 da < [ le@rae dg)

gl 1

a/p
sA,?(“‘“’“W( lp1(X)IP dX /G \leo(g)l”A(g)dg)

(by (0.4))

9,

di 2
= 43" g5,

This proves (2.3), and the mapping ¢ — [7(¢)K }/ 7] extends uniquely
to the continuous mapping 7n”: LP(G) — Cy(#z ). If p =2, equality
holds in (0.4), (2.10) and the Minkowski’s inequality. Thus we get
equality in (2.3) for p =2.

Using Remark 2.3.2, we can obtain the following

LEMMA 2.3.3. 7?(9)* = n?(p*®P)) for ¢ € LP(G).
We next prove that 7?(L?) is dense in C,;(%,). Noting that L!(G)x
LP(G) c LP(G), we get
n(y)n?(p) = 2P (y + 9) for y € L'(G), ¢ € L*(G).
Let T € Cp(#) such that tr(n?(¢)T) =0 for all ¢ € L?(G). Then
tr(z(w)n?(p)T) =0 for all y € L(G).

Since n(LY(G))NI & (#) is dense in [ Z(#), whose dual is C,(#),
it follows that n?(¢)T =0 for all ¢ € L?(G).
From Remark 2.3.2, it holds for ¢ € C.(G) that

7 (p) = K/Tn(A711g).

Thus n(p)T = 0 for all ¢ € C.(G), that is, letting & € 7, we
have 0 = (n(9)T¢, n) = [(n(8)T¢, n)p(g)dg, for all n € Z and
¢ € C.(G). This implies that (z(g)T¢,n) = 0 for all g € G and
ne#Z ,ie., T =0. This proves that n”(L?) is dense.
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REMARK 2.3.4. Concerning the case p = 2, we have proved that
P?: LA(G) — @,¢; C2(H#) is a norm-preserving mapping of image
dense. This concludes that %2 is a surjective isometry.

LEMMA 2.3.5. Let # € C.(G) and ¢ € L?(G). Then ¢+#£ € L*(G)
and

(2.12) P« £) = PP (9) PV a+ DA~V g).

Proof. Assume that ¢ € C.(G). Then ¢ x £ € C.(G), and
73 (p * £) = [mi(p * £)K; "1 = [0:(9)mi( £)K,; "]
= [mi(p)K; " K, 0w (A1 24)]
— 7[57(¢)7[3/(1/2+1/4)(A—1/qg)
for i€ I. Thus
P« £) = PP (@) PUVa+1D (A= g,
and using our Hausdorff-Young theorem,
1P (9 + £)lc, = | PP (p)P V(2 UD(Aag)] |,
<P (0)lc 1PV D (A g,
<C#, D)oy

where C(#£, p) is a constant depending only on # and p.
Noting that the equality [|[Z%(¢ x £)|ic, = |l¢ * £ |2 holds, we get

llp xkll2 < C(£, P)lollp,

which implies that the mapping ¢ — ¢ * £ € L?(G) can be extended
to a continuous mapping of L?(G) into L?(G). This verifies the
assertion of the lemma for all ¢ € LP(G). 0

Now we prove that 7 is injective. Suppose that F#P(p) = 0
(p € LP(G)). Then using (2.12), it holds for every # € C.(G) that
P2p + £) =0, which implies that ¢ * £ = 0 since #? is injective.
Thus ¢ =0. O
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